首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powdery mildew (Erysiphe cruciferarum) is an important disease in oilseed rape crops worldwide, but of sporadic importance in most southern Australian crops. Six Brassica napus cultivars were exposed to E. cruciferarum simultaneously in four plant age cohorts. First symptoms of powdery mildew appeared 9 days after inoculation (dai) on the oldest plants [42 days after seeding (das)], but 44 dai in the youngest plants that were exposed to inoculum from sowing, although final disease severity did not differ with the plant age at exposure. The maximum level of pod peduncle infestation was unaffected by plant age (= 0.37) or cultivar (= 0.28). The effect of temperature was also investigated. The development of disease on plants was slower and final severity reduced at a day/night temperature 14/10 °C compared with 22/17 °C. In vitro, maximum growth of germ tubes from conidia of E. cruciferarum was at 15–20 °C and survival of conidia reduced by temperatures >30 °C. The results explain the sporadic nature of powdery mildew outbreaks in winter‐grown oilseed rape in Australia, where slow rates of infection occur when seasonal colder prevailing winter conditions coincide with the presence of younger plants, together curtailing rapid disease development until temperatures increase in late winter/early spring. These results explain why epidemics are most severe in the two warmer cropping regions, viz. the northern agricultural region of Western Australia and New South Wales. This study suggests that with increases in winter temperatures under future climate scenarios, earlier and more severe powdery mildew outbreaks in Australia will be favoured.  相似文献   

2.
L Ziska 《Weed Research》2013,53(2):140-145
Soyabean (Glycine max) was grown at ambient and projected levels of atmospheric carbon dioxide (+250 μmol mol?1 above ambient) over two field seasons with and without the presence of a weed, Abutilon theophrasti, to quantify the potential effect of rising atmospheric carbon dioxide concentration on weed–crop interactions and potential yield loss in soyabean. Under weed‐free conditions, elevated CO2 resulted in stimulations in soyabean seed yield and associated components, including pod number. At an approximate density of 6 plants m?2, A. theophrasti competition resulted in a significant reduction (?40%) in soyabean seed yield. Although differences in seed yield reduction by A. theophrasti were observed as a function of year, the relative decrease in seed yield with A. theophrasti biomass did not differ in response to CO2. Although careful weed management will be necessary if CO2‐induced increases in seed yield for soyabean are to be achieved, these data suggest that soyabean seed yield may be more resilient in competition with A. theophrasti as a function of rising atmospheric levels of carbon dioxide.  相似文献   

3.
The effect of soil solarization and Trichoderma harzianum on induced resistance to grey mould (Botrytis cinerea) and powdery mildew (Podosphaera xanthii) was studied. Plants were grown in soils pretreated by solarization, Tharzianum T39 amendment or both, and then their leaves were inoculated with the pathogens. There was a significant reduction in grey mould in cucumber, strawberry, bean and tomato, and of powdery mildew in cucumber, with a stronger reduction when treatments were combined. Bacillus, pseudomonad and actinobacterial communities in the strawberry rhizosphere were affected by the treatments, as revealed by denaturing gradient gel electrophoresis fingerprinting. In tomato, treatments affected the expression of salicylic acid (SA)‐, ethylene (ET)‐ and jasmonic acid (JA)‐responsive genes. With both soil treatments, genes related to SA and ET – PR1a, GluB, CHI9 and Erf1 – were downregulated whereas the JA marker PI2 was upregulated. Following soil treatments and B. cinerea infection, SA‐, ET‐, and JA‐related genes were globally upregulated, except for the LOX genes which were downregulated. Upregulation of the PR genes PR1a, GluB and CHI9 in plants grown in solarized soil revealed a priming effect of this treatment on these genes' expression. The present study demonstrates the capacity of solarization and T. harzianum to systemically induce resistance to foliar diseases in various plants. This may be due to either a direct effect on the plant or an indirect one, via stimulation of beneficial microorganisms in the rhizosphere.  相似文献   

4.
The hypothesis that the increased use of the powdery mildew-resistance gene mlo has caused the increase in spotting diseases of barley over the past 20 years was tested in field trials. Near-isogenic lines with alleles of the Mlo gene for susceptibility or resistance to mildew in two parental backgrounds were trialled at four sites in Scotland and two in Ireland that were prone to spotting diseases, over 3 consecutive years. Mildew was controlled by sprays with quinoxyfen. Disease levels were low in the trials, the two most important diseases being scald caused by Rhynchosporium secalis and ramularia leaf spot caused by Ramularia collo-cygni . There were high levels of abiotic spotting. Lines with mutant mlo alleles consistently developed less Rh. secalis and Ra. collo-cygni , but more abiotic spots. This study indicates that the mlo mildew-resistance gene has not alone been responsible for the rise in spotting diseases over the past 20 years. Possible reasons for the rise are discussed, including the interaction of the mlo gene with the environment.  相似文献   

5.
Potato cyst nematode (PCN) species have different temperature optima for various life cycle stages, therefore a risk assessment of the threat of PCN species under future climates is essential to guide adaptation strategies. Data defining the spatial coverage of potato crops in Great Britain were combined with probabilistic climate change data and a newly developed PCN life cycle model to project the future risk to potato crops from PCN. The model was based on the results of controlled environment experiments to investigate the effect of temperature on survival to female maturity using three PCN populations: Globodera pallida (Lindley) and G. rostochiensis from the James Hutton Institute PCN collection, and a field population of G. pallida (S‐Fife). It was found that projected increases in soil temperature could result in increased survival to female maturity for all three PCN populations, with greater increases expected for Scotland, followed by Wales then England. The largest projected increases in Scotland were for G. pallida, whereas G. rostochiensis showed the largest increases in Wales and England. The potential impact of several agronomic adaptation strategies on projected PCN risk were also investigated. The results from the model suggest that soil infestation levels would have to be reduced by up to 40% in order to negate projected increases in PCN risk, and that advancing the start date of the growing season or modifying planting patterns could be successful strategies to reduce future PCN risk.  相似文献   

6.
Resistance to carbendazim of Fusarium graminearum is conferred by point mutation in the β2‐tubulin gene that plays an important role in spindle assembly. The spindle assembly checkpoint is a cellular surveillance system that is critical for maintaining genomic stability. Predicted protein Mad2‐ and Bub1‐encoding genes in F. graminearum (FgMad2 and FgBub1) were isolated and characterized. There was no difference in FgMad2 and FgBub1 expression levels between carbendazim‐sensitive and ‐resistant strains; however, after carbendazim treatment FgMad2 expression increased while FgBub1 expression stayed the same. Both the FgMad2 and FgBub1 deletion mutants became more sensitive to carbendazim. The FgMad2 deletion mutants grew more slowly, produced fewer conidia and both hyphae and conidia were malformed. Conversely, deletion of FgBub1 had no effect on fungal development other than a reduction in conidia production. FgMad2 deletion mutants exhibited a severe decrease in perithecia production and pathogenicity along with a down‐regulation of trichothecene production, whereas FgBub1 deletion mutants exhibited only a slight reduction in perithecia production and was accompanied by a twofold increase in trichothecene production. Overall, the results indicate that both FgMad2 and FgBub1 are involved in carbendazim resistance and trichothecene biosynthesis, and FgMad2 plays an important role in fungal development in F. graminearum.  相似文献   

7.
Genetic disease resistance is widely assumed, and occasionally proven, to cause host yield or fitness penalties due to inappropriate activation of defence response mechanisms or diversion of resources to surplus preformed defences. The study of resistance gene trade‐offs has so far been restricted to biotrophic pathogens. In some Pleosporales necrotrophic interactions, quantitative resistance is positively associated with insensitivity to effectors. Host lines that differ in sensitivity can easily be identified amongst current cultivars and advanced breeding lines. Large wheat cultivar trials were used to test whether lines sensitive or insensitive to three necrotrophic effectors from Pyrenophora tritici‐repentis and Parastagonospora nodorum differed in yield when subjected to natural disease and stress pressures in the West Australian wheat belt. There was no significant yield penalty associated with insensitivity to the fungal effectors ToxA, SnTox1 and SnTox3. Some yield gains were associated with insensitivity and some of these gains could be attributed to increased disease resistance. It is concluded that insensitivity to these effectors does not render such plants more vulnerable to any relevant biotic or abiotic stress present in these trials. These results suggest that the elimination of sensitivity alleles for necrotrophic effectors is a safe and facile strategy for improving disease resistance whilst maintaining or improving other desirable traits.  相似文献   

8.
9.
Podosphaera macularis, the causal agent of hop powdery mildew, is known to produce chasmothecia (formerly cleistothecia) in eastern North America and Europe. Ascocarps have not yet been reported from the Pacific Northwestern region of North America. Reasons for the apparent absence of chasmothecia in the Pacific Northwest were unknown. This study established that Pmacularis is heterothallic and ascocarp ontogeny, maturation, dehiscence and ascospore infection proceed similarly to other powdery mildew fungi. Genome sequencing of a MAT1‐1 isolate revealed the structure of the MAT1 locus and presence of MAT1‐1‐3, demonstrating further similarities to other powdery mildew fungi. PCR assays with primers designed from conserved domains of the MAT1 idiomorphs were developed to characterize the frequency of idiomorphs in populations of P. macularis. Amongst 317 samples of P. macularis collected during 2012 and 2013 from the Pacific Northwest only the MAT1‐1 idiomorph was found. In contrast, among 56 samples from the eastern United States and Europe, MAT1‐1 and MAT1‐2 idiomorphs were detected at equivalent frequencies. At temperatures representative of late season conditions in the Pacific Northwest, chasmothecia formed readily when a Pacific Northwest MAT1‐1 isolate was paired with a MAT1‐2 isolate collected from outside the region. Although these findings do not encompass all climatic, geographic or temporal barriers that could inhibit the formation of chasmothecia, the current absence of the ascigerious stage of Pmacularis in the Pacific Northwest could be explained by the absence of the MAT1‐2 mating type idiomorph.  相似文献   

10.
Yellow rust is a devastating wheat disease. Since 2000, Puccinia striiformis f. sp. tritici strains PstS1 and PstS2 have become adapted to high temperatures and have spread worldwide. By 2011, Warrior strains had invaded both warm and cold areas of Europe. This study questioned whether thermal aptitude promoted the spread of Warrior strains, similar to PstS1/PstS2, by comparing infection efficiency (IE) at five temperatures and latent period (LP) under warm and cold regimes for Warrior isolates and pre‐2011 reference strains on two susceptible wheat varieties. The Warrior isolates showed a range of IE and LP responses to temperature that was intermediate between the northern reference isolates adapted to cold conditions and both the southern and invasive PstS2 isolates adapted to warm conditions. Warrior isolates had the highest IE under optimal temperatures of 10 and 15 °C, and displayed reduced infectivity under the warmest (20 °C) and coldest (5 °C) temperatures. Warrior strains acted as thermal generalists and the reference isolates acted as specialists. An IE thermal response was used to simulate the development of each isolate under future climate scenarios in a temperate and Mediterranean region. Isolates had the same ranking for yearly IE over the three 30‐year periods (1971–2000, 2021–2050, 2071–2100) and both locations, with a slight infection increase in the future. However, in the future IEs increased in earlier months. The thermal generalist profile of Warrior isolates for IE was confirmed, with an intermediate capacity to tolerate warming climate, whereas the southern isolates are better adapted to warm conditions, but do not have the virulences necessary to develop on current varieties.  相似文献   

11.
Gnomoniopsis castanea is an emerging fungal pathogen causing nut rot of sweet chestnut, Castanea sativa. This study was aimed at testing and modelling the effects of climate on disease incidence. Up to 120 ripe nuts were collected in 2011 from trees in each of 12 sites located in the northwest of Italy. The incidence of G. castanea in each site was expressed as the number of infected nuts out of the total number of nuts sampled (%), determined by combining the results of morphological identification of isolates obtained from nuts, and their typing through a newly developed taxon‐specific molecular assay. Disease incidence ranged from 20 to 93%, depending on site. Geostatistical analyses revealed that, despite the clustering of sites (< 0·05), disease incidence was not spatially autocorrelated (> 0·05). This finding suggests that the disease is influenced by site‐dependent factors whose scale (c. 7·5–15·6 km) is consistent with the climate variability throughout the sampling region. Multivariate analyses on maximum, mean and minimum temperatures and on rainfall showed that warmer temperatures were associated with higher levels of disease incidence. The temperatures of months before nut harvesting were selected as predictors for partial least squares regression (PLSR) models (GnoMods) of G. castanea incidence. External validation on data collected either on sites or in years not used for model fitting showed the good predictive abilities of the GnoMods (Spearman's ρobs/pred > 0·72, < 0·05). The above findings support a relationship between climate and incidence of G. castanea, providing statistical tools to forecast disease incidence at site level.  相似文献   

12.
Studies were undertaken to compare susceptible and resistant host responses to Pseudocercosporella capsellae in cotyledons of Brassica carinata, B. juncea and B. napus in order to define the mechanisms of resistance in these three species. On both resistant and susceptible hosts, hyphal penetration was always through stomatal openings and without infection pegs or appressoria. On resistant B. carinata ATC94129P, up to 72% of spores disintegrated and, generally, germination (<22%) and germ tube lengths (<25 μm) were comparatively low. Resistant B. napus Hyola 42 had the lowest germination (8%) and susceptible B. carinata UWA#012 had the highest (51%). On resistant B. carinata ATC94129P, germ tube extension was impeded across 24–60 h post‐inoculation (hpi) and percentage stomatal penetration lower (4%) at 60 hpi compared with susceptible B. carinata UWA#012 (26%). Stomatal densities (stomata/14 757 μm2) on resistant B. juncea Dune (2·12) and B. napus Hyola 42 (1·62) were lower than for susceptible B. juncea Vardan (2·40) and B. napus Trilogy (2·03). Resistant B. carinata ATC94129P had greater stomatal density (1·89) than susceptible B. carinata UWA#012 (1·58). Overall, B. juncea had greater stomatal density (2·26) compared with B. napus (1·83) and B. carinata (1·74). In resistant B. carinata ATC94129P, P. capsellae induced 28% stomata to close, while in susceptible B. carinata UWA#012 no such closure was induced. Epicuticular wax crystalloids were present only on resistant B. carinata ATC94129P and probably also contribute towards resistance.  相似文献   

13.
How weed communities assemble represents one the key issues of weed science. For a decade, functional approaches have been applied to investigate the processes that govern weed community assembly. In most previous studies, trait values have been generally averaged over multiple populations and habitats. Consequently, conspecifics display similar trait values while neglecting the considerable influence of intraspecific variability to detect changes in functional diversity in response to environmental drivers. However, this influence has been shown to be critical, especially, at local scales. Here, we studied changes in weed functional diversity at the field scale in four crop sequences. We focused on intra‐ and interspecific variability of four key functional traits involved in response to resource acquisition processes, the latter being modified by climate, management and competition. The relative influence of intra‐ and interspecific variability among the crop sequence types was highlighted using a diversity partitioning approach. It provides evidence for substantial amount of intraspecific variability in the weed community and underlines its essential role in response to fine‐scale environmental drivers. In addition, we investigated the response of the three most abundant species to competition with the crop, the growing season and the crop sequence type. We highlighted that these species showed a wide range of combinations of trait values, suggesting the co‐existence of several successful strategies. Based on these results, we emphasise that neglecting intraspecific variability can lead to substantial underestimations of the functional weed response to management and crop‐weed competition at the field scale.  相似文献   

14.
Barley, oat and wheat were used as both inappropriate hosts (IH) and appropriate hosts (AH) for three formae speciales of the fungus Blumeria graminis, the causal agent of powdery mildew disease. Treatment with either the glucose analog 2-deoxy- -glucose (DDG) or with -mannose dramatically suppressed penetration resistance in IH and to a much lesser extent in AH combinations. Other effects of DDG and -mannose were strikingly dissimilar. DDG greatly reduced localized autofluorescence at fungal attack sites on epidermal cells, and prevented hypersensitive epidermal cell death (HR). -mannose had little effect on autofluorescence or HR. DDG arrested the development of fungal haustoria and apparently prohibited biotrophy leading to secondary hyphae. -mannose allowed haustorial development and functional biotrophy leading to the production of elongating secondary hyphae. This suggests that B. graminis is in some way capable of utilizing -mannose as a carbon substrate. Results with IH combinations paralleled those of known mlo -barley responses to DDG and -mannose. Results are discussed in relation to specific physiological processes known to be influenced by either DDG or by -mannose, or by both compounds.  相似文献   

15.
Ramularia collo‐cygni (Rcc) is becoming an increasing problem for barley growers across Europe. However, the life cycle of the pathogen is only slowly being elucidated. In this study, Rcc DNA was detected in a number of harvested seed samples from 1999 to 2010, with mean levels peaking in winter barley samples in 2009. A number of experiments were carried out to determine whether the pathogen could move from barley seed to seedlings, and also from seed through the developing plant and into the subsequent generation of seed, both in controlled experiments and in field trials. Results from testing of seed indicated that the fungus is widespread at the end of the growing season in harvested grain samples and can be transmitted to developing plants from infected seed stock. Examination of infected seedlings did not reveal the presence of spores but fungal structures were found within the leaf. The location of the fungus within seed was examined, with Rcc DNA found in both embryo and non‐embryo tissue. The implications for barley production of the pathogen being seedborne are discussed.  相似文献   

16.
 为了探索小麦抗白粉病分子机理,明确茉莉酸对小麦白粉病抗性的诱导作用、对植物抗病性标志基因PR-1、PR-2、PR-5和本实验室克隆的1个新基因Ta-JA2的激活作用,以及抗病性变化与基因表达变化之间的相关性,本研究以感白粉病的小麦品种“中国春”、“濮麦9号” 和“周麦18”为材料,用茉莉酸甲酯(methyl jasmonate,MeJA)喷洒小麦幼苗叶片进行诱导,通过离体叶段培养法接种白粉菌(Blumeria graminis f. sp. tritici,Bgt)进行抗性鉴定;用实时定量PCR技术检测小麦叶片中PR-1、PR-2、PR-5和Ta-JA2基因的表达变化。结果表明MeJA处理可以显著提高“中国春”、“濮麦9号”和“周麦18”对白粉菌的抗病水平。茉莉酸处理显著激活了PR-1、PR-2、PR-5和Ta-JA2的转录。茉莉酸诱导的抗病性提高与抗病标志基因PR-1、PR-2、PR-5及Ta-JA2的表达增强呈正相关。植物激素茉莉酸是小麦抗白粉病反应的信号分子。  相似文献   

17.
气候变化对黄河源区水资源的影响及未来趋势预估   总被引:2,自引:3,他引:2  
利用黄河源区有关水文、气象台站观测资料,分析了黄河源区年平均流量变化与气候条件的响应关系,发现气温、降水及蒸发的波动变化对流量有很大影响,依此关系建立了流量预估模型;并根据气候模式输出数据经降尺度处理生成的未来气候情景,对未来源区流量进行了预估。结果表明:近49a间,源区气温呈波动上升态势;蒸发量显著增大,年均降水量没有出现明显的趋势性变化,但具有明显的年际和年代际振荡。源区流量的变化与降水量、气温及蒸发的变化之间存在显著的线性关系,近49a年来,由于气温的持续上升导致径流蒸散发损耗超过降水量的补给作用,源区流量总体呈减少趋势,但近几年随着降水量的增加而有所回升。未来两个时期(2020s、2050s)源区年平均流量为593.61m3/s和525.11m3/s,较气候标准期(1961年-1990年)分别减少14.9%和24.7%,据此,未来气候变化对黄河源区水资源的影响可能弊大于利,但仍具有较大不确定性。  相似文献   

18.
The prevalence and diversity of plant parasitic nematodes in Northern Ireland cereal and grassland was determined from 191 agricultural fields. A total of 18 nematode genera were detected, including economically important pests, Meloidogyne spp., Heterodera spp. and Pratylenchus spp., each of which were above economic damage thresholds in a significant proportion of the sites (92.4%, 70% and 28.6%, respectively). The detection of the root knot nematode, Meloidogyne minor (6% prevalence), was significant given its recent emergence across the turf grass sector and the prospect of M. minor becoming a common agricultural pest. Analyses of nematode prevalence and abundance highlighted significant associations with grass and cereals, soil types, soil grade (proxy for soil quality) and rainfall levels. Specifically, nematode populations varied between the two major soils (brown earths and gleys), while significant trends for increased nematode diversity and greater prevalence of both Meloidogyne and Pratylenchus with increasing rainfall were also observed. Multivariate analyses were performed to determine interactive effects and the relative importance of the factors affecting nematode populations. Notably, rainfall, in combination with either crop type or soil grade, had a significant effect on nematode abundance and diversity. The findings suggest significant changes in nematode populations have occurred over the last several decades and the possibility that these are linked to changing climate and cropping practices are discussed, as well as future concerns for plant parasitic nematode management.  相似文献   

19.
In this study, we used Parthenium hysterophorus and one of its biological control agents, the winter rust (Puccinia abrupta var. partheniicola) as a model system to investigate how the weed may respond to infection under a climate change scenario involving an elevated atmospheric CO2 (550 μmol mol?1) concentration. Under such a scenario, P. hysterophorus plants grew significantly taller (52%) and produced more biomass (55%) than under the ambient atmospheric CO2 concentration (380 μmol mol?1). Following winter rust infection, biomass production was reduced by 17% under the ambient and by 30% under the elevated atmospheric CO2 concentration. The production of branches and leaf area was significantly increased by 62% and 120%, under the elevated as compared with ambient CO2 concentration, but unaffected by rust infection under either condition. The photosynthesis and water use efficiency (WUE) of P. hysterophorus plants were increased by 94% and 400%, under the elevated as compared with the ambient atmospheric CO2 concentration. However, in the rust‐infected plants, the photosynthesis and WUE decreased by 18% and 28%, respectively, under the elevated CO2 and were unaffected by the ambient atmospheric CO2 concentration. The results suggest that although P. hysterophorus will benefit from a future climate involving an elevation of the atmospheric CO2 concentration, it is also likely that the winter rust will perform more effectively as a biological control agent under these same conditions.  相似文献   

20.
Sclerotinia stem rot (Sclerotinia sclerotiorum) is a serious disease in oilseed Brassica crops worldwide. In this study, temperature adaptation in isolates of S. sclerotiorum collected from differing climatic zones is reported for the first time on any crop. Sclerotinia sclerotiorum isolates from oilseed rape (Brassica napus) crops in warmer northern agricultural regions of Western Australia (WW3, UWA 7S3) differed in their reaction to temperature from those from cooler southern regions (MBRS‐1, UWA 10S2) in virulence on Brassica carinata, growth on agar, and oxalic acid production. Increasing temperature from 22/18°C (day/night) to 28/24°C increased lesion diameter on cotyledons of B. carinataBC054113 more than tenfold for warmer region isolates, but did not affect lesion size for cooler region isolates. Mean lesion length averaged across two B. carinata genotypes (resistant and susceptible) fell from 4·6 to 2·4 mm for MBRS‐1 when temperature increased from 25/21°C to 28/24°C but rose for WW3 (2·35 and 3·21 mm, respectively). WW3, usually designated as low in virulence, caused as much disease on stems at 28/24°C as MBRS‐1, historically designated as highly virulent. Isolates collected from cooler areas grew better at low temperatures on agar. While all grew on potato dextrose agar between 5 and 30°C, with maximum growth at 20–25°C, growth was severely restricted above 32°C, and only UWA 7S3 grew at 35°C. Oxalate production increased as temperature increased from 10 to 25°C for isolates MBRS‐1, WW3 and UWA 7S3, but declined from a maximum level of 101 mg g?1 mycelium at 20°C to 24 mg g?1 mycelium at 25°C for UWA 10S2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号