首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Aquaculture Research》2017,48(4):1759-1766
A shrimp protein hydrolysate (SPH) containing 894.2 g kg−1 crude protein (CP) and 54.3 g kg−1 total lipids was tested as a partial replacement for fish meal (FM) in diets of juvenile cobia. The effects of increasing dietary levels of SPH on the survival, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE) and daily feed intake (DFI) of cobia with initial body weight of 11.9 g were evaluated. Four isoproteic (from 431.1 to 439.7 g kg−1) and isoenergetic (20 825–21 347 MJ kg−1) diets were formulated to contain 0 (Control), 120, 240 or 360 g kg−1 of dietary CP derived from SPH. Survival, WG, SGR, FCR, NRE and DFI ranged from 90 to 100%, 40.2–56.5 g, 4.7–6.1% day−1, 1.04–1.54, 26.3–44.0% and 4.7–6.0% fish−1 day−1 respectively. Survival and DFI were not affected by the dietary treatments. On the other hand, fish fed the control diet and the one containing 120 g kg−1 SPH had higher WG, SGR and FCR. Nitrogen retention efficiency was significantly higher for fish fed diets 0 and 120. It is concluded that up to 120 g kg−1 of SPH in cobia diets can be used with no significant effects on feed utilization and fish performance.  相似文献   

2.
An 8‐week feeding trial was conducted to determine the effects of dietary methionine level on juvenile black sea bream Sparus macrocephalus. Fish (initial body weight: 14.21 ± 0.24 g) were reared in eighteen 350‐L indoors flow‐through circular fibreglass tanks (20 fish per tank). Isoenergetic and isonitrogenous diets contained six levels of L‐methionine ranging from 7.5 to 23.5 g kg−1 of dry diet in 3.0 g kg−1 increments at a constant dietary cystine level of 3.1 g kg−1. Growth performance and feed utilization were significantly influenced by dietary methionine levels (P < 0.05). Maximum weight gain (WG), specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value (PPV) occurred at 17.2 g methionine kg−1 diet, beyond which they showed declining tendency. Protein contents in whole fish body and dorsal muscle were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. Apparent digestibility coefficients (ADCs) of dietary nutrients were significantly affected by dietary treatments except for ADCs of crude lipid. Fish fed the grade level of methionine demonstrated a significant improvement in whole‐body methionine content, total essential amino acids (∑EAA), total non‐essential amino acids (∑NEAAs) and ∑EAA/∑NEAA ratio (P < 0.05). Regarding serum characteristics, significant differences were observed in total cholesterol, glucose and free methionine concentration (P > 0.05), while total protein level and triacylglycerol concentration kept relatively constant among treatments (P < 0.05). Analysis of dose response with second‐order polynomial regression on the basis of either SGR or PPV, the optimum dietary methionine requirements of juvenile black sea bream were estimated to be 17.1 g kg−1 of diet (45.0 g kg−1 methionine of protein) and 17.2 g kg−1 of diet (45.3 g kg−1 methionine of protein) in the presence of 3.1 g kg−1 cystine, respectively.  相似文献   

3.
A feeding trial of three protein (200, 300 and 400 g kg−1) and two lipid levels (20 and 100 g kg−1) was conducted to determine the proper dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Dietary protein and lipid levels were adjusted by adding with different levels of soybean meal, squid liver oil and soybean oil, respectively. Three replicate groups of sea cucumbers (average weight of 1.3 g) were fed the experimental diets for 12 weeks. At the end of the feeding trial, survival was not affected by dietary protein and lipid levels (P > 0.05). Weight gain (WG) and specific growth rate (SGR) of sea cucumbers were significantly affected by dietary protein (P < 0.006) and lipid levels (P < 0.001). The highest WG and SGR were observed in sea cucumbers fed the 200 and 400 g kg−1 protein diet with 20 g kg−1 lipid (P < 0.05). WG and SGR of sea cucumbers fed the diet containing 20 g kg−1 lipid were higher than those of sea cucumbers fed the 100 g kg−1 lipid diets (P < 0.05) at each dietary protein level. Apparent digestibility coefficients of dry matter, crude protein, carbohydrate and gross energy of sea cucumbers fed the 20 g kg−1 lipid diets were significantly higher than those of the 100 g kg−1 lipid diets at 200 and 400 g kg−1 protein (P < 0.05). Moisture, crude protein, crude lipid and ash contents were not significantly different among the groups. The results of this study indicate that the diet containing 200 g kg−1 protein (170 g kg−1 digestible protein) with 20 g kg−1 lipid (13 g kg−1 digestible lipid) may be sufficient for optimum growth of juvenile sea cucumber.  相似文献   

4.
A 50‐day feeding trial was conducted to examine the effects of dietary protein and lipid levels on growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica. Fish (initial body weight 44.6 g ind−1) were fed ten test diets which were formulated at 5 crude protein levels (360, 400, 440, 480 and 520 g kg−1) and 2 crude lipid levels (90 and 150 g kg−1). In addition, a raw fish diet (fillet of small yellow croaker) served as the reference. The weight gain (WG) increased, whereas the feed intake (FI) and feed conversion ratio (FCR) decreased, with increasing dietary protein level from 360 to 520 g kg−1. At the same dietary protein level, no significant difference was found in the WG between fish fed the diets containing 90 or 150 g kg−1 crude lipid. Fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid exhibited higher WG, nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) but lower nitrogen wastes output (TNW). At the end of the feeding trial, the hepatosomatic index (HSI) and viscerosomatic index (VSI) decreased, whereas the body protein content increased, with increase in dietary protein level. The body lipid content was higher in fish fed at the 150 g kg−1 lipid level than in fish fed at the 90 g kg−1 lipid level. No significant difference was found in the maximum sustained swimming speed (MSS) between fish fed at different dietary protein and lipid levels. The WG, NRE, ERE and condition factor (CF) were higher, whereas the FI, FCR, HSI, VSI and TNW were lower, in fish fed the raw fish diet than in fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. No significant difference was detected in the MSS between fish fed the raw fish diet and diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. The results of this study suggest that the suitable dietary crude protein and crude lipid levels are 480 g kg−1 and 90 g kg−1 for giant croaker reared in net pens.  相似文献   

5.
A 6‐week growth trial was conducted to investigate the effect of dietary supplementation with maggot meal (MGM) and soybean meal (SBM) on the growth performance and antioxidant responses of gibel carp (GC) and darkbarbel catfish (DC). The basal diet was formulated to contain 114 g kg−1 fish meal (FM) and 200 g kg−1 SBM. The basal diet was supplemented with either 280 g kg−1 FM (Control), 390 g kg−1 MGM or 450 g kg−1 SBM to obtain three isonitrogenous (crude protein: 380 g kg−1) and isocaloric (gross energy: 16 kJ g−1) diets. For GC, a significant decrease in specific growth rate (SGR) was only observed in fish fed the SBM diet compared with the control (< 0.05). Principal components analysis (PCA) of GC showed a higher similarity in antioxidant response to dietary supplementation with MGM and SBM proteins between liver and intestine, but the DC did not. The present results suggest that supplementing 390 g kg−1 MGM protein to basal diet cause an enhancement of the antioxidant capacity in GC, but supplementing 390 g kg−1 MGM and 450 g kg−1 SBM proteins to basal diets resulted in a significant attenuation of the antioxidant capacity in DC.  相似文献   

6.
A 9‐week feeding trial was conducted to investigate the dietary methionine requirement of juvenile Megalobrama amblycephala at a constant dietary cystine level. Six semipurified diets were formulated to contain graded dietary methionine levels from 3.9 to 15.4 g kg?1 in about 2.5 g kg?1 increments in the presence of 2.2 g kg?1 cystine. Results showed that specific growth rate (SGR) and protein efficiency ratio (PER) significantly increased with increasing dietary methionine levels from 3.9 to 12.4 g kg?1 and thereafter kept stable. Maximum protein productive value (PPV), nitrogen retention efficiency (NRE) and liver weight were observed in 8.5 g methionine kg?1 diet. Protein contents in whole fish body were positively correlated with dietary methionine level, while lipid contents were negatively correlated with it. Morphological index and hepatic glutamate‐pyruvate transaminase (GPT) activities were independent of dietary methionine levels. However, dietary methionine supplementation significantly improved haematological parameters, plasma methionine and total essential amino acid contents and hepatic glutamate‐oxaloacetate transaminase (GOT) activities. Analysis of dose response using broken‐line regression on the basis of SGR and PPV versus dietary methionine level estimated the optimum dietary methionine requirements of juvenile M. amblycephala to be between 8.5 and 8.4 g kg?1 of diet (25.0 and 24.7 g kg?1 of protein) in the presence of 2.2 g kg?1 cystine, respectively. Hence, the corresponding total sulphur amino acids requirements of this species were calculated to be 10.7 and 10.6 g kg?1 of diet (31.5 and 31.2 g kg?1 of dietary protein).  相似文献   

7.
A growth trial was conducted to examine the effect of dietary digestible energy (DE) content on methionine (Met) utilization and requirement in juvenile Nile tilapia (Oreochromis niloticus). Ten iso‐nitrogenous (288 g kg?1 protein) practical diets, with two DE levels (10.9 MJ kg?1; 12.4 MJ kg?1) and five methionine supplementation levels (0, 1, 2, 4 and 6 g kg?1), were hand‐fed twice daily to triplicate groups of Nile tilapia (initial body weight 8.95 ± 0.06 g) for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased significantly with increasing dietary methionine concentration at the same DE content (< 0.001). At the same dietary methionine level, WG and SGR of fish fed high‐DE diets were significantly higher than that of fish fed low‐DE diets (= 0.0001), although no interaction was found between dietary DE and methionine supplementation. Based on quadratic regression analysis between dietary methionine concentration and weight gain, optimal methionine requirement for maximum growth, expressed as g Met required kg?1 diet (low‐ versus high‐DE diets), increased as diet DE concentration increased (7.34 versus 9.90 g kg?1 diet, respectively; with cysteine 4.70 g kg?1 diet). The results indicated that diet DE content affects methionine utilization and requirement in juvenile Nile tilapia, fish fed high‐DE diets required more methionine for maximum growth.  相似文献   

8.
A feeding trial was conducted to determine the suitable dietary protein and lipid levels for juvenile golden pompano Trachinotus ovatus reared in net pens. Ten test diets were formulated at five levels of crude protein (330, 370, 410, 450 or 490 g kg?1) and two levels of crude lipid (65 or 125 g kg?1). Golden pompano fingerlings (initial body weight 4.7 g ind?1) were fed the test diets for 8 weeks. Weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), condition factor (CF), hepatosomatic index (HSI), body protein content and total nitrogen waste (TNW) were dependent on both dietary protein and lipid levels. Feed intake (FI) and viscersomatic index (VSI) were dependent on dietary protein level, while body lipid content was dependent on dietary lipid level. Weight gain increased with increasing the dietary protein level (at the same lipid level) but was lower at the dietary lipid level of 65 g kg?1 than at 125 g kg?1 (at the same protein level). Fish fed at the dietary protein levels of 460–490 g kg?1 had higher WG and lower FCR than at 330–410 g kg?1. Energy retention efficiency tended to increase with increasing the dietary protein level from 330 to 410 g kg?1, while no significant difference was found in nitrogen retention efficiency between the dietary protein levels (at the same lipid level). Results of this study suggest increasing the dietary lipid level from 65 to 125 g kg?1 could not induce protein‐sparing action in golden pompano, and the suitable dietary protein and lipid levels for juvenile golden pompano reared in net pens should be 450–490 and 65 g kg?1.  相似文献   

9.
This study examined the effect of dietary protein and lipid levels on growth, feed utilization and body composition of Asian catfish Pangasius hypophthalmus reared in cages. Eight test diets were formulated at four protein (340, 380, 420 and 460 g kg−1 crude protein) and two lipid (50 and 90 g kg−1 crude lipid) levels. Fish (initial weight 4.7 g fish−1) were fed the test diets for 8 weeks. Final body weight, weight gain (WG), feed intake (FI), feed conversion ratio (FCR), contents of crude protein, lipid and energy in whole body were dependent on both dietary protein and lipid levels, while specific growth rate (SGR), hepatosomatic index and body moisture content were dependent on dietary lipid level. The WG and SGR increased with the increase in either dietary protein level (at the same lipid level) or lipid level (at the same protein level). The FI and FCR decreased with the increase in dietary protein level (at the same lipid level) or lipid level (at the same protein level). Protein sparing action occurred in case dietary lipid level increased. Fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid had the highest WG and SGR, but the lowest FI and FCR, among the diet treatments. There were no significant differences in the protein retention efficiency (PRE) and energy retention efficiency (ERE) among the diet treatments, although PRE and ERE were relatively high in fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid. At the end of the feeding trial, body protein content increased, while body lipid content decreased, with the increase in dietary protein content at the same lipid level. Our results suggest that dietary levels of 450 g kg−1 crude protein and 90 g kg−1 lipid are adequate to support fast growth of P. hypophthalmus reared in cages.  相似文献   

10.
An 8‐week experiment was designed to determine the optimum dietary iron requirement of juvenile cobia Rachycentron canadum (mean initial weight, 15.89 ± 0.84 g) with iron sulphate (FeSO4•7H2O) and iron methionine (FeMet) as iron sources, using a semi‐purified diet based on casein and white fish meal as the protein sources. The basal diet was supplemented with 0, 30, 60, 120, 240 and 480 mg iron kg−1 dry diet from either FeSO4 or FeMet, respectively. Survival was not significantly affected by the all dietary treatment. Weight gain (WG), feed efficiency (FE), serum catalase activity (SCAT), and haemoglobin were significantly affected by any of the dietary treatments from both of two iron sources. Based on broken‐line regression analysis of WG, FE and SCAT, a minimum requirement for dietary iron was recommended to be 80.5–94.7 mg kg−1 from FeSO4 and 71.3–75.1 mg kg−1 from FeMet. Iron supplement to the basal diet had no significant effect on haematocrit, erythrocyte count, iron concentration in whole body and fillet. Our experiment also showed that the bioavailability of FeMet and FeSO4 to juvenile cobia was similar for WG and FE, and the relative bioavailability of FeMet and FeSO4 to juvenile cobia was 275% for maximum SCAT.  相似文献   

11.
A feeding trial was conducted to investigate the effects of dietary fructooligosaccharide (FOS) on growth performance, body composition, intestinal enzymes activities and histology of fingerling Megalobrama amblycephala. A total of 1200 fish (1.42 ± 0.01 g) were fed diets containing graded levels of FOS (0, 0.5, 1, 2, 4 and 8 g kg−1 diet) for 8 weeks in a recirculating system indoor. The weight gain, specific growth rate (SGR) and survival rate were all improved in dietary supplementation of FOS fed fish. Increasing FOS levels resulted in both higher whole‐body lipid and lower moisture contents, whereas ash and protein contents showed no significant differences among all the treatments. Intestinal amylase, protease, Na+, K+‐ATPase, alkaline phosphatase, γ‐glutamyl transpeptidase and creatine kinase activities all increased with dietary FOS levels up to 4 g kg−1 (< 0.05). Transmission electron microscopy analysis indicated that microvilli length in the mid‐intestine was significantly increased with increased dietary FOS levels (< 0.05). In conclusion, dietary supplementation of FOS could confer benefits on growth performance, intestinal digestive and absorptive ability, histology of fingerling Megalobrama amblycephala.  相似文献   

12.
A total of 630 juvenile Chinese sucker, with an average initial weight of 1.72 ± 0.05 g, were fed seven diets for 56 days to study the effect of dietary methionine levels on growth, feed utilization, body composition and haematological parameters on juvenile Chinese sucker. Diet 1 using fish meal as the sole protein source and diets 2–7 using fish meal and fermented soybean meal as intact protein sources supplemented with crystalline amino acids contained six levels of l ‐methionine ranging from 6.4 to 18.9 g kg?1 of dry diet at a constant dietary cystine level of 3.7 g kg?1. Each diet was randomly assigned to three aquaria. Results indicated that the highest weight gain, specific growth rate (SGR), feed efficiency ratio, protein efficiency ratio and protein productive value occurred at 13.9 g methionine kg?1 diet among the methionine supplemented dietary groups, beyond which they showed declining tendency. The whole body and muscle protein contents of juvenile Chinese sucker were positively correlated with dietary methionine level, while muscle lipid content was negatively correlated with it. The total essential amino acids content of muscle was increased significantly with increasing dietary methionine level from 6.4 to 13.9 g kg?1 (< 0.05). Apparent digestibility coefficients of dietary protein were significantly affected by dietary treatments. Serum protein, cholesterol and triacylglycerol increased with increasing dietary methionine levels, but showed a relatively lower value for fish fed the 18.9 g methionine kg?1 diet. Quadratic regression analysis of SGR against dietary methionine level indicated that optimal dietary methionine requirement for juvenile Chinese sucker was 14.1 g kg?1 of the diet in the presence of 3.7 g kg?1 cystine (corresponding to 32.0 g kg?1 of dietary protein on a dry‐weight basis).  相似文献   

13.
An 8‐week feeding experiment was conducted to determine the effect of dietary betaine levels on the growth performance and hepatic intermediary metabolism of genetically improved farmed tilapia (GIFT) strain of Nile tilapia Oreochromis niloticus (mean initial body weight: 78.3 ± 1.3 g, means ± SD). Six practical diets were formulated with the incorporation of betaine at the levels of 0 (control), 5, 10, 15, 20 and 25 g kg−1. Survival showed no significant differences among the treatments (P > 0.05). The highest and lowest weight gain (WG) and specific growth rate (SGR) were observed for fish fed the diets containing 5 and 0 g kg−1 (control) betaine, respectively. Feed intake showed similar trend with WG and SGR. In contrast, feed conversion ratio was the lowest when dietary betaine level was 5 g kg−1. In general, dietary betaine supplementation showed no significant effect on hepatic composition of tilapia. Condition factor and viscerosomatic index tended to increase with increasing dietary betaine levels from 0 to 5 g kg−1 and then decline when dietary betaine levels further increased from 5 to 25 g kg−1. In contrast, hepatosomatic index declined with increasing dietary betaine levels (P < 0.05). Dietary betaine levels significantly influenced several hepatic enzymatic activities, including succinate dehydrogenase, lactate dehydrogenase, malic dehydrogenase, lipoprotein lipase and hepatic lipase, suggesting that dietary betaine addition had significant effects on nutrient metabolism in the liver. Based on the second‐order polynomial regression analysis of WG, 12.5 g kg−1 of dietary betaine level seemed optimal for genetically improved farmed tilapia strain of O. niloticus.  相似文献   

14.
This study examined the adverse effects of feed-delivered melamine (MEL) and cyanuric acid (CYA) in red tilapia. Diet 1 (without MEL and CYA), diets 2–4 (with MEL and CYA at 2.5, 5 and 7.5 g kg−1 diet, respectively) and diets 5 and 6 (with either MEL or CYA at 10 g kg−1 diet) were examined. MEL alone lowered both growth and FCR (< 0.05), and CYA alone reduced the FCR of tilapia. Protein efficiency ratio and apparent net utilization of fish on diets 2–6 were poor (< 0.05). The renal tubules of fish ingested MEL-CYA combination had melamine–cyanurate crystals. On the other hand, diets with only one chemical did not induce such crystals. MEL and CYA in whole body, fillet or viscera reflected their dietary inclusion levels. The levels of Hsp70 were increased in the liver of fish that ingested MEL and CYA, in combination or singly (< 0.05). However, in the kidney, such an increase was visible only in the fish that received diet 4 (< 0.05). Combination of MEL and CYA at inclusion levels > 5 g kg−1 diet induced the activity of catalase in liver and the activity of glutathione peroxidase in liver and kidneys. Therefore, these adulterants should not be included in fish feeds.  相似文献   

15.
H. Xu  J. Du  S. Li  K. Mai  W. Xu  Q. Ai 《Aquaculture Nutrition》2017,23(6):1449-1457
Studies were conducted to investigate the effects of dietary n‐3 long‐chain polyunsaturated fatty acid (n‐3 LC‐PUFA) on growth performance, lipid deposition, hepatic fatty acid composition and serum enzyme activities of juvenile Japanese seabass Lateolabrax japonicus (initial mean weight 29.2 ± 1.34 g). Triplicate groups of 30 Japanese seabass were fed with six diets containing grade levels of n‐3 LC‐PUFA (1.30, 2.98, 5.64, 10.31, 14.51, 24.13 g kg–1 of dry weight) to apparent satiation twice daily for 9 weeks. The specific growth rate (SGR) was the highest in 10.31 g kg–1 dietary n‐3 LC‐PUFA group. Crude lipid content of the fish decreased significantly with increasing dietary n‐3 LC‐PUFA. Meanwhile, the hepatic lipid content increased significantly in the 24.13 g kg–1 group. Hepatic n‐3 LC‐PUFA content of total fatty acids was closely correlated with that in diet. No significant difference was observed in serum alanine transaminase (ALT) and aspartate aminotransferase (AST) activities. Moderate n‐3 LC‐PUFA level (10.31 g kg–1 of dry weight) in the diet was beneficial to enhance the activity of lysozyme in serum. Based on SGR, the optimum dietary n‐3 LC‐PUFA content was estimated to be around 10.94 g kg–1 of dry weight by second‐order polynomial regression method.  相似文献   

16.
Six diets were formulated with vitamin B6 levels (2.6, 32.7, 54.8, 90.7, 119.6 and 247.4 mg kg−1, dry diet) to determine the requirement for juvenile Pacific white shrimp, Litopenaeus vannamei. Triplicate groups of 40 juvenile shrimp (approximately 1.0 g) were provided four times each day to apparent satiation (8 weeks). Weight gain (WG), specific growth rate, feeding efficiency, protein efficiency ratio (PER) and protein productive value of the shrimp were significantly influenced by the vitamin B6 levels. No significant differences in whole‐body and muscle composition, except for dry matter and protein contents in whole body. Vitamin B6 concentration in the hepatopancreas significantly increased with the dietary vitamin B6 level increasing from 2.6 to 32.7 mg kg−1. High‐density lipoprotein cholesterol in the haemolymph improved with the dietary vitamin B6 levels increasing from 2.6 to 90.7 mg kg−1 diet and no significant differences in low‐density lipoprotein cholesterol, cholesterol, glucose and total protein concentrations. Aspartate aminotransferase, alanine aminotransferase, superoxide dismutase, catalase and lysozyme in the haemolymph were significantly influenced by dietary vitamin B6 levels. The optimal dietary vitamin B6 requirements estimated using a two‐slope broken‐line model based on WG and SGR and an exponential model based on the vitamin B6 concentration in the hepatopancreas were 110.39, 110.08 and 167.5 mg kg−1, respectively.  相似文献   

17.
A 12‐week feeding trial was conducted to evaluate the effects of dietary vitamin C on growth performance, antioxidant status and innate immune responses in juvenile yellow catfish, Pelteobagrus fulvidraco. Six isonitrogenous and isolipidic diets (44% crude protein and 7% lipid) were formulated to contain six graded dietary vitamin C (ascorbate‐2‐poly‐ phosphate, ROVIMIX® STAY‐C® 35) levels ranging from 1.9 to 316.0 mg kg?1 diet. The results of present study indicated that fish fed the lowest vitamin C diet had lower weight gain (WG) and specific growth rate (SGR) than those fed the diets supplemented vitamin C. WG and SGR did significantly increase with dietary vitamin C levels increasing from 1.9 to 156.5 mg kg?1. However, no significant increase was observed with further dietary vitamin C levels increasing from 156.5 to 316 mg kg?1. Survival, protein efficiency ratio and feed efficiency were not significantly affected by the dietary vitamin C levels. The activities of serum superoxide dismutase, catalase and glutathione peroxidase significantly increased when dietary vitamin C levels increased from 1.9 to 156.5 mg kg?1, fish fed the lowest vitamin C diet had higher serum malondialdehyde content than those fed the diets supplemented with vitamin C. Fish fed the diet containing 156.5 mg kg?1 vitamin C had the highest lysozyme, total complement activity, phagocytosis index and respiratory burst of head kidney among all treatments. The challenge test with Aeromonas hydrophila indicated that lower cumulative survival was observed in fish fed the lowest vitamin C diet. Analysis by broken‐line regression of SGR and lysozyme activity indicated that the dietary vitamin C requirement of juvenile yellow catfish was estimated to be 114.5 and 102.5 mg kg?1 diet, respectively.  相似文献   

18.
An 8‐week feeding trial was conducted to evaluate the effects of dietary leucine on growth performance, feed utilization, body composition and non‐specific immune responses of juvenile Nile tilapia. Five isonitrogenous and isoenergetic diets were formulated to contain graded levels of L‐leucine (5.3, 8.1, 10.9, 13.2, 15.6 and 18.1 g kg?1 diet, respectively) from dietary ingredients and crystalline L‐leucine. Each diet was randomly assigned to triplicate groups of 20 juvenile fish (1.94 ± 0.01 g) three times daily to apparent satiation. Results showed that the weight gain (WG) and specific growth rate (SGR) increased as dietary leucine concentrations increased from 5.3 to 13.2 g kg?1 and then decreased slightly with further increase in dietary leucine concentrations. Quadratic regression analysis (y = ?522.6x2 + 1304.x + 132.6, R² = 0.684) on weight gain against dietary leucine levels indicated that the optimal dietary leucine requirement was estimated to be 12.5 g kg?1 diet (corresponding to 43.1 g kg?1 of dietary protein). Leucine supplementation had no impact on the survival and body composition of tilapia. Serum lysozyme activity of fish fed diet containing 13.2 g kg?1 leucine significantly increased compared to fish fed diet containing 5.3 g kg?1. Serum superoxide dismutase activity and immunoglobulin M (IgM) concentration were not significantly affected by dietary leucine supplementation.  相似文献   

19.
An 8‐week feeding trial was conducted to determine the optimum dietary methionine (Met) requirement of juvenile Pseudobagrus ussuriensis with an initial average weight of 0.60 g reared in indoor flow‐through and aerated aquaria. Six isonitrogenous (430 g kg?1 protein) and isolipidic (50 g kg?1 lipid) test diets were formulated to contain graded levels of crystalline L‐methionine (4.9, 9.0, 11.8, 14.2, 18.1 and 20.8 g kg?1 dry diets, respectively) at a constant dietary cystine level of 2.5 g kg?1 dry diets. Equal amino acid nitrogen was maintained by replacing methionine with non‐essential amino acid mixture. Fish were randomly allotted to 18 aquaria (1.0 × 0.5 × 0.8 m) with 50 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. No significant difference was observed in survival of fish (84.67–91.33%). Specific growth rate (SGR), weight gain (WG), feed conversion ratio (FCR), protein productive value (PPV) and protein efficiency ratio (PER) were significantly affected by different dietary methionine levels (< 0.05). WG, SGR PPV and PER increased, while FCR decreased with increasing dietary methionine level from 4.9 to 11.8 g kg?1 (< 0.05). However, with further increase from 11.8 to 20.8 g kg?1, WG, SGR PPV and PER significantly decreased, FCR increased (< 0.05). The whole body and muscle composition were affected by different dietary methionine levels (< 0.05). Condition factor (CF) increased with increasing dietary methionine levels up to 11.8 g kg?1 (< 0.05) and after 11.8 g kg?1 methionine diet, but not significant, declines were observed (> 0.05). Hepatosomatic index (HSI) of the 4.9, 9.0, 11.8 and 14.2 g kg?1 Met diets was significantly higher than that of fish fed diets 18.1 and 20.8 g kg?1 Met diets (< 0.05). Viscerosomatic index (VSI) of the 4.9, 9.0 and 11.8 g kg?1 Met diets was significantly higher than that of fish fed diets 14.2, 18.1 and 20.8 g kg?1 Met diets (< 0.05). Quadratic regression analysis of WG and PER against dietary methionine levels indicated that the optimal dietary methionine requirement for maximum growth and feed utilization of juvenile Pseudobagrus ussuriensis was 14.3 and 14.1 g kg?1 dry diet (35.3 and 34.8 g kg?1 dietary protein), respectively, in the presence of 2.5 g kg?1 dry diets cystine.  相似文献   

20.
《Aquaculture Research》2017,48(4):1767-1777
A feeding trial was conducted to evaluate the effects of replacing soybean meal (SBM) with rubber seed meal (RSM) on digestive enzyme activity, nutrient digestibility and retention in juvenile tilapia (Oreochromis niloticus × Oreochromis aureus). Five isonitrogenous and isoenergetic diets were formulated with 0 (control), 100, 200, 300 and 400 g kg−1 RSM replacing graded levels of SBM respectively. Each diet was randomly assigned to triplicate groups of 30 fish (initial average weight 5.2 g) per aquarium in a rearing system maintained at 29 ± 1°C for 8 weeks. The hepatic protease and lipase activities gradually decreased with increasing dietary RSM level, but no significant differences were observed among the low inclusion level (0–200 g kg−1) groups. The apparent digestibility coefficients of dry matter, crude protein, crude lipid and ash showed a similar trend as the hepatic protease and lipase activities. The retentions of protein and individual essential amino acid (except lysine, threonine and leucine) in fish fed diet with 200 g kg−1 RSM were similar to those in fish fed the control diet. These results indicate that dietary RSM inclusion level up to 200 g kg−1 did not markedly affect the digestive enzyme activity, nutrient digestibility and retention in tilapia, whereas these were depressed by the inclusion of 400 g kg−1 RSM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号