首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Iris yellow spot virus (IYSV, genus Tospovirus) is a viral disease of bulb and seed onion crops and is transmitted by Thrips tabaci. Foliage damage of up to 75% has been reported in Kenya and Uganda. In this study, the rate of IYSV replication in the larva, pupa and adult stages of T. tabaci and other non‐vector thrips species and colour forms such as Frankliniella occidentalis, F. schultzei (dark) and F. schultzei (pale) was evaluated by monitoring relative levels of nucleocapsid (N) and non‐structural (NSs) proteins using N‐ and NSs‐specific antibodies. The effect of IYSV replication on mortality of thrips was also determined. N protein levels increased in all three stages of IYSV‐fed T. tabaci, indicating replication of IYSV. In IYSV‐fed non‐vector thrips, the increase of N protein levels in the larval stage was lower than IYSV‐fed T. tabaci but higher than their healthy counterparts. The N protein levels did not increase at pupal and adult stages. NSs protein was not detected in first instar of either vector or non‐vector thrips species. After a 4 h post‐acquisition period, a significant increase in NSs proteins was only observed in IYSV‐fed T. tabaci, clearly differentiating vectors and non‐vectors of IYSV. IYSV replication did not influence the survival of the vector thrips species, T. tabaci populations or the non‐vector thrips species. This study indicates the effectiveness of monitoring non‐structural proteins such as NSs, compared to nucleocapsid proteins, for differentiating vectors and non‐vectors of IYSV.  相似文献   

2.
Iris yellow spot virus (IYSV) causes an economically important disease in onion bulb and seed crops. While considerable information on the genetic diversity of the virus is available, little is known about the biological variability of the virus. Using two experimental hosts, Nicotiana benthamiana and Datura stramonium, IYSV from naturally infected onion fields was evaluated to determine the existence of biologically different isolates using the following criteria: ability to establish infection and become systemic, and the severity of the disease caused in inoculated plants. Additionally, the nucleocapsid gene of these biologically distinct isolates of IYSY was characterized at the molecular level.  相似文献   

3.
After the first detection of Iris yellow spot virus (IYSV) in Germany in 2007 a 3-year monitoring program was started to determine the occurrence and geographical distribution of IYSV in Allium field crops in southwest Germany (Rhine valley area) and to characterise the German IYSV isolates on the basis of the nucleotide sequence of the nucleocapsid gene. Surveys revealed that IYSV was present in 27 out of 175 onion fields. In most cases disease incidence was low, but in a few fields infection rates of up to 18?% and 50?% were observed for bulb and bunching onions, respectively. In leek, IYSV was found for the first time in 2010. For about 25?% of the tested samples, IYSV-like symptoms were not confirmed by laboratory tests, such as ELISA and/or RT-PCR. This clearly demonstrates the need for reliable diagnostic tools to identify IYSV. New RT-PCR primers were designed as commonly used primers did not yield a PCR product from many clearly ELISA-positive samples. Phylogenetic analyses of 46 isolates revealed a limited degree of diversity among IYSV isolates from southwest Germany. Nearly all German IYSV isolates were closely related to each other, with only four isolates being genetically distinct from the others. IYSV is considered a serious emerging disease in German Allium field crops, especially in bunching onions.  相似文献   

4.
A simple, effective and convenient laboratory leaf system was developed to detect transmission of Iris yellow spot virus (IYSV) by thrips. It was shown that IYSV was transmitted highly efficiently by adults and also by larvae of five thelytokous populations of Thripstabaci from distinct areas in Japan: over all these populations, transmission efficiency of adults ranged from 20·4% (19/93) to 41·1% (76/185) and that of larvae from 17·3% (14/81) to 44·1% (67/152). Finally, it was demonstrated that IYSV infection was not detrimental to the development and fecundity of thrips until early adulthood. Larval mortalities of virus‐exposed thrips were higher than in their unexposed counterparts in all three populations, but the differences were not significant. The results demonstrated that T. tabaci populations have considerable potential to cause outbreaks of IYSV and spread the disease because of their efficient transmission of the virus.  相似文献   

5.
A total of 618 isolates of corynespora leaf spot fungus (Corynespora cassiicola) collected from 24 commercial cucumber greenhouses in 12 cities in Ibaraki Prefecture, Japan, were tested for their sensitivity to boscalid. Boscalid‐resistant isolates were detected in 17 out of 19 greenhouses with a history of use of this fungicide and detection frequencies of the resistant isolates exceeded 47% in nine greenhouses. Frequencies of very highly resistant (VHR) isolates with 50% effective concentration (EC50) values of boscalid exceeding 30 μg mL?1 were higher than those of moderately resistant (MR) isolates with EC50 ranging from 2·0 to 5·9 μg mL?1 in 11 greenhouses. Additionally, highly resistant (HR) isolates with EC50 from 8·9 to 10·7 μg mL?1 were first detected. Furthermore, molecular characterization of genes encoding succinate dehydrogenase (SDH) subunits (SdhA, SdhB, SdhC and SdhD) was carried out to elucidate the amino acid substitution responsible for the resistance to boscalid. All 23 VHR isolates had the same mutation from CAC to TAC in the SdhB gene leading to the substitution of histidine with tyrosine at amino acid position 278 (B‐H278Y). At the same position, the substitution to arginine conferred by a mutation to CGC (B‐H278R) was detected in all four HR isolates. Some MR isolates showed a substitution from serine to proline at position 73 in SdhC (C‐S73P), from serine to proline or from glycine to valine at position 89 (D‐S89P) and 109 (D‐G109V), respectively, in SdhD. There was no common mutation in SDH genes of all MR isolates.  相似文献   

6.
Limited knowledge is available on Phytophthora infestans populations in Sub‐Saharan Africa (SSA). Therefore, and in response to recent severe late blight epidemics, P. infestans isolates from potato, tomato and Petunia × hybrida from eight SSA countries were characterized. Isolates were characterized with ‘old’ markers, including mating type (176 isolates), mitochondrial DNA haplotype (mtDNA) (281 isolates), glucose‐6‐phosphate isomerase (Gpi) (70 isolates), restriction fragment length polymorphism analysis with probe RG‐57 (49 isolates), and by metalaxyl sensitivity (64 isolates). Most isolates belonged to the US‐1 genotype or its variants (US‐1.10 and US‐1.11). The exceptions were genotype KE‐1 isolates (A1 mating type, mtDNA haplotype Ia, Gpi 90/100 and unique RG‐57 genotype), identified in two fields in Kenya, which are related to genotypes previously identified in Rwanda (RW‐1 and RW‐2), Ecuador and Europe. Metalaxyl‐resistant P. infestans isolates from potato were present in all the countries except Malawi, whereas all the isolates from tomato were sensitive. Genotyping of 176 isolates with seven simple sequence repeat (SSR) markers, including locus D13 that was difficult to score, revealed 79 multilocus genotypes (MLGs) in SSA. When this locus was excluded, 35 MLGs were identified. Genetic differentiation estimates between regional populations from SAA were significant when locus D13 was either excluded (P = 0·05) or included (P = 0·007), but population differentiation was only low to moderate (FST = 0·044 and 0·053, respectively).  相似文献   

7.
BACKGROUND: In 2004, field isolates of Botrytis cinerea Pers. ex Fr., resistant to strobilurin fungicides (QoIs), were first found in commercial citrus orchards in Wakayama Prefecture, Japan. Subsequently, QoI‐resistant isolates of this fungus were also detected in plastic strawberry greenhouses in Saga, Ibaraki and Chiba prefectures, Japan. Biological and molecular characterisation of resistant isolates was conducted in this study. RESULTS: QoI‐resistant isolates of B. cinerea grew well on PDA plates containing kresoxim‐methyl or azoxystrobin at 1 mg L?1, supplemented with 1 mM of n‐propyl gallate, an inhibitor of alternative oxidase, whereas the growth of sensitive isolates was strongly suppressed. Results from this in vitro test were in good agreement with those of fungus inoculation tests in vivo. In resistant isolates, the mutation at amino acid position 143 of the cytochrome b gene, known to be the cause of high QoI resistance in various fungal pathogens, was found, but only occasionally. The heteroplasmy of cytochrome b gene was confirmed, and the wild‐type sequence often present in the majority of resistant isolates, indicating that the proportion of mutated cytochrome b gene was very low. CONCLUSION: The conventional RFLP and sequence analyses of PCR‐amplified cytochrome b gene are insufficient for molecular identification of QoI resistance in B. cinerea. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
In plant–pathogen interactions, strong structural and biochemical barriers may induce a cascade of reactions in planta, leading to host resistance. The kinetic speed and amplitudes of these defence mechanisms may discriminate resistance from susceptibility to necrotrophic fungi. The infection processes of two Ascochyta lentis isolates (FT13037 and F13082) on the recently identified ascochyta blight (AB)‐resistant Lens orientalis genotype ILWL180 and two cultivated genotypes, ILL7537 (resistant) and ILL6002 (susceptible), were assessed. Using histopathological methods, significant differences in early behaviour of the isolates and the subsequent differential defence responses of the hosts were revealed. Irrespective of virulence, both isolates had significantly lower germination, shorter germ tubes and delayed appressorium formation on the resistant genotypes (ILWL180 and ILL7537) compared to the susceptible genotype (ILL6002); furthermore, these were more pronounced on genotype ILWL180 than on genotype ILL7537. Subsequently, host perception of pathogen entry led to the faster accumulation and notably higher amounts of reactive oxygen species and phenolic compounds at the penetration sites of the resistance genotypes ILWL180 and ILL7537. In contrast, genotype ILL6002 responded slowly to the A. lentis infection and reaffirmed previous gross disease symptomology reports as highly susceptible. Interestingly, quantification of H2O2 was markedly higher in ILWL180 particularly at 12 h post‐inoculation compared to ILL7537, potentially indicative of its superior resistance capability. Faster recognition of A. lentis is likely to be a major contribution to the superior resistance observed in genotype ILWL180 to the highly aggressive isolates of A. lentis assessed.  相似文献   

9.
Setophoma terrestris, a ubiquitous inhabitant of soil, causes pink root rot in various crops. In the present study, the density of S. terrestris was estimated by quantitative real-time PCR in onion and non-onion fields of Hokkaido, the northernmost island of Japan. Three-year observations in monoculture and rotation fields demonstrated that the fungus grew significantly from the third year onwards, and declined in fields planted with poor hosts (e.g., sugar beet and soybean) that produced few or no chlamydospores of S. terrestris. Seasonal analysis revealed that the population of S. terrestris consistently increased when the tops of onions fell over in summer, which is when root activity declines. However, the soil inoculum potential estimated by a seedling bioassay showed distinct seasonal patterns, which rose from post-harvest in winter and remained high until the subsequent planting in spring. Detailed surveys on depth distribution in an onion field detected a high population of S. terrestris in the effective layer (10–30 cm deep) but not below the hardpan (40 cm), implying that the fungus is intimately associated with roots. These results indicate that the proliferation of the fungus is closely related to root senescence and that over-wintered propagules play an important role in primary infections, affecting disease severity. The present study shows that the temporal dynamics of S. terrestris depend exclusively on the activity of infecting roots and provides circumstantial evidence on the deleterious impact of monoculture on crop production.  相似文献   

10.
The tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) was first identified in the region of Akkouda in October 2008 before it spread to all tomato‐producing areas in Tunisia. The introduction of this pest disturbed existing pest control programmes in greenhouses and open fields, forcing Tunisian growers to use more chemicals to reduce its impact on their crops. A national programme was adopted to control T. absoluta, including cultural practices, the use of pheromones, the installation of insect‐proof screens in greenhouses, and the use of organic insecticides including Bacillus thuringiensis Kurstaki (Bt) and plant extract‐based products. In addition, a few experiments in biological control, using the predatory Mirid Nesidiocoris tenuis Reuter (Heteroptera: Miridae) and the parasitoid wasp Trichogramma cacoeciae Marchal (Hymenoptera: Trichogrammatidae), were conducted in greenhouses and open‐field crops (producing tomatoes for fresh consumption as well as for processing). This paper describes the status of T. absoluta in Tunisia, including data collected from sex pheromone traps installed in six tomato‐producing areas (Takelssa, Korba, Teboulba, Bekalta, Sousse and Kairouan) between 2009 and 2011, and control strategies in greenhouses and open fields.  相似文献   

11.
Fusarium head blight (FHB), caused principally by Gibberella zeae (Fusarium graminearum), is a devastating disease of small grains such as wheat and barley worldwide. Grain infected with G. zeae may be contaminated with trichothecene mycotoxins such as deoxynivalenol (DON) and nivalenol (NIV). Strains of G. zeae that produce DON may also produce acetylated derivatives of DON: 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON). Gradients (clines) of 3‐ADON genotypes in Canada have raised questions about the distribution of G. zeae trichothecene genotypes in wheat fields in the eastern USA. Tri3 and Tri12 genotypes were evaluated in 998 isolates of G. zeae collected from 39 winter wheat fields in New York (NY), Pennsylvania (PA), Maryland (MD), Virginia (VA), Kentucky (KY) and North Carolina (NC). Ninety‐two percent (919/998) of the isolates were 15‐ADON, 7% (69/998) were 3‐ADON, and 1% (10/998) was NIV. A phylogenetic analysis based on portions of three genes (PHO, RED and URA) from 23 isolates revealed two species of Fusarium (F. graminearum sensu stricto and one isolate of F. cerealis (synonym F. crookwellense)). An increasing trend of 3‐ADON genotypes was observed from NC (south) to NY (north). Punctuated episodes of atmospheric transport may favour a higher frequency of 3‐ADON genotypes in the northeastern USA, near Canada, compared with the mid‐Atlantic states. Discoveries of the NIV genotype in NY and NC indicate the need for more intensive sampling in the surrounding regions.  相似文献   

12.
A survey for Peanut bud necrosis virus (PBNV), Watermelon bud necrosis virus (WBNV), Capsicum chlorosis virus (CaCV), and Iris yellow spot virus (IYSV) was conducted between 2002 and 2009 in the major vegetable-growing areas in India. PBNV was documented widely in tomato and chili peppers in 14 states representing southern, north-western, north-eastern, and central regions and WBNV was predominantly detected in watermelons and cucurbits in all except north-eastern regions. In addition, the expanded host range of PBNV to watermelons and other cucurbits and WBNV to tomato and chili peppers was observed leading to natural mixed infection of the two viruses. IYSV was found in onion in southern, central, and north-eastern regions and CaCV in tomato and chili peppers in northern and southern regions, respectively. Phylogenetic analysis of the nucleocapsid gene revealed segregation of field isolates of PBNV and WBNV into two distinct subclades, whereas isolates of CaCV and IYSV each clustered into a single clade. A proposal for establishing WBNV as a distinct tospovirus species is made based on the molecular characterization of small- (S) and medium- (M) RNA segments.  相似文献   

13.
Resistance against dicofol was investigated in the carmine spider mite, Tetranychus cinnabarinus. Higher resistance levels were detected by leaf residual bioassays than by topical bioassays, both done using a Potter spray tower, in almost all populations of T cinnabarinus examined from Antalya, Turkey. For instance, the resistance level at LC95 was 17.5‐fold in topical bioassays but 58.9‐fold in leaf residual bioassays for the population collected from greenhouses in the Topçular district. There were differences of resistance levels at LC95, ranging between 2.6‐ and 23.9‐fold using topical bioassays and between 5.0‐ and 58.9‐fold in residual bioassays, in populations collected from greenhouses from various districts. Populations from cotton showed lower resistance levels against dicofol than populations from greenhouses. Resistance to dicofol at LC50 as indicated by topical and residual bioassays increased 19.7‐ and 100.7‐fold, respectively, in a colony from the laboratory strain of T cinnabarinus selected with dicofol alone for 16 cycles. However, the dicofol resistance at LC50 increased 19.4‐ and 52.0‐fold in another colony selected in rotation with dicofol and tetradifon for six and eight cycles, respectively. The changes in resistance to dicofol 5 months after the selection ceased were as follows: in the colony selected for dicofol alone, using topical and residual bioassays, the resistance levels at LC50 decreased to 11.7‐ and 99.1‐fold, respectively, and in the colony selected in rotation with dicofol and tetradifon to 10.8‐ and 15.8‐fold, respectively. © 2001 Society of Chemical Industry  相似文献   

14.
A survey identified viruses infecting garlic, leek and onion crops and wild Allium species in Greece. Virus identification was based on ELISA, immunoelectron microscopy, and occasionally on RT-PCR. Samples of cultivated Allium species were collected from five districts, whereas samples of twenty-seven wild Allium species were also collected from all over Greece. Onion yellow dwarf virus (OYDV) and Leek yellow stripe virus (LYSV) were identified in 98.5% and 83.7% of all samples, respectively, and were found in all regions. Allexiviruses were also detected in all regions and their incidence ranged from 62.5% to 70.5% (depending on region and type of allexivirus). Garlic common latent virus (GCLV) was detected in samples from Arcadia (97.6%) and Evia (18.0%) and in one field in Larissa (23.0%). Shallot latent virus (SLV) was found only in two areas (Evros and Theva) and in fields planted with imported propagative material, from Iran and China. The incidence of virus-like symptoms in leek crops ranged from 10.0% to 90.0% in different regions and fields and all symptomatic plants were found to be infected by LYSV. Onion yellow dwarf virus was only found in seven symptomatic onion samples from southern Greece. Allium ampeloprasum spp. ampeloprasum and Allium flavum, were the only wild Allium species found to be infected with LYSV. Finally Turnip mosaic virus (TuMV) was found in A. sphaerocephalon, A. guttatum, A. subhirsutum, and A. neapolitanum.  相似文献   

15.
The variability of resistance durability in different potato genotypes harbouring the same resistance QTL but differing by their genetic background was explored. The indirect consequences of the resistance adaptation in terms of local (i.e. genotype‐specific) adaptation and cross‐virulence was also investigated. Following the virulence of the potato cyst nematode Globodera pallida in a long‐term experimental evolution protocol, the results showed that nematode populations were able to adapt to the resistance of four potato genotypes carrying the QTL GpaV from Solanum vernei, and that the plant genetic background has an impact upon the durability of resistance. The pattern of local adaptation observed here indicates that divergent selection has occurred during the experimental evolution performed from the same initial nematode population, and revealed a trade‐off between the adaptation to a resistant potato genotype and the adaptation to another resistant genotype differing in its genetic background. In terms of cross‐virulence between potato genotypes derived from different resistance sources (S. sparsipilum and S. spegazzinii), this study shows that the adaptation to resistance QTL GpaVvrn does not necessarily allow the adaptation to collinear GpaV loci. The results presented here could be useful for predicting evolution of nematode populations in natural agro‐ecosystems and identifying durable strategies for resistance deployment.  相似文献   

16.
Bois noir (BN) is an economically important grapevine yellows disease induced by the stolbur phytoplasma and principally vectored by the cixiid Hyalesthes obsoletus. This study addresses the involvement of other planthoppers and/or leafhoppers in BN epidemics in the South Banat district of northeastern Serbia, by performing transmission experiments and multilocus typing of stolbur phytoplasma isolates to determine the vector‐related characteristics of the disease. Transmission trials were conducted with adults of two cixiid congeners, Reptalus panzeri and R. quinquecostatus, which were found to harbour stolbur phytoplasma in the vineyards under study. A molecular characterization of stolbur phytoplasma isolates was performed by sequence analysis and/or RFLP typing of the two housekeeping genes tuf and secY and the two membrane proteins stamp and vmp1. Transmission trials with naturally infected R. panzeri adults from either the BN‐infected vineyards or maize redness (MR)‐affected maize fields revealed a high stolbur phytoplasma transmission efficiency to grapevines. In contrast, experiments conducted with stolbur‐positive R. quinquecostatus originating from BN‐infected vineyards, provided no evidence for a vector role of this species. Seven stolbur phytoplasma genotypes, all of which were tuf‐b types, were detected among the grapevine‐ and insect‐associated field samples according to the tuf/secY/vmp1/stamp typing. STOLg was the genotype most frequently found in naturally infected grapevine (42%), as well as R. panzeri originating from the vineyards (85%) and maize fields (98%). The same genotype was found in all experimental plants inoculated by R. panzeri, confirming its vectorship of the disease.  相似文献   

17.
Prevention of seed input to the seedbank of Striga hermonthica‐infested fields is an important objective of Striga management. In three consecutive years of field experimentation in Mali, Striga reproduction was studied for 10 sorghum genotypes at infestation levels ranging from 30 000 to 200 000 seeds m?2. Host resistance was identified as an important determinant of Striga reproduction, with the most resistant genotypes (N13, IS9830 and SRN39) reducing Striga reproduction by 70–93% compared with the most susceptible genotype (CK60‐B). Seedbank density had a significant effect on Striga seed production. Higher seedbank density resulted in more Striga plants, which led to increased intra‐specific competition and consequently a reduced level of reproduction per plant. For the most susceptible sorghum genotypes, density dependence also occurred in the earlier belowground stages. Striga reproduction continued beyond harvest. At the high infestation level just 8% of the total reproduction was realised after harvest, whereas at the low infestation level 39% was attained after harvest. Even though host‐plant genotype plays a significant role in Striga reproduction, calculations indicated that only at very low infestation levels the use of the most resistant genotype was able to lower the Striga seedbank.  相似文献   

18.
The plant‐pathogenic fungus Sclerotinia sclerotiorum has a broad host range and a worldwide distribution. Boscalid, an inhibitor of succinate dehydrogenase in the electron transport chain of fungi, is highly effective in controlling sclerotinia stem rot caused by S. sclerotiorum. The current study characterized the S. sclerotiorum boscalid‐resistant (BR) mutants obtained by fungicide induction. Among the bioactive fungicides against S. sclerotiorum, cross‐resistance was not detected between boscalid and dimethachlon, fluazinam or carbendazim; positive cross‐resistance was detected between boscalid and carboxin; and negative cross‐resistance was detected between boscalid and kresoxim‐methyl. Compared to their parental isolates, BR mutants had slower radial growth, no ability to produce sclerotia, lower virulence and oxalic acid content but higher mycelial respiration and succinate dehydrogenase (SDH) activity. Moreover, BR mutants had decreased sensitivity to salicylhydroxamic acid (SHAM) but not to oxidative stress. All the results indicated that the risk of resistance to boscalid in S. sclerotiorum is low to moderate. DNA sequence analysis showed that all of the BR mutants had the same point mutation A11V (GCA to GTA) in the iron sulphur protein subunit (SDHB). Interestingly, expression of the cytochrome b (cytb) gene was reduced to different degrees in the BR mutants, and this might be correlated with the negative cross‐resistance between boscalid and kresoxim‐methyl. Such information is vital in the design of resistance management strategies.  相似文献   

19.
In sap from plants of lisianthus (Eustoma grandiflorum) with necrotic stunt symptoms in Yamaguchi Prefecture in Japan, spherical particles with a diameter of about 30 nm were observed with transmission electron microscopy. We sequenced the complete genome of an isolate using the tombusvirus-specific primers and found that it shared about 96 % nucleotide identities with Moroccan pepper virus (MPV) in the genus Tombusvirus. The isolate reproduced necrotic stunt symptoms on lisianthus plants after mechanical inoculation. This is the first report of MPV on lisianthus in Japan.  相似文献   

20.
Temporal variation in Fusarium oxysporum f. sp. vasinfectum (Fov) populations was determined by comparing the genetic diversity of pathogen isolates recovered from three consecutive cotton crops (2002, 2004 and 2006) in the Boggabilla area of New South Wales, Australia. A total of 288 isolates were collected, among which 25 distinct AFLP genotypes were identified. These genotypes were classified into two main groups corresponding to known vegetative compatibility groups (VCG)—01111 and 01112. The Fov populations were dominated by four genotypes (I-A, I-B, II-A, II-B) that accounted for 87.5% of the isolates. Significant temporal variation was observed in both sampled fields with 6.8% and 10.7% of total genetic variation being attributed to differences among collections in different years. Genetic diversity based on Nei’s gene diversity and the Shannon-Wiener index increased over time. Significant changes in the frequency of the dominant Fov genotypes were observed in one field, where genotype I-A declined from 84.8% to 40.0% over the study period (2002–2006), while genotype I-B increased from 7.6% to 35.4%. Strong inter-genotype competition was detected in glasshouse bioassays with 93.4% of symptomatic plants sampled from dual inoculation trials being infected by single genotypes. Competition was differentially mediated by cotton cultivars as the competitive ability of pathogen genotype I-B was enhanced on the resistant cultivar Sicot 189 relative to the susceptible cultivar Siokra 1–4. This suggests that host-mediated inter-genotype competition may play an important role in temporal variation in Fov populations in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号