首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
陕西省小麦赤霉病菌对多菌灵敏感性研究   总被引:2,自引:0,他引:2  
 The mycelium growth rate method was used to test the sensitivity to carbendazim (MBC) at distinctive concentrations in 136 isolates of Fusarium graminearum from 19 counties of 6 districts in Shaanxi Province in 2008. The distinctive MBC concentration was 4 mg / L for testing of resistance and sensitivity. The results showed that average 50% effective concentration (EC50 ) of 136 tested sensitive isolates were (0. 908 6 ± 0. 062 3) mg / L. All the isolates were sensitive to MBC. The fungicide of MBC could be continually applied wheat production in Shaanxi.  相似文献   

2.
3.
The baseline sensitivity ofFusarium graminearum Schwade [teleomorph =Gibberella zeae (Schweinitz) Petch] to the fungicide JS399-19 (development code no.) [2-cyano-3-amino-3-phenylacrylic acetate] and the assessment of risk to JS399-19 resistancein vitro are presented. The mean EC50 values for JS399-19 inhibiting mycelial growth of three populations of wild-typeF. graminearum isolates were 0.102±0.048, 0.113±0.035 and 0.110±0.036 μg ml−1, respectively. Through UV irradiation and selection for resistance to the fungicide, we obtained a total of 76 resistant mutants derived from five wild-type isolates ofF. graminearum with an average frequency of 1.71 × 10−7% and 3.5%, respectively. These mutants could be divided into three categories of resistant phenotypes with low (LR), moderate (MR) and high (HR) level of resistance, determined by the EC50 values of 1.5–15.0 μg ml−1, 15.1–75.0 μg ml−1 and more than 75.0 μg ml−1, respectively. There was no positive cross-resistance between JS399-19 and fungicides belonging to other chemical classes, such as benzimidazoles, ergosterol biosynthesis inhibitors and strobilurins, suggesting that JS399-19 presumably has a new biochemical mode of action. Although the resistant mutants appeared to have comparable pathogenicity to their wild-type parental isolates, they showed decreased mycelial growth on potato-sucrose-agar plates and decreased sporulation capacity in mung bean broth. Nevertheless, most of the resistant mutants possessed fitness levels comparable to their parents and had MR or HR levels of resistance. As these studies yielded a high frequency of laboratory resistance inF. graminearum, appropriate precautions against resistance development in natural populations should be taken into account. http://www.phytoparasitica.org posting August 7, 2008.  相似文献   

4.
A three-year field experiment with two wheat cultivars evaluated the effect of soil-applied silicon (Si), with and without fungicide spraying, on Fusarium head blight (FHB) control. Silicon treatment alone reduced FHB severity and the percentage of damaged wheat kernels, regardless of the cultivar. The best disease control was obtained for the cultivar with moderate disease resistance (MR), supplied with silicon and treated with fungicide during flowering. Silicon treatment alone promoted an increase in deoxynivalenol (DON) concentration in the disease-susceptible cultivar; however, in the MR cultivar, silicon amendment associated with fungicide treatment led to a reduction in DON concentration. Greenhouse experiments evaluated the effect of silicon combined with different timings of fungicide application on wheat defences against Fusarium graminearum. Plants supplied with silicon had a longer pathogen incubation period, lower FHB severity and lower DON concentration when compared to plants without silicon. In addition, silicon-supplied plants had higher soluble phenolic content and altered antioxidant enzyme activities (SOD, CAT, POX and PPO) that favoured early accumulation of hydrogen peroxide when compared to plants without silicon. Greater control of FHB and lower DON concentration in plants treated with silicon and fungicide before inoculation and up to 1 day after inoculation was associated with increased levels of defence-associated metabolites. Silicon contributed to the reduction of FHB and DON concentration in wheat, especially for the MR cultivar and, when combined with fungicide spraying, both MR and disease-susceptible cultivars had enhanced performances upon silicon amendment.  相似文献   

5.
BACKGROUND: Carbendazim has been the major fungicide for control of Fusarium head blight (FHB) caused by Fusarium graminearum Schwade in China. However, the effectiveness of carbendazim has been threatened by the emergence of resistant pathogen populations in the field. RESULTS: Five isolates, representing three phenotypes of different carbendazim sensitivity levels (S, MR and HR), were randomly selected to study the inheritance of carbendazim resistance by three genetic crosses under field conditions. Each parent in all crosses was marked with a different class of nitrate non‐utilizing (nit) mutation. The presence of sexual recombinants indicated that outcrossing had occurred in the crosses. Over 100 putative self‐crossing or outcrossing perithecia for each cross were randomly sampled on the surface of the haulms of dead rice for each pair of parents. Results showed that 5.7–20.9% outcrossing frequency occurred in the three crosses and confirmed sexual recombination under field conditions. There were no significant differences in mycelial linear growth and pathogenicity between the selected recombinants and their parents, but they differed in sporulation ability and capacity to produce perithecia. Nevertheless, most of the sexual recombinants possessed fitness levels comparable with those of their parents. CONCLUSION: Outcrossing between carbendazim‐sensitive and ‐resistant isolates did occur under field conditions, and sexual recombination must play a role in the development of carbendazim resistance in the field. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
Wheat farmers rely on fungicides to protect fields against several foliar and flowering diseases, including Fusarium head blight (FHB). A range of active ingredients is used in isolation or in dual premixes that include a dimethylation inhibitor (DMI) or a quinone outside inhibitor (QoI) fungicide. Comprehensive information about fungicide resistance in F. graminearum is available for DMIs, while for QoIs the data are scarce. We characterized 225 strains obtained from two states in southern Brazil, Rio Grande do Sul (RS) and Paraná (PR), in relation to their response to two QoIs. The median EC50 (effective concentration leading to 50% inhibition of conidial germination) value for azoxystrobin (n = 25 isolates) was 2.20 μg/ml in the PR population and 4.04 μg/ml in the RS population. For pyraclostrobin (n = 50), the median EC50 was 0.28 μg/ml in the PR population and 0.24 μg/ml in the RS population. Evidence of cross-resistance could not be detected. Screening using a discriminatory dose (DD) for azoxystrobin in a larger number of isolates from PR (n = 75) and RS (n = 100) states allowed the detection of 50% and 28% sensitive strains, respectively. Using the DD for pyraclostrobin, 33% and 18.8% were classified as less sensitive in the PR and RS isolates, respectively. In RS, the frequency of less-sensitive isolates increased over time (2007–2011). No point mutation at any of the target spots (F129L, G137R, G143A) was detected. Our results represent an important step towards the establishment of a sensitivity profile for two of the most commonly used QoIs in commercial premixes targeting FHB control.  相似文献   

7.
Fusarium graminearum andF. culmorum are capable of infecting winter cereals at all growth stages. From natural field epidemics of wheat head blight and rye foot rot, three fungal populations were collected with 21, 38 and 54 isolates, respectively; their aggressiveness was analyzed in comparison to collections ofF. graminearum (25 isolates) andF. culmorum (70 isolates) that represent a wide range of geographical locations and host species. All isolates were tested for aggressiveness on young plants of winter rye in the greenhouse and scored for disease severity on a 1–9 scale. Disease ratings of individual isolates ranged from 1.5 to 5.7 indicating quantitative variation of aggressiveness. Genotypic variance was highest in the twoFusarium collections. No substantial difference was found in the amount of genotypic variation betweenF. graminearum andF. culmorum. Individual field populations revealed 57–66% of the total genotypic variation of the collections. This implies a high degree of diversity of aggressiveness within single field populations ofF. graminearum andF. culmorum causing natural epidemics.  相似文献   

8.
BACKGROUND: Myclobutanil, a demethylation inhibitor (DMI) fungicide, is an important fungicide for controlling apple scab and powdery mildew. Overuse of this fungicide has led to establishment of scab isolates with reduced sensitivity to this fungicide in several countries. Experiments were conducted to determine the sensitivity of the causal agent of apple scab, Venturia inaequalis (Cooke) Winter, to myclobutanil in the UK, in order to assess whether there is a relationship between fungal insensitivity and the number of DMI applications, and establishing whether fungal sensitivity varied greatly within an orchard. RESULTS: Reduced sensitivity of V. inaequalis to myclobutanil was positively related linearly to the number of DMI applications. ED50 values ranged from 0.028 to 1.017 mg L?1 (average = 0.292) for the baseline population, whereas isolates from two other orchards had much greater ED50 values, ranging from 0.085 to 5.213 mg L?1 (average = 1.852). There was significant variation in fungal sensitivity to myclobutanil among fungal isolates from different locations within a single orchard. CONCLUSIONS: Spatial spread of insensitive isolates of V. inaequalis to myclobutanil is likely to be limited in distance. Conidia may be an important source of primary inoculum. Myclobutanil should still be effective for most field isolates, but its use should be strategically integrated with other groups of fungicides. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Fusarium head blight, one of the most damaging plant diseases in Jiangsu province of China, is a leading cause of economic loss and toxin accumulation in the crop, including nivalenol, deoxynivalenol and its acetylated derivatives. Disease control by carbendazim (MBC) has been applicated for many years, and the resistance frequency increased steadily. Furthermore, resistance may trigger toxin growth. Here, a total of 7261 isolates were collected throughout Jiangsu province from 2010 to 2012 to determine their sensitivity to MBC and trichothecene chemotypes. We studied the relevance between trichothecene chemotype and MBC-sensitivity, and found that the MBC-sensitive isolates occupied more NIV chemotype proportion up to date; 15-AcDON chemotype only existed in MBC-sensitive isolates; and most MBC-resistant isolates secreted 3-AcDON in chemotype. Besides, trichothecene production analyses indicated that MBC resistance increased 3-AcDON yield and percentage, especially site-directed mutants at codon 167 in the β2-tubulin gene.  相似文献   

10.
BACKGROUND: Management of demethylation inhibitor (DMI) fungicide resistance in Monilinia fructicola (G. Winter) Honey is a priority in peach orchards of the southeastern United States, but DMI fungicides are still an important component of antiresistance strategies in view of the few effective alternatives. The goal of this study was to investigate potential benefits of a sulfur/propiconazole mixture for the control of propiconazole-resistant isolates.RESULTS: The mixture provided the best control for propiconazole-resistant isolates, regardless of protective or curative application timings, or the presence or absence of fruit injury. Propiconazole-resistant isolates developed disease on detached fruit after protective or curative applications of propiconazole or its mixture with sulfur, but protective applications of the mixture significantly reduced (P = 0.05) disease symptoms compared with the individual compounds. Additive to slightly synergistic effects were observed for the mixture in protective treatments of peaches inoculated with propiconazole-resistant isolates.CONCLUSION: The results suggest that the addition of elemental sulfur to a DMI fungicide is likely to be a relatively inexpensive means to improve brown rot control in peach production areas where reduced sensitivity to DMI fungicides is suspected but has not led to noticeable control failure.  相似文献   

11.
Plots of spring wheat cv. Baldus were inoculated at GS 13 with four Mycosphaerella graminicola isolates, two relatively susceptible and two relatively resistant to DMI fungicides. Changes in the ratio of relatively susceptible to resistant types following fungicide or water sprays were measured. Three fungicides were compared: flutriafol, which is very mobile within leaves, fluquinconazole, which is less so, and prochloraz, which is almost immobile. All are inhibitors of sterol demethylation. In 1996, fungicide-treated plots were sprayed once with half the recommended dose at GS 39–47. In 1997, three doses were used: one-quarter and one-eighth of the recommended dose and a dual application of two one-eighth recommended doses, a week apart. Isolates were classified using a discriminating dose assay and the ratio of relatively susceptible to relatively resistant isolates in each field plot before and after fungicide application calculated. In both years, the numbers of relatively susceptible and relatively resistant isolates were equal just before fungicide application. All fungicides caused significant selection towards resistance, but the strength of selection varied with fungicide, dose and position in the crop canopy. Fluquinconazole selected most strongly and gave the best control of disease. Interactions between fungicide and dose were not significant. Selection was equally strong all along leaves sprayed with prochloraz, but increased smoothly from base to tip of leaves sprayed with fluquinconazole or flutriafol. Averaged over fungicides, reducing the dose of a single fungicide application from one-quarter to one-eighth slightly reduced selection towards resistance on both leaf layers. The dual one-eighth dose caused twice the change of the single one-eighth dose on the flag leaf, but was similar to a single spray on leaf 2.  相似文献   

12.
小麦赤霉病菌对多菌灵的抗药性研究   总被引:11,自引:0,他引:11  
测定了1976 年从江苏南京采集的54 株小麦赤霉病菌菌株对多菌灵的敏感性,EC50值在0. 2617~ 0. 6544 μg. mL - 1 之间, 1983 年在同一地点采集的76 株, EC50 值相应为0. 2517~ 0. 7050 μg. mL- 1 , 而1998 年从浙江、湖北、上海、福建、安徽、江苏各地采集的104 株菌株EC50值为0. 2478~ 6. 4574 Lg. mL- 1 , 表明湖北、上海、浙江等地田间已检测到小麦赤霉病菌抗多菌灵菌株。紫外光诱导分生孢子也获得了该病菌抗多菌灵突变株, 其EC50 值为14. 1993 Lg. mL - 1 。抗药性突变体JPR 与敏感亲本菌株JPS 相比, 在菌丝生长、产孢量方面无明显差异, 但JPR 孢子萌发率为57. 1% , 而JPS 为100% , 而且50% 孢子萌发的时间较野生亲本菌株滞后12 h。JPR 产生脱氧雪腐镰刀菌烯醇(DON 毒素) 3. 90 μg mL - 1 , 而JPS 产生的DON 毒素为9. 28μg. mL - 1 。  相似文献   

13.
Talas F  Kalih R  Miedaner T 《Phytopathology》2012,102(1):128-134
Fusarium head blight (FHB), caused by Fusarium graminearum sensu stricto (s.s.), causes tremendous annual yield losses in wheat worldwide. Variation of aggressiveness of isolates from individual field populations in terms of FHB infection and deoxynivalenol (DON) concentration in the host are important population parameters reflecting parasitic ability. Our main objective was to estimate the variation of both traits within three populations of F. graminearum s.s., each consisting of 30 single-spore isolates collected from small wheat fields in Germany, and to compare it with 11 isolates of a collection (F. graminearum collection) from four countries. The same isolates were characterized using 19 single-sequence repeat markers. All isolates were spray inoculated on a moderately resistant spring wheat cultivar at two field locations over 2 years (i.e., in four environments). The genotypic proportion of phenotypic variance (σ(2)(G)) within populations was significant (P < 0.01) for both traits, and the σ(2)(G) × environment interaction was even more important for mean FHB severity. Ranges in mean FHB severity and DON concentration in the host were only slightly smaller for the field populations than for the F. graminearum collection. Both traits were significantly (P < 0.05) correlated within and across populations. A further partitioning of σ(2)(G) revealed 72% of σ(2)(G) within and 28% of σ(2)(G) across populations for both traits. Molecular variance of the three populations was similarly distributed (73.6% within versus 26.4% between populations). In view of this high within-field variation for traits of parasitic ability and selection, neutral molecular markers, multiple resistance genes of different origin should be employed in wheat breeding programs to obtain a long-term stable FHB resistance.  相似文献   

14.
Wheat blast is one of the most important and devastating fungal diseases of wheat in South America, South-east Asia, and now in southern Africa. The disease can reduce grain yield by up to 70% and is best controlled using integrated disease management strategies. The difficulty in disease management is compounded by the lack of durable host resistance and the ineffectiveness of fungicide sprays. New succinate dehydrogenase inhibitor (SDHI) fungicides were recently introduced for the management of wheat diseases. Brazilian field populations of the wheat blast pathogen Pyricularia oryzae Triticum lineage (PoTl) sampled from different geographical regions in 2012 and 2018 were shown to be resistant to both QoI (strobilurin) and DMI (azole) fungicides. The main objective of the current study was to determine the SDHI baseline sensitivity in these populations. Moderate levels of SDHI resistance were detected in five out of the six field populations sampled in 2012 and in most of the strains isolated in 2018. No association was found between target site mutations in the sdhB, sdhC, and sdhD genes and the levels of SDHI resistance, indicating that a pre-existing resistance mechanism not associated with target site mutations is probably present in Brazilian wheat blast populations.  相似文献   

15.
16.
17.
18.
BACKGROUND: Cucurbit powdery mildew elicited by Podosphaera fusca (Fr.) U Braun & N Shishkoff limits crop production in Spain. Disease control is largely dependent on fungicides such as sterol demethylation inhibitors (DMIs). Fungicide resistance is an increasing problem in this pathogen. To overcome such risk, it is necessary to design rational control programmes based upon knowledge of field resistance. The aim of this study was to investigate the state of DMI sensitivity of Spanish P. fusca populations and provide tools for improved disease management. RESULTS: Using a leaf‐disc assay, sensitivity to fenarimol, myclobutanil and triadimenol of 50 isolates of P. fusca was analysed to determine discriminatory concentrations between sensitive and resistant isolates. As no clearly different groups of isolates could be identified, discriminatory concentrations were established on the basis of maximum fungicide field application rate, 100 mg L?1 for the three fungicides tested. Subsequently, a survey of DMI resistance was carried out in different provinces located in the south central area of Spain during the cucurbit growing seasons in 2002, 2003 and 2004. Examination of a collection of 250 isolates revealed that 23% were resistant to fenarimol and 7% to triadimenol, the provinces of Almería, Badajoz and Murcia being the locations with the highest frequencies of resistance. By contrast, no resistance to myclobutanil was found. CONCLUSION: Results show that fenarimol and, to a lesser extent, triadimenol have become less efficient for controlling cucurbit powdery mildew in Spain. These are important observations that should lead to reconsideration of the current disease management programmes. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
为了寻找具有更高杀菌活性的化合物,将苯并噻唑衍生物与亚磷酸反应,得到了4个苯并噻唑衍生物的亚磷酸盐,其结构均经IR、NMR及元素分析确证。采用菌丝生长速率法测定了4个亚磷酸盐对禾谷镰刀菌Fusarium graminearum的离体抑菌作用,观察了药剂对菌丝形态的影响,并初步研究了其作用机制。结果表明,4个亚磷酸盐对禾谷镰刀菌均有较好的抑制效果,其抑制中浓度(EC50)在15.236.1μg/mL之间。以100μg/mL的2-氨基-6-甲氧基苯并噻唑亚磷酸盐(D)处理3d后,菌丝表现畸形、膨肿,8d后出现干瘪、塌陷,外壁模糊、粗糙;分别以300μg/mL的4个亚磷酸盐处理后12h内,菌体内还原糖含量明显降低,几丁质酶活性显著升高,可溶性蛋白和N-乙酰葡萄糖胺含量短期内略有上升随后下降。  相似文献   

20.
Transmission of Fusarium graminearum from seed to stems of winter wheat   总被引:1,自引:1,他引:0  
Infection of stem bases of winter wheat by Fusarium graminearum was directly related to the incidence of infection of seed at planting. The efficiency of transmission of the pathogen from seed to stem ranged from 55 to 94% over four sampling dates in two trials. The incidence of infection of stem bases did not increase between autumn and the following summer, indicating that all transmission occurred during the autumn. Per cent germination of seed and stand density decreased as the incidence of infected seed increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号