共查询到20条相似文献,搜索用时 32 毫秒
1.
P. Skelsey J. G. Elphinstone G. S. Saddler S. J. Wale I. K. Toth 《Plant pathology》2016,65(4):570-576
Potato blackleg, caused by Pectobacterium and Dickeya species, is one of the most significant bacterial diseases affecting potato production globally. Although it is generally accepted to be a seedborne disease, the processes underlying the spread of disease largely remain unknown. Spatial point pattern analysis was applied to blackleg occurrence in seed potato crops in Scotland during the period of 2010–2013 (approximately 8000 blackleg‐affected crops), to assess whether its distribution was random, regular or aggregated, and the spatial scales at which these patterns occurred. Blackleg‐affected crops derived from mother stocks with symptoms were omitted from the analyses in order to examine the statistical evidence for horizontal transmission of blackleg. The pair correlation function was used to test for global spatial autocorrelation, and results indicated significant (P < 0·05) clustering of incidence at a wide range of spatial scales. Strength of clustering (degree of aggregation) among blackleg‐affected crops was notably larger at spatial scales of 25 km or less. A hot‐ and coldspot analysis was performed to test for local spatial autocorrelation, and statistically significant clusters of high and low values of disease were found across the country. These analyses provide the first quantitative evidence of localized and large‐scale spatial clustering of potato blackleg. Understanding the mode(s) of inoculum dispersal will be important for developing new management strategies that minimize host–pathogen contacts in potato and numerous other crops affected by pathogenic Pectobacterium and Dickeya species. 相似文献
2.
J. Nykyri X. Fang F. Dorati R. Bakr M. Pasanen O. Niemi E. T. Palva R. W. Jackson M. Pirhonen 《Plant pathology》2014,63(4):747-757
Bacterial soft rot is a globally significant plant disease that causes major losses in the production of many popular crops, such as potato. Little is known about the dispersal and ecology of soft‐rot enterobacteria, and few animals have been identified as vectors for these pathogens. This study investigates whether soil‐living and bacterial‐feeding nematodes could act as vectors for the dispersal of soft‐rot enterobacteria to plants. Soft‐rot enterobacteria associated with nematodes were quantified and visualized through bacterial enumeration, GFP‐tagging, and confocal and electron scanning microscopy. Soft‐rot enterobacteria were able to withstand nematode grazing, colonize the gut of Caenorhabditis elegans and subsequently disperse to plant material while remaining virulent. Two nematode species were also isolated from a rotten potato sample obtained from a potato storage facility in Finland. Furthermore, one of these isolates (Pristionchus sp. FIN‐1) was shown to be able to disperse soft‐rot enterobacteria to plant material. The interaction of nematodes and soft‐rot enterobacteria seems to be more mutualistic rather than pathogenic, but more research is needed to explain how soft‐rot enterobacteria remain viable inside nematodes. 相似文献
3.
BACKGROUND: Application of insecticides in modern agriculture in order to enhance legume production has led to their accumulation in soils to levels that adversely affect soil microflora such as rhizobia and exert a negative impact on the physiological activities associated with them. This study was therefore designed to identify rhizobial strains expressing higher tolerance to insecticides fipronil and pyriproxyfen and synthesising plant growth regulators even amid insecticide stress. RESULTS: The fipronil‐ and pyriproxyfen‐tolerant Rhizobium sp. strain MRL3 produced plant‐growth‐promoting substances in substantial amounts, both in the presence and in the absence of the insecticides. In general, both insecticides at recommended and higher rates reduced plant dry biomass, symbiotic properties, nutrient uptake and seed yield of lentil plants. Interestingly, when applied with any concentration of the two insecticides, Rhizobium sp. strain MRL3 significantly increased the measured parameters compared with plants grown in soils treated solely with the same concentration of each insecticide but without inoculant. CONCLUSION: This study suggests that Rhizobium strain MRL3 may be exploited as a bioinoculant to augment the efficiency of lentil exposed to insecticide‐stressed soils. Copyright © 2010 Society of Chemical Industry 相似文献
4.
Nine bacteriophages infecting Dickeya spp. biovar 3 (‘Dickeya solani’) were isolated from soil samples collected in different regions in Poland. The phages have a typical morphology of the members of the order Caudovirales, family Myoviridae, with a head diameter of c. 90–100 nm and tail length of c. 120–140 nm. In host range experiments, phage ?D5 expressed the broadest host range, infecting members of all Dickeya spp., and phage ?D7 showed the narrowest host range, infecting isolates of Dickeya dadantii and ‘D. solani’ only. None of the phages was able to infect Pectobacterium spp. isolates. All phages were prone to inactivation by pH 2, temperature of 85°C and by UV illumination for 10 min (50 mJ cm?2). Additionally, phages ?D1, ?D10 and ?D11 were inactivated by 5 m NaCl and phage ?D2 was inactivated by chloroform. Phages ?D1, ?D5, ?D7 and ?D10 were characterized for optimal multiplicity of infection and the rate of adsorption to the bacterial cells. The latent period was 30 min for ?D1, 40 min for ?D5, 20–30 min for ?D7 and 40 min for ?D10. The estimated burst size was c. 100 plaque‐forming units per infected cell. The bacteriophages were able to completely stop the growth of ‘D. solani’ in vitro and to protect potato tuber tissue from maceration caused by the bacteria. The potential use of bacteriophages for the biocontrol of biovar 3 Dickeya spp. in potato is discussed. 相似文献
5.
为了筛选出对核桃腐烂病具有高效防治效果、同时对核桃种子发芽具有促生作用的生防菌株,从新疆温宿县核桃林场核桃园采集土壤,采用稀释涂布法进行生防菌的分离与筛选.通过形态学特征、生理生化特征以及分子生物学方法对所分离的菌株进行物种鉴定,并研究其抗菌能力、防病效果以及对核桃种子发芽的促进作用.从土壤中分离到一株具有广谱抑菌能力的链霉菌F-04(CGMCC No.29519),经过分类鉴定,确定为德干链霉菌(Strepto-myes deccanensis).该菌对核桃腐烂病菌Cytospora chrysosperma的抑菌率为81.75%;其发酵滤液对核桃枝条腐烂病的防治效果可达87.24%;此外,该菌株的发酵滤液对核桃种子发芽有显著促进作用,在150 mL·L-1的浓度下,发芽率最高(85.32%),同时在该浓度处理下,坏种率最低(9.32%). 相似文献
6.
Since the discovery of penicillin in 1928 and throughout the ‘age of antibiotics’ from the 1940s until the 1980s, the detection of novel antibiotics was restricted by lack of knowledge about the distribution and ecology of antibiotic producers in nature. The discovery that a phenazine compound produced by Pseudomonas bacteria could suppress soilborne plant pathogens, and its recovery from rhizosphere soil in 1990, provided the first incontrovertible evidence that natural metabolites could control plant pathogens in the environment and opened a new era in biological control by root‐associated rhizobacteria. More recently, the advent of genomics, the availability of highly sensitive bioanalytical instrumentation, and the discovery of protective endophytes have accelerated progress toward overcoming many of the impediments that until now have limited the exploitation of beneficial plant‐associated microbes to enhance agricultural sustainability. Here, we present key developments that have established the importance of these microbes in the control of pathogens, discuss concepts resulting from the exploration of classical model systems, and highlight advances emerging from ongoing investigations. © 2019 Society of Chemical Industry 相似文献
7.
8.
Arakere Chunchegowda Udaya Shankar Siddaiah Chandra Nayaka Sathyanarayana Niranjan‐Raj Hanumanthaiah Bhuvanendra Kumar Munagala S Reddy Siddapura Ramachandrappa Niranjana Harishchandra Sripathy Prakash 《Pest management science》2009,65(10):1059-1064
BACKGROUND: The present study investigated the effect of seven Bacillus‐species plant‐growth‐promoting rhizobacteria (PGPR) seed treatments on the induction of disease resistance in cowpea against mosaic disease caused by the blackeye cowpea mosaic strain of bean common mosaic virus (BCMV). RESULTS: Initially, although all PGPR strains recorded significant enhancement of seed germination and seedling vigour, GBO3 and T4 strains were very promising. In general, all strains gave reduced BCMV incidence compared with the non‐bacterised control, both under screen‐house and under field conditions. Cowpea seeds treated with Bacillus pumilus (T4) and Bacillus subtilis (GBO3) strains offered protection of 42 and 41% against BCMV under screen‐house conditions. Under field conditions, strain GBO3 offered 34% protection against BCMV. The protection offered by PGPR strains against BCMV was evaluated by indirect enzyme‐linked immunosorbent assay (ELISA), with lowest immunoreactive values recorded in cowpea seeds treated with strains GBO3 and T4 in comparison with the non‐bacterised control. In addition, it was observed that strain combination worked better in inducing resistance than individual strains. Cowpea seeds treated with a combination of strains GBO3 + T4 registered the highest protection against BCMV. CONCLUSION: PGPR strains were effective in protecting cowpea plants against BCMV under both screen‐house and field conditions by inducing resistance against the virus. Thus, it is proposed that PGPR strains, particularly GBO3, could be potential inducers against BCMV and growth enhancers in cowpea. Copyright © 2009 Society of Chemical Industry 相似文献
9.
10.
Virulence of Pectobacterium carotovorum subsp. brasiliense on potato compared with that of other Pectobacterium and Dickeya species under climatic conditions prevailing in the Netherlands
下载免费PDF全文

J. M. van der Wolf E. G. de Haan P. Kastelein M. Krijger B. H. de Haas H. Velvis O. Mendes M. Kooman‐Gersmann P. S. van der Zouwen 《Plant pathology》2017,66(4):571-583
In western Europe, Pectobacterium carotovorum subsp. brasiliense is emerging as a causal agent of blackleg disease. In field experiments in the Netherlands, the virulence of this pathogen was compared with strains of other Dickeya and Pectobacterium species. In 2013 and 2014, seed potato tubers were vacuum infiltrated with high densities of bacteria (106 CFU mL?1) and planted in clay soil. Inoculation with P. carotovorum subsp. brasiliense and P. atrosepticum resulted in high disease incidences (75–95%), inoculation with D. solani and P. wasabiae led to incidences between 5% and 25%, but no significant disease development was observed in treatments with P. carotovorum subsp. carotovorum, D. dianthicola or the water control. Co‐inoculations of seed potatoes with P. carotovorum subsp. brasiliense and D. solani gave a similar disease incidence to inoculation with only P. carotovorum subsp. brasiliense. However, co‐inoculation of P. carotovorum subsp. brasiliense with P. wasabiae resulted in a decrease in disease incidence compared to inoculation with only P. carotovorum subsp. brasiliense. In 2015, seed potatoes were inoculated with increasing densities of P. carotovorum subsp. brasiliense, D. solani or P. atrosepticum (103–106 CFU mL?1). After vacuum infiltration, even a low inoculum density resulted in high disease incidence. However, immersion without vacuum caused disease only at high bacterial densities. Specific TaqMan assays were evaluated and developed for detection of P. carotovorum subsp. brasiliense, P. wasabiae and P. atrosepticum and confirmed the presence of these pathogens in progeny tubers of plants derived from vacuum‐infiltrated seed tubers. 相似文献
11.
Š. Alič T. Naglič M. Tušek‐Žnidarič M. Peterka M. Ravnikar T. Dreo 《Plant pathology》2017,66(8):1357-1368
Bacterial soft rots are a serious limitation to the production of orchids and other horticultural plants. Here, the characterization of causative bacteria isolated from Phalaenopsis orchids showing symptoms, from a commercial production site, is reported. The most commonly isolated bacteria were identified as Dickeya spp. Partial sequencing of 16S rDNA, fliC and dnaX showed diversity among the isolates and divided the isolates into two groups, with greatest similarity to previously reported undefined Dickeya lineages from orchids (UDL‐3 and UDL‐4). Two isolates (B16, S1) were sequenced using next‐generation sequencing, which has provided draft genomes of these two isolates for further studies (Ali? et al., 2015 ). Newly developed fliC‐based lineage‐specific quantitative real‐time PCR assays were used to distinguish among the lineages and to assess their relative abundances in diseased tissues. Virulence and aggressiveness comparison tests in vivo on Phalaenopsis orchids, potato plants and witloof chicory leaves indicated high virulence and extreme maceration potential of these novel Dickeya isolates, compared to a reference panel of other Dickeya spp. Pantoea cypripedii (formerly Pectobacterium cypripedii), which has previously been reported as a soft rot pathogen of orchids, was not detected, and isolates obtained from culture collections did not cause symptoms on artificially infected Phalaenopsis orchids. 相似文献
12.
蔬菜作物根际促生菌分离筛选、鉴定及促生特性测定 总被引:7,自引:1,他引:6
为从4种蔬菜作物根际分离和筛选植物根际促生菌(plant growth promoting rhizobacteria,PGPR)并研究其促生特性,采用固氮、无机和有机磷培养基筛选根际促生菌株,对其促生特性进行定性和定量分析,并通过形态特征及16SrDNA序列分析对优良促生菌株进行鉴定。结果表明:从4种蔬菜根际中共获得57株PGPR菌株,其中固氮菌24株,溶磷菌33株。筛选出的19株优良PGPR菌株的固氮酶活性在0.14~3 664.97 nmol C2H4·h~(-1)·mL~(-1)之间,以NCRS1菌株固氮酶活性最高;溶解无机磷菌株的溶磷量在36.99~362.60μg/mL之间,培养液p H为4.57~5.75,以NCRP2菌株溶磷量最大;溶解有机磷菌株的溶磷量在9.24~55.21μg/mL之间,培养液p H为6.24~7.75,以PPRS3菌株溶磷量最大;菌株分泌IAA量均小于3.36μg/mL;NCRP2菌株对小麦长蠕孢病菌Helminthosporium tritici-vulgaris、番茄早疫病菌Alternaria solani、黄瓜枯萎病菌Fusarium oxysporum、马铃薯立枯丝核病菌Rhizoctonia solani、油菜菌核病菌Sclerotinias clerotiorum和玉米小斑病菌Bipolaria maydis均有抑制作用。对19株优良PGPR菌株进行初步鉴定,分属于假单胞菌属Pseudomonas、不动细菌属Acinetobacter、Advenella、叶杆菌属Phyllobacterium、细杆菌属Microbacterium、芽胞杆菌属Bacillus。本研究筛选出的优良PGPR菌株,可为今后生物菌肥推广应用提供菌种资源。 相似文献
13.
丛枝菌根真菌(AMF)和根围促生细菌(PGPR)能在一定程度上拮抗土传病原物、提高植物抗病性而降低病害。本研究旨在(1)确定不同AMF与PGPR组合中,菌间相互作用的关系;(2)评价不同AMF与PGPR组合促进马铃薯生长、降低青枯病(Ralstonia solanacearum)危害的效果;(3)初步探索最佳AMF与PGPR组合降低马铃薯青枯病的作用机制。结果表明,与单接种AMF或PGPR相比,一些AMF与PGPR组合能够促进AMF的侵染和PGPR在马铃薯根围的定殖; AMF与PGPR组合能显著促进马铃薯的生长(如株高、茎粗、地上鲜重、地上干重、薯块重),其中以AMF摩西球囊霉(Glomus mosseae, Gm)与PGPR芽孢杆菌(Bacillus sp.)M3-4菌株组合以及地表球囊霉(G. versiforme, Gv)与 M3-4菌株组合促生效果最好。另外,接种AMF和PGPR的组合不同程度降低了马铃薯青枯病的危害,其中也以Gm与M3-4和Gv与M3-4的组合防治效果最佳,防治效果分别为65.2%和69.5%。并且,后者处理的叶片中超氧化物歧化酶、苯丙氨酸解氨酶和过氧化氢酶活性显著高于其他处理,丙二醛含量则显著低于其他处理。实验结果表明,Gm与M3-4以及Gv与M3-4的AMF和PGPR组合能够协同作用大幅促进马铃薯的生长、诱导其防御反应而降低马铃薯青枯病危害。 相似文献
14.
Stem rot caused by Sclerotinia sclerotiorum is a major fungal disease of canola worldwide. In Australia the management of stem rot relies primarily on strategic application of synthetic fungicides. In an attempt to find alternative strategies for the management of the disease, 514 naturally occurring bacterial isolates were screened for antagonism to S. sclerotiorum. Antifungal activity against mycelial growth of the fungus was exhibited by three isolates of bacteria. The bacteria were identified as Bacillus cereus (SC‐1 and P‐1) and Bacillus subtilis (W‐67) via 16S rRNA sequencing. In vitro antagonism assays using these isolates resulted in significant inhibition of mycelial elongation and complete inhibition of sclerotial germination by both non‐volatile and volatile metabolites. The antagonistic strains caused a significant reduction in the viability of sclerotia when tested in a greenhouse pot trial with soil collected from the field. Spray treatments of bacterial strains reduced disease incidence and yielded higher control efficacy both on inoculated cotyledons and stems. Application of SC‐1 and W‐67 in the field at 10% flowering stage (growth stage 4·00) of canola demonstrated that control efficacy of SC‐1 was significantly higher in all three trials (over 2 years) when sprayed twice at 7‐day intervals. The greatest control of disease was observed with the fungicide Prosaro® 420SC or with two applications of SC‐1. The results demonstrated that, in the light of environmental concerns and increasing cost of fungicides, B. cereus SC‐1 may have potential as a biological control agent of sclerotinia stem rot of canola in Australia. 相似文献
15.
Meta‐analytic modelling of the incidence–yield and incidence–sclerotial production relationships in soybean white mould epidemics
下载免费PDF全文

White mould (Sclerotinia sclerotiorum) is a destructive disease of soybean worldwide. However, little is known of its impact on soybean production in Brazil. A meta‐analytic approach was used to assess the relationship between disease incidence and soybean yield (35 trials) and between incidence and sclerotia production (29 trials) in experiments conducted in 14 locations across four seasons. Region, site elevation and season included as moderators in random‐effects and random‐coefficients models did not significantly explain the variability in the slopes of the incidence–yield relationship. The Pearson's r, obtained from back‐transforming the Fisher's Z estimated by an overall random‐effects model, showed that incidence of white mould was moderately and negatively correlated with yield (r = ?0.76, P < 0.0001). A random‐coefficients model estimated a slope of ?17.2 kg ha?1%?1, for a mean attainable yield of 3455 kg ha?1, indicating that a 10% increase in white mould incidence would result in a mean yield reduction of 172 kg ha?1. White mould incidence and production of sclerotia were strongly and positively correlated (r = 0.85, P < 0.0001). For every 10% increase in white mould incidence, 1 kg ha?1 of sclerotia was produced. The relationship between disease incidence and production of sclerotia was stronger in southern regions and at higher elevation. In the absence of management, economic losses associated with white mould epidemics, assuming 43% incidence in 22% of the soybean area, were estimated at approximately US $1.47 billion annually within Brazil. 相似文献
16.
Charalampos K Myresiotis Zisis Vryzas Euphemia Papadopoulou‐Mourkidou 《Pest management science》2015,71(9):1258-1266
17.
Efficacy of UV‐C radiation to reduce seedborne anthracnose (Colletotrichum acutatum) from Andean lupin (Lupinus mutabilis)
下载免费PDF全文

The potential of UV‐C radiation of Andean lupin (Lupinus mutabilis) seeds to eradicate seedborne infections of anthracnose caused by Colletotrichum acutatum was investigated. UV‐C doses from 0 to 691.2 kJ m?2 (resulting from 0 to 96 h of exposure time) on disease incidence reduction and germination on artificially and naturally infected seed were evaluated. The degree of incidence reduction and seed germination was dependent on the dose of UV‐C. The UV‐C doses of 86.4 kJ m?2 and higher reduced incidence from 6% to 7% to undetectable levels, but these UV‐C doses also reduced seed germination. UV‐C can deleteriously affect physiological processes and overall growth. To assess its impact, L. mutabilis seeds irradiated with UV‐C doses of 57.6 and 86.4 kJ m?2 were grown. Seedlings grown from noninfected seed and UV‐C treated seed showed an increased concentration of chlorophyll and protein contents, as well as an increase in the activation of defence enzymes peroxidase and catalase, in comparison with plants grown from infected seed. UV‐C doses resulted in seed emergence and seedling dry weight rates that were similar to the noninfected control or better than the fungicide control. Moreover, 57.6 kJ m?2 reduced transmission of the pathogen from seed to the plantlets by 80%, while 86.4 kJ m?2 apparently eradicated the pathogen, under greenhouse conditions. The use of UV‐C, first reported here, is advantageous for controlling anthracnose in lupin. 相似文献
18.
The present survey was conducted to isolate and characterize Streptomyces species from common scab lesions of potato in Norway. Bacteria were isolated from scab lesions on tubers sampled in two consecutive years at different locations in Norway spanning ~1400 km from south to north. In total, 957 independent isolations from individual tubers were performed, with 223 putative pathogenic isolates obtained from 29 different potato cultivars and 130 different fields. Streptomyces europaeiscabiei was the most abundant species isolated from common scab lesions (69%), while 31% of the isolates obtained were S. turgidiscabies. Streptomyces scabies was not found. Pathogenicity of selected Streptomyces isolates was tested on potato. The ability of the bacterial isolates to infect potato was consistent with the presence of the txtAB operon. The results revealed no pattern in geographical distribution of S. europaeiscabiei and S. turgidiscabies; both could be found in the same field and even the same lesion. Four different pathogenicity island (PAI) genotypes were detected amongst the txtAB positive isolates: nec1+/tomA+, nec1–/tomA+, nec1+/tomA? and nec1?/tomA?. The current findings demonstrate that there is genetic variability within species and that the species are not spread solely by clonal expansion. This is thought to be the most comprehensive survey of Streptomyces species that cause common scab of potato in a European country. 相似文献
19.
Marc Ongena Amélie Giger Philippe Jacques Jacques Dommes Philippe Thonart 《European journal of plant pathology / European Foundation for Plant Pathology》2002,108(3):187-196
The ability of Pseudomonas putida BTP1 to induce resistance in bean to Botrytis cinerea was demonstrated in soil experiments on plants pre-inoculated at the root level with the bacteria before challenge with the leaf pathogen. As a first step to characterize the molecules from BTP1 responsible for induction of systemic resistance in bean, heat-killed cells and supernatant from culture in an iron-limited medium were tested for their protective effect. Most of the resistance-eliciting activity of the strain was retained in the crude cell-free culture fluid. In vivo assays with samples from successive fractionation steps of the BTP1 supernatant led, (i) to the conclusion that salicylic acid, pyochelin and pyoverdin, previously identified as Pseudomonas determinants for induced systemic resistance (ISR), were not involved in systemic resistance triggered by BTP1, and (ii) to the isolation of fractions containing one main metabolite that retained most of the resistance-inducing activity in bean. Although this molecule remains to be structurally characterized, its isolation is an addition to the range of determinants from plant growth-promoting rhizobacteria (PGPR) known to stimulate plant defences. 相似文献
20.
研究旨在筛选获得硒砂瓜根际促生菌,为硒砂瓜微生物肥料的开发利用提供土著菌种资源和理论基础。以宁夏地区特有经济作物硒砂瓜根际土壤为材料,采用稀释平板法分离土著细菌,对筛选到的50株菌进行溶磷、产铁载体、产吲哚乙酸(IAA)以及固氮能力评价,结合16S rDNA序列分析对优良促生菌进行鉴定,并选定9株优良促生菌,研究其对硒砂瓜幼苗的促生作用。结果显示,50株菌中有22株解磷菌株的溶磷量在7.12~64.54 mg·L-1之间;有30株具有产铁载体能力的菌株,定量结果表明其中11株为高产铁载体菌株(A/Ar<0.5);有18株具有分泌IAA能力的菌株,分泌量在3.70~58.94 mg·L-1之间;有9株菌在阿须贝平板上经5次传代仍能正常生长,初步确定其具有固氮能力。筛选得到的20株优良促生菌分别隶属于芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、肠杆菌属(Enterobacter)、不动杆菌属(Acinetobacter)、变形杆菌属(Proteus),其中6株菌兼具以上4种促生活性,11株菌兼... 相似文献