首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In western Europe, Pectobacterium carotovorum subsp. brasiliense is emerging as a causal agent of blackleg disease. In field experiments in the Netherlands, the virulence of this pathogen was compared with strains of other Dickeya and Pectobacterium species. In 2013 and 2014, seed potato tubers were vacuum infiltrated with high densities of bacteria (106 CFU mL?1) and planted in clay soil. Inoculation with P. carotovorum subsp. brasiliense and P. atrosepticum resulted in high disease incidences (75–95%), inoculation with D. solani and P. wasabiae led to incidences between 5% and 25%, but no significant disease development was observed in treatments with P. carotovorum subsp. carotovorum, D. dianthicola or the water control. Co‐inoculations of seed potatoes with P. carotovorum subsp. brasiliense and D. solani gave a similar disease incidence to inoculation with only P. carotovorum subsp. brasiliense. However, co‐inoculation of P. carotovorum subsp. brasiliense with P. wasabiae resulted in a decrease in disease incidence compared to inoculation with only P. carotovorum subsp. brasiliense. In 2015, seed potatoes were inoculated with increasing densities of P. carotovorum subsp. brasiliense, D. solani or P. atrosepticum (103–106 CFU mL?1). After vacuum infiltration, even a low inoculum density resulted in high disease incidence. However, immersion without vacuum caused disease only at high bacterial densities. Specific TaqMan assays were evaluated and developed for detection of P. carotovorum subsp. brasiliense, P. wasabiae and P. atrosepticum and confirmed the presence of these pathogens in progeny tubers of plants derived from vacuum‐infiltrated seed tubers.  相似文献   

2.
Potato early dying (PED) is a disease complex primarily caused by the fungus Verticillium dahliae. Pectolytic bacteria in the genus Pectobacterium can also cause PED symptoms as well as aerial stem rot (ASR) of potato. Both pathogens can be present in potato production settings, but it is not entirely clear if additive or synergistic interactions occur during co‐infection of potato. The objective of this study was to determine if co‐infection by V. dahliae and Pectobacterium results in greater PED or ASR severity using a greenhouse assay and quantitative real‐time PCR to quantify pathogen levels in planta. PED symptoms caused by Pectobacterium carotovorum subsp. carotovorum isolate Ec101 or V. dahliae isolate 653 alone included wilt, chlorosis and senescence and were nearly indistinguishable. Pectobacterium wasabiae isolate PwO405 caused ASR symptoms including water‐soaked lesions and necrosis. Greater Pectobacterium levels were detected in plants inoculated with PwO405 compared to Ec101, suggesting that ASR can result in high Pectobacterium populations in potato stems. Significant additive or synergistic effects were not observed following co‐inoculation with these strains of Vdahliae and Pectobacterium. However, infection coefficients of V. dahliae and Ec101 were higher and premature senescence was greater in plants co‐inoculated with both pathogens compared to either pathogen alone in both trials, and Vdahliae levels were greater in basal stems of plants co‐inoculated with either Pectobacterium isolate. Overall, these results indicate that although co‐infection by Pectobacterium and V. dahliae does not always result in significant additive or synergistic interactions in potato, co‐infection can increase PED severity.  相似文献   

3.
Late blight, caused by the oomycete Phytophthora infestans, is a threat to potato‐cropping systems worldwide. In the Ecuadorian Andes, despite a high late blight incidence in foliage, tuber blight is rare. In this work, the hypothesis that Ecuadorian Andean soils are naturally suppressive to P. infestans tuber infection was evaluated. Soils from four potato‐growing regions were assessed for disease suppressiveness by determining the effects of soil heat treatment on P. infestans sporangia and their ability to infect potato slices after 1, 8, 15 and 30 days of exposure to soils. Tuber infection after inoculation with P. infestans‐infested soils was consistently lower during the evaluation period compared with heat‐treated soils. Fresh, untreated soils affected germination and viability of P. infestans sporangia in a site‐dependent manner. In addition, the effect of heat treatment on soil bacterial communities was assessed through terminal restriction fragment length polymorphism analysis of the 16S rDNA gene region. Heat treatment disrupted bacterial community composition, and a subset of terminal restriction fragments (TRF) was either positively or negatively correlated with tuber infection. Bacterial TRF negatively correlated with tuber infection corresponded in fragment size to taxa with known ability to inhibit pathogens and promote plant growth. Finally, bacterial isolates obtained from untreated soils, which inhibited P. infestans growth in vitro, represented 22–47% of isolates recovered, and matched classes predicted by the TRFs. This work represents a first step in understanding the mechanisms behind the low incidence of tuber blight in Andean potato‐cropping systems.  相似文献   

4.
Xanthomonas campestris pv. musacearum (Xcm) is the causal agent of banana xanthomonas wilt, a major threat to banana production in eastern and central Africa. The pathogen is present in very high levels within infected plants and can be transmitted by a broad range of mechanisms; therefore early specific detection is vital for effective disease management. In this study, a polyclonal antibody (pAb) was developed and deployed in a lateral flow device (LFD) format to allow rapid in‐field detection of Xcm. Published Xcm PCR assays were also independently assessed: only two assays gave specific amplification of Xcm, whilst others cross‐reacted with non‐target Xanthomonas species. Pure cultures of Xcm were used to immunize a rabbit, the IgG antibodies purified from the serum and the resulting polyclonal antibodies tested using ELISA and LFD. Testing against a wide range of bacterial species showed the pAb detected all strains of Xcm, representing isolates from seven countries and the known genetic diversity of Xcm. The pAb also detected the closely related Xanthomonas axonopodis pv. vasculorum (Xav), primarily a sugarcane pathogen. Detection was successful in both naturally and experimentally infected banana plants, and the LFD limit of detection was 105 cells mL?1. Whilst the pAb is not fully specific for Xcm, Xav has never been found in banana. Therefore the LFD can be used as a first‐line screening tool to detect Xcm in the field. Testing by LFD requires no equipment, can be performed by non‐scientists and is cost‐effective. Therefore this LFD provides a vital tool to aid in the management and control of Xcm.  相似文献   

5.
The effect of plant age at the time of inoculation on the severity of bacterial wilt and canker disease caused by Clavibacter michiganensis subsp. michiganensis (Cmm) was examined in six greenhouse experiments. The period during which inoculations led to wilt and death of tomato plants was defined. This period, designated ‘window of vulnerability’, ranged from transplanting to the 17‐ to 18‐leaf stage. Plants inoculated after this period expressed disease symptoms but did not wilt or die. No significant changes in disease incidence were observed when leaves of different ages were inoculated. Yield accumulation was significantly reduced in plants inoculated within the window of vulnerability compared with those inoculated after this period. Expression of virulence genes, viz. celA, encoding a secreted cellulase, and the serine protease‐encoding pat‐1, chpC and ppaA, was induced during the early stages after inoculation in plants inoculated within the window of vulnerability. Differences in Cmm population between plants inoculated within and outside of this period were insignificant after the first week post‐inoculation, indicating that differences in disease severity, yield loss and expression of virulence determinants are not correlated with Cmm population level. Results suggest that implementation of precautionary measures during the window of vulnerability to avoid secondary spread of Cmm will have a season‐long effect on plant mortality and may minimize, or even prevent, yield losses.  相似文献   

6.
The control of seedborne rice seedling diseases in the seed beds is important to avoid epidemics in rice nurseries and paddies, which may result in severe yield loss. Recently, irradiation with plasma containing electrons, creating positive or negative ions and neutral species, has been shown to have an antimicrobial effect, probably via generation of reactive oxygen species. This study examines whether two seedborne rice seedling diseases, bakanae disease caused by the fungal pathogen Fusarium fujikuroi, and bacterial seedling blight caused by Burkholderia plantarii, are suppressed by irradiation of infected rice seeds with atmospheric plasma. Seed germination and seedling growth were not inhibited in plasma‐treated healthy seeds. When F. fujikuroi‐infected rice seeds were irradiated with plasma after being immersed in sterile distilled water, bakanae disease severity index and the percentage of plants with symptoms were reduced to 18.1% and 7.8% of non‐irradiated control, respectively, depending on the duration of plasma irradiation. The bacterial seedling blight disease index was also reduced by plasma irradiation in vacuum‐inoculated seeds to 38.6% of the non‐irradiated control, and in infected seeds harvested from spray‐inoculated heads of rice plants to 40.1% of the control. Therefore, plasma irradiation seems to be effective in controlling two independent seedborne rice seedling diseases.  相似文献   

7.
The potential for using the composting process to sanitize plant waste infected with one of three plant pathogens was investigated using bench‐scale composting equipment. Two of these pathogens, the potato wart disease fungus Synchytrium endobioticum and Potato spindle tuber viroid (PSTVd) are currently subject to European quarantine regulations. The third, Polymyxa betae, a parasite of sugar beet, is regulated in some European countries when in association with Beet necrotic yellow vein virus (BNYVV), the causal organism of rhizomania disease of sugar beet. Survival of test organisms following various combinations of compost temperature, exposure time and moisture was determined using RNA‐based detection methodology and/or plant‐based bioassays. Mathematically definable relationships between compost treatment (temperature/time) and organism viability were identified for P. betae and S. endobioticum; these give some indication of the practicality of using composting for dealing with infected wastes. However, for PSTVd, the considerable variability in measured susceptibility of the viroid to the composting process meant that no such definable relationship could be determined and further work would be needed to extrapolate to practical situations.  相似文献   

8.
To increase digestibility for ruminant livestock and for lignocellulosic ethanol conversion efficiency in sorghum (Sorghum bicolor), brown midrib (bmr) lines carrying bmr6 or bmr12 and the double mutant (bmr6 bmr12) in two backgrounds (RTx430 and Wheatland) were developed, resulting in lines with significantly reduced lignin, as compared with the near‐isogenic wildtype. Under greenhouse conditions, these lines had previously demonstrated no increased susceptibility, and some lines were more resistant to the highly virulent stalk rot pathogen, Fusarium thapsinum, compared to the wildtype. Fusarium stalk rot of sorghum is a destructive disease that under high temperatures or drought conditions may lead to lodging. To determine if greenhouse observations could be extended to field environments, bmr and near‐isogenic wildtype lines were inoculated with F. thapsinum at field locations, Mead (irrigated) and Havelock (dryland) in Nebraska, USA. Analysis of mean lesion lengths showed those of most bmr lines were statistically similar to the wildtype. Across both genetic backgrounds, bmr6 and bmr6 bmr12 double mutant plants grown at Mead had significantly smaller mean lesion lengths than the corresponding wildtype ( 0.05). To assess responses of the two genetic backgrounds to controlled (greenhouse) water stress, wildtype RTx430 and Wheatland plants were inoculated with F. thapsinum under well‐watered and water stress conditions. Mean lesion lengths resulting on water deficit plants were significantly larger than those on well‐watered plants (= 0.01). These results indicate that this bioassay can be used to screen sorghum lines in the greenhouse for increased resistance or tolerance to both drought and fusarium stalk rot.  相似文献   

9.
Lettuce corky root (CR) is caused by bacteria in the genera Rhizorhapis, Sphingobium, Sphingopyxis and Rhizorhabdus of the family Sphingomonadaceae. Members of this family are common rhizosphere bacteria, some pathogenic to lettuce. Sixty‐eight non‐pathogenic isolates of bacteria obtained from lettuce roots were tested for control of CR caused by Rhizorhapis suberifaciens CA1T and FL1, and Sphingobium mellinum WI4T. In two initial screenings, 10 isolates significantly reduced CR induced by one or more pathogenic strains on lettuce seedlings in vermiculite, while seven non‐pathogenic isolates provided significant CR control in natural or sterilized field soil. Rhizorhapis suberifaciens FL11 was effective at controlling all pathogenic strains, but most effective against R. suberifaciens CA1T. The other selected isolates controlled only pathogenic strains belonging to their own genus. In a greenhouse experiment, a soil drench with selected biocontrol agents (R. suberifaciens FL11, Sphingomonas sp. NY3 and S. mellinum CA16) controlled CR better than seed treatments or application of alginate pellets. In microplots infested with R. suberifaciens CA1T, seed treatment with R. suberifaciens FL11 provided complete control and a soil drench with FL11 significantly reduced the disease. Pathogenicity tests with FL11 on 23 plant species in 10 families resulted in slight yellowing on roots of lettuce and close relatives; similar yellowing appeared on some roots of non‐inoculated lettuce plants. This research showed that biocontrol agents can be genus‐specific. Only one isolate, FL11, provided more general control of various pathogenic strains causing CR even in field soil in pots and microplots.  相似文献   

10.
Studies were conducted to explain the relative success of ‘Dickeya solani’, a genetic clade of Dickeya biovar 3 and a blackleg‐causing organism that, after recent introduction, has spread rapidly in seed potato production in Europe to the extent that it is now more frequently detected than D. dianthicola. In vitro experiments showed that both species were motile, had comparable siderophore production and pectinolytic activity, and that there was no antagonism between them when growing. Both ‘D. solani’ and biovar 1 and biovar 7 of D. dianthicola rotted tuber tissue when inoculated at a low density of 103 CFU mL?1. In an agar overlay assay, D. dianthicola was susceptible to 80% of saprophytic bacteria isolated from tuber extracts, whereas ‘D. solani’ was susceptible to only 31%, suggesting that ‘D. solani’ could be a stronger competitor in the potato ecosystem. In greenhouse experiments at high temperatures (28°C), roots were more rapidly colonized by ‘D. solani’ than by biovar 1 or 7 of D. dianthicola and at 30 days after inoculation higher densities of ‘D. solani’ were found in stolons and progeny tubers. In co‐inoculated plants, fluorescent protein (GFP or DsRed)‐tagged ‘D. solani’ outcompeted D. dianthicola in plants grown from vacuum‐infiltrated tubers. In 3 years of field studies in the Netherlands with D. dianthicola and ‘D. solani’, disease incidence varied greatly annually and with strain. In summary, ‘D. solani’ possesses features which allow more efficient plant colonization than D. dianthicola at high temperatures. In temperate climates, however, tuber infections with ‘D. solani’ will not necessarily result in a higher disease incidence than infections with D. dianthicola, but latent seed infection could be more prevalent.  相似文献   

11.
Tomato (Solanum lycopersicum) is the second most important vegetable crop in the world. Bacterial spot (BS) of tomato, caused by four species of Xanthomonas: X. euvesicatoria, X. vesicatoria, X. perforans and X. gardneri, results in severe loss in yield and quality due to defoliation and formation of lesions on fruits, respectively. Currently management practices do not offer effective control under conditions of high disease pressure. Thus, developing BS resistance is a critical priority for tomato growers in order to minimize crop losses. Sixty‐three advanced tomato breeding lines, heirlooms and wild tomato lines with diverse genetic backgrounds were screened under greenhouse and field conditions for BS resistance using X. perforans race T4, which was found to be a prevalent race in North Carolina. Race T4 isolate 9 was used to inoculate the plants by spraying, and disease severity was measured using the Horsfall–Barratt scale. Tomato lines 74L‐1W(2008), NC2CELBR, 081‐12‐1X‐gsms, NC22L‐1 (2008) and 52LB‐1 showed resistance to BS in the field and/or greenhouse trials. These lines were derived from S. pimpinellifolium L3707. Screening L3707 followed by development of a mapping population and mapping resistance genes might be useful for breeding resistance against BS in future breeding programmes.  相似文献   

12.
Rice black streaked dwarf virus (RBSDV) causing rice black streaked dwarf disease is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent propagative manner. The disease is considered among the most destructive in rice production in east and southeast Asia. For sustainable control of the disease, planting resistant cultivars is the most economical and efficient method. The virus content in different rice cultivars was quantified using a TaqMan RT‐qPCR assay under greenhouse conditions and the disease was visually assessed in these cultivars in both greenhouse and field conditions. Results revealed significant positive moderate correlation (= 0.3787; = 0.0009) between the virus content and visual disease assessment in the greenhouse under forced inoculation. Among 66 rice cultivars, there was no significant difference in RBSDV genome equivalent copies (GEC) in seven cultivars, namely Lian‐dao 9805 (200.2 ± 12), Liangyou 3399 (206.6 ± 28), Ningjing 4 (206.6 ± 28), DaLiang 207 (302.0 ± 61), X 008 (354.0 ± 30), Shengdao 301 (658.4 ± 69) and Liangyou 1129 (679.5 ± 98). These cultivars were also visually assessed as resistant under greenhouse and field conditions. These cultivars could be used in disease management to reduce the likelihood of epidemics.  相似文献   

13.
Variant somaclones of potato cultivar Russet Burbank, selected for resistance to common scab using in vitro cell selection techniques, were tested for resistance to powdery scab, another important disease of potato caused by Spongospora subterranea. This pathogen also invades roots, producing root galls. Most variants consistently showed increased resistance to powdery scab, both in field and glasshouse challenge, when compared to the parental cultivar, several significantly so. On average, the best variant reduced powdery scab incidence by 51% and severity (tuber surface coverage) by 64%. In contrast, no improvement in the extent of root infection and root galling was seen. These results suggest host interactions during root and tuber infection are distinct. Correlation analyses of disease indices amongst the selected variants showed no association between Sp. subterranea root infection and gall scores, nor between root infection and tuber disease severity. However, a weak positive association was found between root gall score and tuber disease, and a strong correlation between tuber disease incidence and severity scores. Interestingly, positive correlations were also found between the extent of powdery and common scab resistance expressed and both incidence and severity of these diseases within the variants, suggesting a common defence mechanism. The role of thaxtomin A in selecting for concurrent resistance to both diseases is discussed.  相似文献   

14.
Two experiments were carried out to assess the changes associated with photoassimilate production and partitioning in the source–sink relationship of flag leaves and spikes of wheat plants infected with Pyricularia oryzae, the causal agent of blast. Flag leaves and spikes were inoculated at 10 and 20 days after anthesis (daa) with a conidial suspension of P. oryzae. Analysis of chlorophyll a fluorescence using maximal photosystem II quantum efficiency (Fv?Fm), fraction of energy absorbed that is used in photochemistry (YII), quantum yield of non‐regulated energy dissipation (Y(NO)) and quantum yield of regulated energy dissipation (Y(NPQ)), showed an impairment of the photosynthetic performance in both infected flag leaves and spikes, coupled with reduced concentrations of chlorophyll b and carotenoids. Compared to non‐inoculated controls, there was lower capacity for CO2 fixation by RuBisCO in the infected flag leaves. Similarly, in the infected flag leaves and grains (obtained from infected spikes), there were lower concentrations of soluble sugars, while the hexoses‐to‐sucrose ratio increased in infected flag leaves. Compared to non‐inoculated controls, infected flag leaves showed lower sucrose phosphate synthase (SPS) activity and lower expression of the sucrose synthesis (SuSy) gene, while higher expression and activity of acid invertases also occurred. At the advanced stages of fungal infection, the concentration of starch in grains decreased but remained high for the infected flag leaves. There were reductions in ADP‐glucose pyrophosphorylase activity and the expression of ADP‐glucose pyrophosphorylase genes and a down‐regulation of β‐ and α‐amylase expression at the advanced stages of fungal infection on flag leaves and spikes. In conclusion, the effect of blast on both grain quality and yield can be associated with alterations in both production and partitioning of carbohydrates during the grain filling process.  相似文献   

15.
Pseudomonas syringae pv. actinidiae (Psa) is a Gram‐negative bacterium that causes the bacterial canker of both green (Actinidia deliciosa) and yellow (Actinidia chinensis) fleshed kiwifruit. Since the emergence of an economically devastating Psa outbreak in Japan in the 1980s, the disease took a contagious turn causing severe economic loss to kiwifruit industries in Italy, South Korea, Spain, New Zealand and other countries. Research shows that the pathogenic strains isolated from different infected orchards vary in their virulence characteristics and have distinct genes coding for the production of different toxins. The global Psa outbreak has activated research around the world on developing efficient strategies to contain the pandemic and minimize loss to the kiwifruit industry. Chemical and biological control options, orchard management and breeding programmes are being employed in this global effort. Synergy between different disease control strategies has been recognized as important. Phytotoxicity, resistance development and regulatory measures in certain countries restrict the use of copper compounds and antibiotics, which are otherwise the mainstay chemicals against bacterial plant diseases. Therefore, because of the limitations of existing chemicals, it is important to develop novel chemical controls against Psa. Antimicrobial peptides, which are attractive alternatives to conventional antibiotics, have found promising applications in plant disease control and could contribute to expanding the chemical control tool box against Psa. This review summarizes all chemical compounds trialled so far against Psa and provides thoughts on the development of antimicrobial peptides as potential solutions for the future.  相似文献   

16.
Two important sources of Capsicum annuum (bell pepper) resistance were evaluated for their response to inoculation with two isolates of Tobacco etch virus strain NW (TEV‐NW, genus Potyvirus). The resistant cultivars were CA4 and Dempsey, which contain the pvr1 and pvr12 resistance genes, respectively. TEV‐NW was maintained by mechanical passage in the susceptible pepper cultivar Early Calwonder and Nicotiana tabacum cv. Kentucky 14. In initial experiments, the TEV‐NW isolate maintained in Early Calwonder infected two of seven CA4 plants; however, none of the CA4 plants inoculated with the TEV‐NW isolate maintained in Kentucky 14 were infected. The infected CA4 plants had low virus titres in non‐inoculated leaves and did not develop visible symptoms. When the infected CA4 plants were used as inoculum of additional CA4 plants, all newly inoculated plants became infected, developed systemic symptoms and accumulated virus in non‐inoculated leaves more quickly than the originally infected CA4 plants. This new NW isolate, referred to as NW‐CA4, was shown to overcome the resistances expressed by both CA4 (pvr1) and Dempsey (pvr12). The potyviral VPg is believed to be the determinant for pvr1 and pvr12 resistance genes, both of which are eIF4E‐encoding genes. The VPg amino acid sequence for NW‐CA4 was determined and compared with that of NW isolates and different TEV strains. No amino acid variation was identified that explained the infectivity of NW‐CA4 in CA4 and Dempsey plants.  相似文献   

17.
T K Das  D K Das 《Weed Research》2018,58(3):188-199
Variable dormancies result in periodicity in the germination of weeds and make weed control a repetitive practice. Under some conditions, repeated applications of selective herbicides can lead to the dominance of perennial weeds like Cyperus rotundus . Our hypothesis was that applying a chemical dormancy breaker (DB ) plus herbicide mixture would better control a mixture of weed species. Three experiments were designed to develop a cost‐effective DB treatment and to evaluate its dose with herbicides tank‐mixtures for effective weed management. KNO 3 and gibberellic acid GA 3 as dormancy breakers offered comparable effects, but KNO 3 was more economical than GA 3. KNO 3 at a 6% concentration was more effective in promoting weed germination than a 3% concentration in soyabean. A combination of KNO 3 (6%) and pre‐emergence pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 controlled annual weeds by 99% and reduced C. rotundus growth by 83%. This treatment gave significantly higher soyabean yield and net returns. Similarly, a tank‐mixture comprising of clodinafop 0.06 kg a.i. ha?1 + metsulfuron 0.006 kga.i. ha?1 was more effective against weeds than pre‐emergence tank‐mix application of pendimethalin 0.75 kg a.i. ha?1 + carfentrazone‐ethyl 0.02 kg a.i. ha?1 and isoproturon 0.75 kg a.i. ha?1. The use of pre‐emergence tank‐mixture of pendimethalin 0.75 kg a.i. ha?1 + imazethapyr 0.10 kg a.i. ha?1 should exhaust seed/tuber bank if repeated and reduce the application cost of herbicides by 50% and the dose, residue and cost of pendimethalin by 25%.  相似文献   

18.
Long‐term survival of Acidovorax citrulli in citron melon (Citrullus lanatus var. citroides) seeds was investigated. Citron melon seed lots infected with A. citrulli were generated in the field by inoculating either the pistils (stigma) or pericarps (ovary wall) of the female blossoms. Seventeen A. citrulli isolates from 14 different haplotypes belonging to two different groups (group I and II) were used for inoculation. After confirming that 100% of seed lots were infected, they were stored at 4°C and 50% RH for 7 years. After storage, the viability of A. citrulli cells from individual lots was determined by plating macerated seeds on semiselective medium as well as growing seeds for 14 days and scoring for bacterial fruit blotch symptoms. The type of A. citrulli isolate (group I or group II) used did not significantly influence bacterial survival. However, A. citrulli survival was significantly greater in seed lots generated via pistil inoculation (52·9 and 29·4%) than via pericarp inoculation (23·5 and 17·6%). Repetitive extragenic palindrome (rep)‐PCR on A. citrulli isolated from citron melon seed lots after storage displayed similar fingerprinting patterns to those of the reference strains originally used for blossom inoculation, indicating that cross‐contamination did not occur. The results indicate that A. citrulli may survive/overwinter in citron melon seeds for at least 7 years and bacterial survival in seed was influenced more by method of blossom inoculation than by the type of bacterial isolate.  相似文献   

19.
The fungal pathogen Microdochium majus, causing snow mould, seedling blight and foot rot, results in severe yield losses in small grain cereals. There are few options to control this pathogen in organic production. In this study, aqueous extracts or botanical powders prepared from chamomile, meadowsweet, thyme and Chinese galls were tested in vitro against M. majus conidia germination and mycelial growth, respectively. Subsequently, three botanicals were chosen, applied as powders with different seed coating adhesives, and tested for their effect on the incidence of M. majus from naturally infected wheat seed lots and on seedling emergence from soil under controlled environmental conditions. Furthermore, seed treatments with warm water, a bacterial product or one chosen botanical were tested in a growth chamber and in a field experiment over three consecutive years. Of the botanicals tested, Chinese galls showed the highest efficacy in controlling M. majus, reducing conidia germination and mycelial growth by up to 97 and 100%, respectively, and reducing the incidence from infested seeds by up to 59%. In two growth chamber experiments, total seedling emergence increased by up to 30 and 59% compared with the control treatments following an application with Chinese galls. Under field conditions, yield increase through Chinese galls, the bacterial product and the warm water treatment was 19, 10 and 37% compared with the untreated control, respectively. This study demonstrates the potential of Chinese galls to control M. majus in wheat. Options for improved formulations or combinations of heat‐based treatments with Chinese galls are discussed.  相似文献   

20.
Huanglongbing (HLB), associated with the phloem‐limited bacterium ‘Candidatus Liberibacter asiaticus’ (Las), is devastating trees in citrus orchards of Florida. Additionally, Phytophthora nicotianae, omnipresent in citrus soils, causes root rot that reduces water and nutrient uptake by fibrous roots. To investigate fibrous root damage and replacement and canopy size in relation to infection of fibrous roots by Las and P. nicotianae, rootstock seedlings of Swingle citrumelo (Citrus paradisi × Poncirus trifoliata) were inoculated with Las or P. nicotianae in two greenhouse pot trials. Phytophthora nicotianae caused root damage within 5 weeks post‐inoculation, which led to greater reduction of canopy size than for Las‐infected seedlings by the end of the experiment. Las increased accumulation of fibrous root biomass at 5 weeks post‐root trimming (wpt) in the 2014 trial and at 11 wpt in the 2015 trial. New root length was not consistently increased by Las. Reduced total leaf area of symptomless Las‐infected seedlings compared to noninoculated controls might be due to the combined effect of altered carbohydrate allocation between shoots and roots and altered leaf morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号