共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in constitutive and inducible defences in pine species determining susceptibility to pinewood nematode 下载免费PDF全文
C. S. Pimentel E. V. Gonçalves P. N. Firmino T. Calvão L. Fonseca I. Abrantes O. Correia C. Máguas 《Plant pathology》2017,66(1):131-139
The pinewood nematode, Bursaphelenchus xylophilus, originating from North America (NA), is a major invasive pine pest in Eurasia. It was first detected in Portugal in 1999 associated with maritime pine, Pinus pinaster, and has been differently affecting the main local pine species, P. pinaster and P. pinea. Field studies and direct inoculation experiments in Pinus spp. seedlings, under controlled conditions, were performed to assess whether the differences in constitutive and inducible defences are determining the different susceptibility of pine host species to B. xylophilus. Host co‐evolution with the pathogen was also assessed, including the NA P. radiata, widely used in forestry in the northeast of the Iberian peninsula. Pine mortality in the field was positively related with the abundance of B. xylophilus, and concentration of phenolics and condensed tannins in pines. In the greenhouse assay, seedling tissues were analysed for constitutive investment in defences, as well as the potential inducibility of those defences as driven by B. xylophilus inoculation. Slower growing P. pinea presented higher levels of constitutive defences than faster growing P. pinaster, with only P. pinaster being affected by B. xylophilus. Furthermore, co‐evolution with the pathogen is important, with the fast‐growing NA P. radiata presenting an inducible and effective response to B. xylophilus. Results point to the importance of integrating data on pine life history traits, including growth rate, and production of constitutive and inducible defences, into predictive models for this invasive forest pest. 相似文献
2.
Microsatellite and mating type markers reveal unexpected patterns of genetic diversity in the pine root‐infecting fungus Grosmannia alacris 下载免费PDF全文
T. A. Duong Z. W. de Beer B. D. Wingfield L. G. Eckhardt M. J. Wingfield 《Plant pathology》2015,64(1):235-242
Grosmannia alacris is a fungus commonly associated with root‐infesting bark beetles occurring on Pinus spp. The fungus has been recorded in South Africa, the USA, France, Portugal and Spain and importantly, has been associated with pine root diseases in South Africa and the USA. Nothing is known regarding the population genetics or origin of G. alacris, although its association with root‐infesting beetles native to Europe suggests that it is an invasive alien in South Africa. In this study, microsatellite markers together with newly developed mating type markers were used to characterize a total of 170 isolates of G. alacris from South Africa and the USA. The results showed that the genotypic diversity of the South African population of G. alacris was very high when compared to the USA populations. Two mating types were also present in South African isolates and the MAT1‐1/MAT1‐2 ratio did not differ from 1:1 (χ2 = 1·39, P = 0·24). This suggests that sexual reproduction most probably occurs in the fungus in South Africa, although a sexual state has never been seen in nature. In contrast, the large collection of USA isolates harboured only a single mating type. The results suggest that multiple introductions, followed by random mating, have influenced the population structure in South Africa. In contrast, limited introductions of probably a single mating type (MAT1‐2) may best explain the clonality of USA populations. 相似文献
3.
4.
The Bursaphelenchus genus (Nematoda: Parasitaphelenchidae) comprises mostly wood‐inhabiting nematodes that feed on various tree‐colonizing fungi. One species of the genus, B. xylophilus, has been proven as an agent causing pine wilt disease (PWD). However, involvement of other Bursaphelenchus species in the PWD remains enigmatic. In the current paper, comparative molecular analysis is performed based on nuclear ribosomal DNA (rDNA) of B. vallesianus, a species that was recently isolated from pine trees (Pinus sylvestris) exhibiting wilting and declining symptoms in the Czech Republic. Sequencing of the nuclear‐encoded ITS1–5·8S–ITS2 rDNA region confirmed previous taxonomic conclusions based on morphology. Evolutionary reconstructions resulted in a phylogenetic tree, where the Czech isolate of B. vallesianus occupied a common clade together with other species belonging to the so‐called B. sexdentati group. Unexpectedly, comprehensive analysis of the sequence data revealed a genetic variation distinguishing the Czech isolate of B. vallesianus from all other species of the B. sexdentati group. This dissimilarity consists of the presence of a four nucleotide exchange found in the 5·8S rRNA‐coding gene. The newly identified genetic variation appears to affect the 5·8S rRNA folding, as deduced from secondary structure models. Additionally, it is shown that for the first time, to the authors’ knowledge, both bursaphelenchid internal transcribed spacers (ITS1 and ITS2) fold into the multibranched closed loops. While the ITS2 closed loop is formed with help of canonical 5·8S‐28S rRNA pairing, the ITS1 forms the thermodynamically stable closed loop with no support of flanking rRNA sequences. The current information on bursaphelenchid ITS rDNA sequence diversity and structure is further discussed. 相似文献
5.
Pine wilt disease (PWD), recently introduced into Europe, is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus and is a devastating illness that affects mainly pine trees. It is known that the PWN is capable of infecting other conifers; however, there is currently no information on which other plant species may be susceptible to PWD. In this study, the potential susceptibility of two common species of European forests, Picea abies and Cupressus lusitanica, to PWN was assessed through the monitoring of visual external symptoms, dimension and localization of the nematode population in stems, quantification of total chlorophyll, total soluble phenolics and lignin, at 7, 14, 21 and 28 days after inoculation. The degree of susceptibility was established through the comparison of symptoms with Pinus pinaster, a well‐known PWN host. Furthermore, the stem ultrastructure of P. abies, C. lusitanica and Pn. pinaster was analysed by scanning electron microscopy. The results suggest that P. abies and C. lusitanica are resistant to PWN, and that lignin biosynthesis in these species is affected at an early stage of the infestation. Nevertheless, P. abies seems to be a compatible host that could act as a repository for PWN. 相似文献
6.
Prevalence and diversity of plant parasitic nematodes in Northern Ireland grassland and cereals,and the influence of soils and rainfall 下载免费PDF全文
The prevalence and diversity of plant parasitic nematodes in Northern Ireland cereal and grassland was determined from 191 agricultural fields. A total of 18 nematode genera were detected, including economically important pests, Meloidogyne spp., Heterodera spp. and Pratylenchus spp., each of which were above economic damage thresholds in a significant proportion of the sites (92.4%, 70% and 28.6%, respectively). The detection of the root knot nematode, Meloidogyne minor (6% prevalence), was significant given its recent emergence across the turf grass sector and the prospect of M. minor becoming a common agricultural pest. Analyses of nematode prevalence and abundance highlighted significant associations with grass and cereals, soil types, soil grade (proxy for soil quality) and rainfall levels. Specifically, nematode populations varied between the two major soils (brown earths and gleys), while significant trends for increased nematode diversity and greater prevalence of both Meloidogyne and Pratylenchus with increasing rainfall were also observed. Multivariate analyses were performed to determine interactive effects and the relative importance of the factors affecting nematode populations. Notably, rainfall, in combination with either crop type or soil grade, had a significant effect on nematode abundance and diversity. The findings suggest significant changes in nematode populations have occurred over the last several decades and the possibility that these are linked to changing climate and cropping practices are discussed, as well as future concerns for plant parasitic nematode management. 相似文献
7.
A molecular‐based assay was employed to analyse and accurately identify various root‐knot nematodes (Meloidogyne spp.) parasitizing potatoes (Solanum tuberosum) in South Africa. Using the intergenic region (IGS) and the 28S D2–D3 expansion segments within the ribosomal DNA (rDNA), together with the region between the cytochrome oxidase subunit II (COII) and the 16S rRNA gene of the mtDNA, 78 composite potato tubers collected from seven major potato growing provinces were analysed and all Meloidogyne species present were identified. During this study, M. incognita, M. arenaria, M. javanica, M. hapla, M. chitwoodi and M. enterolobii were identified. The three tropical species M. javanica, M. incognita and M. arenaria were identified as the most prevalent species, occurring in almost every region sampled. Meloidogyne hapla and M. enterolobii occurred in Mpumalanga and KwaZulu‐Natal, respectively, while M. chitwoodi was isolated from two growers located within the Free State. Results presented here form part of the first comprehensive surveillance study of root‐knot nematodes to be carried out on potatoes in South Africa using a molecular‐based approach. The three genes were able to distinguish various Meloidogyne populations from one another, providing a reliable and robust method for future use in diagnostics within the potato industry for these phytoparasites. 相似文献
8.
Μ. Christoforou I. S. Pantelides L. Kanetis N. Ioannou D. Tsaltas 《Plant pathology》2014,63(5):1185-1192
Potato cyst nematodes (PCN), Globodera pallida and Globodera rostochiensis, are obligate parasites of solanaceous plants, causing severe losses in several potato growing areas throughout the world. To date, management of PCN is related to nematode population densities estimated as eggs per gram of soil, without considering the actual number of viable juveniles within the cysts. In classical nematology, the standard method to determine PCN viability is based on a staining assay, using Meldola's blue dye (MB) followed by microscopic visualization of MB‐treated nematodes. Although MB is considered to be reliable in staining embryonated juveniles within eggs and cysts, it is a time‐ and labour‐consuming assay. In the present work, a real‐time PCR (qPCR)‐based method combined with propidium monoazide (PMA), a photoreactive DNA‐intercalating dye, was developed for the quantification of viable PCN. This dye renders exposed DNA of dead cells unable to be amplified by PCR, and thus only DNA from viable/intact PCN juveniles is amplified and detected. The novelty of the present method lies in the simultaneous quantitative and qualitative estimation of viable PCN inocula using species‐specific primers and TaqMan probes. The PMA–qPCR viability method (v‐PCR) developed for the two Globodera species successfully discriminated dead from living specimens in heat‐treated samples and eggs in old and newly formed cysts. Interestingly, the detection of DNA from 34‐year‐old nematode cysts stored at room temperature was observed. In conclusion, the proposed v‐PCR method should prove to be very useful for the routine determination of PCN viability from field samples. 相似文献
9.
Metabarcoding and development of new real‐time specific assays reveal Phytophthora species diversity in holm oak forests in eastern Spain 下载免费PDF全文
The evergreen holm oaks (Quercus ilex subsp. ilex and Q. ilex subsp. ballota) are the most representative tree species in the Iberian peninsula and the main tree species in oak‐rangeland ecosystems (dehesas). Oak decline in western, central and southern parts of Spain has been associated with root rot caused by Phytophthora cinnamomi for decades. However, Phytophthora species such as P. quercina and P. psychrophila have recently been found associated with Quercus decline in eastern Spain where calcareous soils are predominant. Soil and root samples from two Quercus forests presenting decline symptoms in two different geographical areas in eastern Spain (Carrascar de la Font Roja and Vallivana) were analysed by amplicon pyrosequencing. Metabarcoding analysis showed Phytophthora species diversity, and revealed that an uncultured Phytophthora taxon, named provisionally Phytophthora taxon ballota, was the predominant species in both areas. In addition, a real‐time PCR assay, based on the pyrosequencing results, was developed for the detection of this uncultured Phytophthora taxon, and also for the detection of P. quercina. TaqMan assays were tested on soil and root samples, and on Phytophthora pure cultures. The new assays showed high specificity and were consistent with metabarcoding results. A new real‐time PCR protocol is proposed to evaluate the implication of different Phytophthora spp. in oak decline in eastern Spain. 相似文献
10.
Jenna M. Malone John G. Virtue Chris Williams Christopher Preston 《Weed Biology and Management》2017,17(1):17-28
The perennial grass, Arundo donax, has shown potential as a promising biomass crop. However, it has become invasive in a number of areas and declared a noxious weed in some jurisdictions, making proposals to grow A. donax for commercial use in Australia controversial. Evidence of asexual reproduction and the presence of a single genetic clone in Australia was investigated, as such characteristics would indicate a limited risk of escape and invasion. Using amplified fragment length polymorphism markers, the genetic diversity of 218 A. donax samples from across Australia was examined. The samples were found to separate into two distinct genetic groups, or clades. There was only a small amount of genetic diversity within a clade (0.9 and 1.5%). However, there was a larger difference between the clades of 19.8%, suggesting the presence of two distinct A. donax genotypes in Australia. The low level of genetic variation in Australian A. donax that was found in this study indicates that spread is essentially by vegetative means and suggests that if grown in areas where it is separated from natural water dispersal events, A. donax poses a low risk of becoming invasive. 相似文献
11.
12.
Survey of viruses infecting open‐field pepper crops in Côte d'Ivoire and diversity of Pepper veinal mottle virus and Cucumber mosaic virus 下载免费PDF全文
B. A. Bolou Bi B. Moury K. Abo F. Sorho M. Cherif G. Girardot N. P. Kouassi D. Kone 《Plant pathology》2018,67(6):1416-1425
The prevalence of viruses in pepper crops grown in open fields in the different agro‐ecological zones (AEZs) of Côte d'Ivoire was surveyed. Pepper veinal mottle virus (PVMV; genus Potyvirus) and Cucumber mosaic virus (CMV; genus Cucumovirus) were the most frequent viruses among those surveyed, while tobamoviruses (genus Tobamovirus) were detected at low frequency. PVMV showed a high heterogeneity across AEZs, which may be related to climatic, ecological or agronomical conditions, whereas CMV was more homogeneously distributed. The molecular diversity of CMV and PVMV were analysed from partial genome sequences. Despite the low number of CMV isolates characterized, two molecular groups were revealed, one corresponding to subgroup IA and the other to reassortants between subgroups IA and IB. RNAs 1 and 3 of the reassortants clustered with the IB subgroup of CMV isolates, whereas their RNA 2 clustered with the IA subgroup. Importantly, RNA 1 of CMV isolates of the IB subgroup has been shown to be responsible for adaptation to pepper resistance. The diversity of PVMV in the VPg‐ and coat protein‐coding regions revealed multiple clades. The central part of the VPg showed a high level of amino acid diversity and evidence of positive selection, which may be a signature of adaptation to plant recessive resistance. As a consequence, for efficient deployment of resistant pepper cultivars, it would be desirable to examine the occurrence of virulent isolates in the CMV or PVMV populations in Côte d'Ivoire and to follow their evolution as the resistance becomes more widely deployed. 相似文献
13.
Meloidogyne species pose a significant threat to crop production in Africa due to the losses they cause in a wide range of agricultural crops. The direct and indirect damage caused by various Meloidogyne species results in delayed maturity, toppling, reduced yields and quality of crop produce, high costs of production and therefore loss of income. In addition, emergence of resistance‐breaking Meloidogyne species has partly rendered various pest management programmes already in place ineffective, therefore putting food security of the continent at risk. It is likely that more losses may be experienced in the future due to the on‐going withdrawal of nematicides. To adequately address the threat of Meloidogyne species in Africa, an accurate assessment and understanding of the species present, genetic diversity, population structure, parasitism mechanisms and how each of these factors contribute to the overall threat posed by Meloidogyne species is important. Thus, the ability to accurately characterize and identify Meloidogyne species is crucial if the threat of Meloidogyne species to crop production in Africa is to be effectively tackled. This review discusses the use of traditional versus molecular‐based identification methods of Meloidogyne species and how accurate identification using a polyphasic approach can negate the eminent threat of root knot nematodes in crop production. The potential threat to Africa posed by highly damaging and resistance‐breaking populations of ‘emerging’ Meloidogyne species is also examined. 相似文献
14.
A. A. M. Al‐Shihi A. J. Khan S. Akhtar A. T. M. Lima F. M. Zerbini R. W. Briddon 《Plant pathology》2014,63(5):1177-1184
Whitefly‐transmitted begomoviruses are the most important limiting factor for tomato cultivation in Oman, particularly in the Al‐Batinah region, the major agricultural area of the country. Commercial farms in the Al‐Batinah region were surveyed during January–March 2013. Samples of tomato showing leaf curl disease symptoms typical of begomoviruses were collected and analysed. Full‐length sequences of five clones were shown to have relatively low percentage identity values to known begomoviruses, with the highest (88·6%) to isolates of Tomato leaf curl Oman virus (ToLCOMV), a begomovirus previously reported in Oman, indicating that these represent a newly identified species, for which the name Tomato leaf curl Barka virus (ToLCBrV) is proposed. Four isolates of ToLCBrV were found associated with Tomato leaf curl betasatellite (ToLCB). The five isolates of ToLCBrV characterized in this study were shown to be recombinants, with ToLCOMV as the major parent, and a fragment of Croton yellow vein virus (CrYVV) spanning the 3′ half of the replication‐associated protein. The significance of these findings is discussed. 相似文献
15.
M. Verbeek A. M. Dullemans P. J. van Bekkum R. A. A. van der Vlugt 《Plant pathology》2013,62(2):444-451
Lettuce big‐vein associated virus (LBVaV, genus Varicosavirus) was shown to be responsible for characteristic necrotic symptoms observed in combination with big‐vein symptoms in lettuce breeding lines when tested for their susceptibility to lettuce big‐vein disease (BVD) using viruliferous Olpidium virulentus spores in a nutrient film technique (NFT) system. Lettuce plants showing BVD are generally infected by two viruses: Mirafiori lettuce big‐vein virus (MiLBVV, genus Ophiovirus) and LBVaV. New mechanical inoculation methods were developed to separate the two viruses from each other and to transfer both viruses to indicator plants and lettuce. After mechanical inoculation onto lettuce plants MiLBVV induced vein‐band chlorosis, which is the characteristic symptom of BVD. LBVaV caused a syndrome of necrotic spots and rings which was also observed earlier in lettuce plants inoculated in the NFT system, resembling symptoms described for lettuce ring necrosis disease (RND). This observation is in contrast with the idea that LBVaV only causes latent infections in lettuce. De novo next‐generation sequencing demonstrated that LBVaV was the only pathogen present in a mechanically inoculated lettuce plant with symptoms, providing evidence that LBVaV was the causal agent of the observed necrotic syndrome and thus fulfilling Koch’s postulates for this virus. The necrotic syndrome caused by LBVaV in lettuce is referred to as LBVaV‐associated necrosis (LAN). 相似文献
16.
The establishment of invasive species is widely recognised as a pivotal issue in the preservation of biodiversity. Salvia reflexa, a species native to the south‐central United States and Mexico, has been widely introduced in Argentina, Australia, New Zealand and Japan. In China, the first population of this plant was found growing adjacent to a grain depot in Shahai village, Jianping County, Liaoning Province, on 25 July 2007. Since the grain depot imported foodstuffs from regions where the plant is native, we infer that S. reflexa was introduced into China via imported foodstuff in the early to mid‐2000s. Based on field observations, at least seven populations of this plant were observed in north‐east China. The plants displayed vigorous growth in midsummer and produced prolific seeds to overcome the cold environment in winter. Salvia reflexa occurred in both dense monocultures and in mixed stands with native plants. In order to validate a system for recognising and categorising non‐native plants in China, the Australian Weed Risk Assessment system was used to assess the invasiveness status of 19 exotic and 16 native plants in north‐east China. Salvia reflexa exhibited a high score of 10, suggesting it is a potentially pernicious alien invasive plant. Although the current distribution of S. reflexa is restricted to Liaoning province and thus far has limited impact on local environments, local regulatory authorities should pay close attention to this plant and take measures to stop its expansion. This is the first time that an invasive plant from the Lamiaceae (mint family) has been documented from cold environments in China. 相似文献
17.
Nursery‐linked plantation outbreaks and evidence for multiple introductions of the pitch canker pathogen Fusarium circinatum into South Africa 下载免费PDF全文
Q. C. Santana M. P. A. Coetzee B. D. Wingfield M. J. Wingfield E. T. Steenkamp 《Plant pathology》2016,65(3):357-368
In recent years, Pinus plantation forestry has been significantly hampered by outbreaks of pitch canker caused by the fungus Fusarium circinatum. This study investigated the role of Pinus host, geographic origin and reproductive mode in structuring the F. circinatum populations in plantations. For this purpose, 159 isolates originating from diseased plantation trees in the Western and Eastern Cape Provinces of South Africa were genotyped using 10 microsatellite markers. Analyses of these data revealed 30 multilocus haplotypes and that the populations were distinct based on geographic origin as well as host. However, shared haplotypes were observed between populations, showing that these populations are connected, possibly through the movement of haplotypes. A second aim was to determine whether the genetic variation found in these populations of the fungus could be attributed to outbreaks of the seedling disease caused by this pathogen in Pinus nurseries. To achieve this goal, an additional set of 43 isolates originating from pine seedling nurseries was genotyped and analysed. The results showed that the populations of F. circinatum in plantations most probably originated from the nursery outbreaks that occurred prior to the plantation outbreak. Inferences regarding reproductive mode further showed that sexual reproduction has little impact on the genetic makeup of the F. circinatum populations and that they primarily reproduce asexually. Overall, the results of this study showed that the F. circinatum diversity in South Africa has arisen due to multiple introductions of the pathogen and is not due to sexual reproduction. 相似文献
18.
Selection of nematodes by resistant plants has implications for local adaptation and cross‐virulence
S. Fournet M. C. Kerlan L. Renault J. P. Dantec C. Rouaux J. Montarry 《Plant pathology》2013,62(1):184-193
The variability of resistance durability in different potato genotypes harbouring the same resistance QTL but differing by their genetic background was explored. The indirect consequences of the resistance adaptation in terms of local (i.e. genotype‐specific) adaptation and cross‐virulence was also investigated. Following the virulence of the potato cyst nematode Globodera pallida in a long‐term experimental evolution protocol, the results showed that nematode populations were able to adapt to the resistance of four potato genotypes carrying the QTL GpaV from Solanum vernei, and that the plant genetic background has an impact upon the durability of resistance. The pattern of local adaptation observed here indicates that divergent selection has occurred during the experimental evolution performed from the same initial nematode population, and revealed a trade‐off between the adaptation to a resistant potato genotype and the adaptation to another resistant genotype differing in its genetic background. In terms of cross‐virulence between potato genotypes derived from different resistance sources (S. sparsipilum and S. spegazzinii), this study shows that the adaptation to resistance QTL GpaVvrn does not necessarily allow the adaptation to collinear GpaV loci. The results presented here could be useful for predicting evolution of nematode populations in natural agro‐ecosystems and identifying durable strategies for resistance deployment. 相似文献
19.
Occurrence and diversity of Tomato spotted wilt virus isolates breaking the Tsw resistance gene of Capsicum chinense in Yunnan,southwest China 下载免费PDF全文
L. Jiang Y. Huang L. Sun B. Wang M. Zhu J. Li C. Huang Y. Liu F. Li Y. Liu J. Dong Z. Zhang X. Tao 《Plant pathology》2017,66(6):980-989
Widely used resistant peppers (Capsicum spp.) bearing the Tsw locus triggered the rapid emergence of resistance‐breaking (RB) isolates of Tomato spotted wilt virus (TSWV) around the world. However, although TSWV‐induced diseases have rapidly increased in Yunnan, southwest China, in recent years, no information is available about the diversity of TSWV isolates in this region. In this study, the occurrence of natural TSWV RB variants among isolates collected in Yunnan is reported. Initially, a TSWV isolate from asparagus lettuce (TSWV‐LE) was collected in Yunnan in 2012. Surprisingly, this isolate of TSWV induced systemic necrosis on pepper carrying the Tsw resistance gene. Novel TSWV isolates, collected in 2015, included a tomato isolate (TSWV‐YN18) and a tobacco isolate (TSWV‐YN53) that also overcame Tsw‐mediated resistance. TSWV‐YN18 induced systemic ringspots, whereas TSWV‐YN53 caused systemic chlorotic mottling. Variations in the TSWV nonstructural (NSs) protein are the key determinants associated with Tsw resistance‐breaking isolates. It was found that TSWV‐LE NSs retained the hypersensitive response (HR) induction, whereas TSWV‐YN18 and TSWV‐YN53 NSs were unable to induce HR. However, the NSs of all three RB isolates suppressed RNA silencing. Sequence analysis of the NSs revealed that RB isolates of Yunnan have no amino acid mutation sites common to other previously reported RB isolates. However, two amino acids (F74 and K272) on TSWV‐LE NSs make it distinct from TSWV‐YN18 and TSWV‐YN53. The occurrence of different RB isolates and the failure of Tsw‐mediated resistance control pose serious threats to domestic pepper crops in southwest China. 相似文献
20.
Cultivar‐dependent partial resistance and associated defence mechanisms in wheat against Zymoseptoria tritici 下载免费PDF全文
M. E. Ors B. Randoux S. Selim A. Siah G. Couleaud C. Maumené K. Sahmer P. Halama P. Reignault 《Plant pathology》2018,67(3):561-572
Septoria tritici blotch caused by the fungus Zymoseptoria tritici is one of the most devastating foliar diseases of wheat. Knowledge regarding mechanisms involved in resistance against this disease is required to breed durable resistances. This study compared the expression of defence and pathogenicity determinants in three cultivars in semicontrolled culture conditions. The most susceptible cultivar, Alixan, presented higher necrosis and pycnidia density levels than Altigo, the most resistant one. In Premio, a moderately resistant cultivar, necrosis developed as in Alixan, while pycnidia developed as in Altigo. In noninfectious conditions, genes coding for PR1 (pr1), glucanase (gluc) and allene oxide synthase (aos) were constitutively expressed at a higher level in both Altigo and Premio than in Alixan, while chitinase2 (chit2), phenylalanine ammonia‐lyase (pal), peroxidase (pox2) and oxalate oxidase (oxo) were expressed at a higher level in Premio only. Except for aos, all genes were induced in Alixan during the first steps of the symptomless infection phase. Only pox2, oxo, gluc and pal genes in Altigo and pal, chs and lox genes in Premio were up‐regulated at some time points. Basal cultivar‐dependent resistance against Z. tritici could therefore be explained by various gene expression patterns rather than high expression levels of given genes. During the necrotrophic phase, Z. tritici cell wall‐degrading enzyme activity levels were lower in Altigo and Premio than in Alixan, and were associated more with pycnidia than with necrosis. Similar tissue colonization occurred in the three cultivars, suggesting an inhibition of the switch to the necrotrophic lifestyle in Altigo. 相似文献