共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
3.
Detecting myrtle rust (Austropuccinia psidii) on lemon myrtle trees using spectral signatures and machine learning 下载免费PDF全文
R. H. J. Heim I. J. Wright H.‐C. Chang A. J. Carnegie G. S. Pegg E. K. Lancaster D. S. Falster J. Oldeland 《Plant pathology》2018,67(5):1114-1121
Hundreds of species in one of Australia's dominant plant families, the Myrtaceae, are at risk from the invasive pathogenic fungus Austropuccinia psidii. Since its arrival in Australia in 2010, native plant communities have been severely affected, with highly susceptible species likely to become extinct from recurring infections. While severe impact on Australian native and plantation forestry has been predicted, the lemon myrtle industry is already under threat. Commercial cultivars of lemon myrtle (Backhousia citriodora) are highly susceptible to A. psidii. Detecting and monitoring disease outbreaks is currently only possible by eye, which is costly and subject to human bias. This study aims at developing a proof‐of‐concept for automated, non‐biased classification of healthy (naïve), fungicide‐treated and diseased lemon myrtle trees by means of their spectral reflectance signatures. From a lemon myrtle plantation, spectral signatures of fungicide‐treated and untreated leaves were collected using a portable field spectrometer. A third class of spectra, from naïve lemon myrtle leaves that had not been exposed to A. psidii, was collected from a botanical garden. Reflectance spectra in their primary form and their first‐order derivatives were used to train a random forest classifier resulting in an overall accuracy of 78% (kappa = 0.68) for primary spectra and 95% (kappa = 0.92) for first‐order derivative‐transformed spectra. Thus, an optical sensor‐based discrimination, using spectral reflectance signatures of this as yet uninvestigated pathosystem, seems technically feasible. This study provides a foundation for the development of automated, sensor‐based detection and monitoring systems for myrtle rust. 相似文献
4.
Pablo D. Olivera Dolors Villegas Carlos Cantero-Martínez Les J. Szabo Matthew N. Rouse Douglas G. Luster Radhika Bartaula Marta S. Lopes Yue Jin 《Plant pathology》2022,71(4):873-889
Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a re-emerging disease, posing a threat to wheat production. In Spain, stem rust has been rarely detected since the 1970s, but infection was observed in wheat fields in 2018. We analysed six stem rust samples collected in Rota, Cádiz province and one from Monteagudo del Castillo, Teruel province. All the samples from Rota were typed as race TKTTF, whereas the sample from Monteagudo del Castillo, collected in a wheat field adjacent to barberry bushes, was typed as race TKHBK. This race has a unique and significant virulence combination that includes virulence to Sr31, Sr33, Sr53 and Sr59, and is avirulent to Rusty, a durum line developed for universal susceptibility to the wheat stem rust pathogen. TKHBK is the first race outside the Ug99 race group with virulence to Sr31 and the first known race with virulence to Sr59. Genotyping studies indicate that race TKHBK does not belong to the Ug99 or TKTTF race groups and constitutes a previously unknown lineage. Two hundred bread and durum wheat cultivars and breeding lines from Spain were evaluated against TKHBK, TKTTF, and six additional races. Resistance was observed to all the races evaluated. Molecular markers confirmed the presence of Sr7a, Sr24, Sr31, Sr38 and Sr57 in bread wheat, and Sr13 in durum wheat. The re-emergence of wheat stem rust in Spain and the occurrence of unique virulences underscore the need to continue surveying and monitoring this disease. 相似文献