首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Verticillium wilt of olive is best managed by resistant cultivars, but those currently available show incomplete resistance to the defoliating (D) Verticillium dahliae pathotype. Moreover, these cultivars do not satisfy consumers' demand for high yields and oil quality. Highly resistant rootstocks would be of paramount importance for production of agronomically adapted and commercially desirable olive cultivars in D V. dahliae‐infested soils. In this work, resistance to D V. dahliae in wild olive clones Ac‐13, Ac‐18, OutVert and StopVert was assessed by quantifying the fungal DNA along the stem using a highly sensitive real‐time quantitative polymerase chain reaction (qPCR) protocol and a stem colonization index (SCI) based on isolation of V. dahliae following artificial inoculations under conditions highly conducive for verticillium wilt. Ac‐13, Ac‐18, OutVert and StopVert showed a symptomless reaction to D V. dahliae. The mean amount of D V. dahliaeDNA quantified in stems of the four clones ranged from 3.64 to 28.89 pg/100 ng olive DNA, which was 249 to 1537 times lower than that in susceptible Picual olive. The reduction in the quantitative stem colonization of wild olive clones by D V. dahliae was also indicated by a sharp decrease in the SCI. Overall, there was a pattern of decreasing SCI in acropetal progression along the plant axis, as well as correlation between positive reisolation and quantification of pathogen DNA. The results of this research show that wild olive clones Ac‐13, Ac‐18, OutVert and StopVert have a valuable potential as rootstocks for the management of verticillium wilt in olive.  相似文献   

2.
Verticillium wilt (VW) in olive is best managed by an integrated disease management strategy, of which use of host resistance is a key element. The widespread occurrence of a highly virulent defoliating (D) Verticillium dahliae pathotype has jeopardized the use of commercial olive cultivars lacking sufficient resistance to this pathogen. However, the combined use of resistant wild olive rootstocks and Trichoderma spp. effective in the biocontrol of VW can improve the management of VW in olive. In vivo interactions between D V. dahliae and Trichoderma harzianum were studied in olive and wild olive plants displaying different degrees of resistance against this pathogen using confocal microscopy. This multitrophic system included wild olive clones Ac‐4 and Ac‐15, olive cv. Picual, and the fungal fluorescent transformants T. harzianum GFP22 and V. dahliae V138I‐YFP, the latter being obtained in this study. In planta observations indicated that V138I‐YFP colonizes the roots and stems of the olive and wild olive genotypes, and that GFP22 grows endophytically within the roots of them all. YFP fluorescence signal quantifications showed that: (i) the degree of root and stem colonization by the pathogen varied depending upon the susceptibility of the tested wild olive genotype, being higher in Ac‐15 than in Ac‐4 plants; and (ii) treatment with T. harzianum GFP22 reduced the extent of pathogen growth in both clones. Moreover, root colonization by strain GFP22 reduced the percentage of pathogen colonies recovered from stems of olive and wild olive plants.  相似文献   

3.
Biological control of plant diseases using soil amendments such as animal manure and composted materials can minimize organic waste and has been proposed as an effective strategy in crop protection. In this study, 35 organic amendments (OAs) and 16 compost mixtures were evaluated against Verticillium dahliae by assessing both the antagonistic effect on the mycelial growth of two representative isolates of V. dahliae and the effect on the reduction of microsclerotia viability of the pathogen in naturally infested soil. Eleven OAs and five compost mixtures showed a consistent inhibition effect in in vitro sensitivity tests, with solid olive‐oil waste compost one of the most effective. Therefore, a bioassay with olive plants was conducted to evaluate the suppressive effect against V. dahliae of these selected OAs and compost mixtures. Significant reduction in the severity of the symptoms of V. dahliae indicates the potential use of grape marc compost (100% disease severity reduction) and solid olive‐oil waste, combined with other OAs. Microorganism mixtures and dairy waste OAs had a potential suppressive effect when they were combined with compost, showing a 73% and 63% disease severity reduction, respectively. A mixture of agro‐industrial waste with other biological control agents is a promising strategy against verticillium wilt of olive. To the authors' knowledge, this is the first report on the effectiveness of compost extracts (compost teas) on the inhibition of natural microsclerotia of V. dahliae, and also on verticillium wilt suppression in olive with solid olive‐oil waste.  相似文献   

4.
Fifty-seven wild olive accessions collected from the Mediterranean basin were screened under greenhouse conditions for their resistance to verticillium wilt. Plants were root-dip inoculated. One defoliating and one non-defoliating isolate of Verticillium dahliae , both obtained from diseased plants in southern Italy, were used. Plants of the highly susceptible cv. Cima di Mola, frequently used as a rootstock in Apulia, were also included in this test. Disease reactions were evaluated on the basis of external symptoms, vascular browning and by calculating areas under disease progress curves ( audpc ). On the basis of audpc values and external symptom severity, accessions were grouped into four phenotypic groups: highly resistant, moderately resistant, susceptible and highly susceptible. Three accessions showed high resistance to both V. dahliae pathotypes. Forty resistant plants were selected from accessions that had shown the highest levels of resistance. Clones were obtained from each of these plants by in vitro micropropagation for further testing. Ten clones showed the resistance characteristics of their original mother plants, while others suffered greater levels of disease severity than their mother plants. Several new olive rootstocks were identified that were highly resistant to verticillium wilt and could be included in breeding programmes for resistance of olive to V. dahliae .  相似文献   

5.
Eight strawberry genotypes known to differ in susceptibility to verticillium wilt were inoculated with eight isolates of Verticillium dahliae originally obtained from six different host crops: strawberry, potato, watermelon, mint, eggplant (aubergine) and cauliflower. Inoculation experiments were conducted in replicated field trials during two successive years. Known susceptible genotypes developed typical symptoms of verticillium wilt in both years. Although isolates manifested a wide range of aggressiveness, differences were significant only on the most susceptible strawberry genotype. Two isolates originating from strawberry were among the most aggressive of the eight tested, whereas the least aggressive isolate was obtained from cauliflower. Six strawberry genotypes that were regarded as resistant to verticillium wilt based on previous tests were also resistant in the present study, regardless of the isolate used. Overall, strawberry genotypes represented the largest source of variation in these experiments, with variance components approximately 10-fold greater than those associated with either isolate or the isolate × genotype interaction. The results suggest it should be possible to develop resistance to verticillium wilt in strawberry that is broadly effective against isolates of diverse host origin.  相似文献   

6.
Understanding pathogenic variation in plant pathogen populations is key for the development and use of host resistance for managing verticillium wilt diseases. A highly virulent defoliating (D) pathotype in Verticillium dahliae has previously been shown to occur only in one clonal lineage (lineage 1A). By contrast, no clear association has yet been shown for race 1 with clonal lineages. Race 1 carries the effector gene Ave1 and is avirulent on hosts that carry resistance gene Ve1 or its homologues. The hypothesis tested was that race 1 arose once in a single clonal lineage, which might be expected if V. dahliae acquired Ave1 by horizontal gene transfer from plants, as hypothesized previously. In a diverse sample of 195 V. dahliae isolates from nine clonal lineages, all race 1 isolates were present only in lineage 2A. Conversely, all lineage 2A isolates displayed the race 1 phenotype. Moreover, 900‐bp nucleotide sequences from Ave1 were identical among 27 lineage 2A isolates and identical to sequences from other V. dahliae race 1 isolates in GenBank. The finding of race 1 in a single clonal lineage, with identical Ave1 sequences, is consistent with the hypothesis that race 1 arose once in V. dahliae. Molecular markers and virulence assays also confirmed the well‐established finding that the D pathotype is found only in lineage 1A. Pathogenicity assays indicated that cotton and olive isolates of the D pathotype (lineage 1A) were highly virulent on cotton and olive, but had low virulence on tomato.  相似文献   

7.
Eleven strawberry (Fragaria × ananassa) genotypes from the University of California breeding programme known to be resistant to verticillium wilt were inoculated with Verticillium dahliae. Individual plants were given a resistance score based on the severity of visual symptoms, and the extent of colonization was quantified as the percentage of petioles not colonized by the pathogen. Both resistance scores and the percentage of pathogen‐free petioles decreased significantly from May to June (P < 0·05) during each of two growing seasons, indicating a progression of both colonization and symptom expression. Even the most resistant genotypes had plants with some infected petioles, and manifested some symptoms of verticillium wilt. Significant (P < 0·05) genotypic variance was detected for the percentage of pathogen‐free petioles, but not for resistance score. The percentage of pathogen‐free petioles had a strongly positive genotypic correlation (rg = 0·77, P < 0·01) with resistance score, indicating that about 60% of the genotypic variation for visual symptoms in this set of resistant genotypes was explained by the extent of colonization of individual plants by V. dahliae. Conversely, the genotypic correlation between the percentage of pathogen‐free petioles and the resistance score for plants sampled in May (rg = 0·74, P < 0·01) was smaller than that for plants harvested in July (rg = 0·93, P < 0·01). Together, these results suggest that the overall performance of strawberry genotypes in the presence of V. dahliae can be enhanced by both resistance and tolerance, but that tolerance may be less stable over the course of a season. Distinguishing between these two mechanisms may require evaluations that supplement visual assessments of resistance.  相似文献   

8.
Verticillium wilt caused by Verticillium dahliae is one of the most threatening diseases of olive worldwide. For pre‐planting and post‐planting control of verticillium wilt in olive trees, availability of a rapid, reliable and non‐destructive method for detection of V. dahliae is essential. For such a method, suitable and easily performed sampling and efficient processing of samples for extraction of DNA are necessary. In this study, the suitability of young twig and leaf samples of olive trees, which are easy to collect and extract DNA from, were assessed for the detection of V. dahliae in routine procedures. The lower (about 50 cm from the tip) and top parts (about 5 cm from the tip) of twigs, as well as leaves from infected olive trees were screened for V. dahliae infection and distribution using real‐time PCR. The biomass of V. dahliae detected in individual twigs was highly variable, but there was no significant difference between mean quantities of V. dahliae DNA detected in top and lower parts of twigs. Furthermore, it was demonstrated that analysis of combined samples containing DNA extracted from five twigs of an infected tree accurately detected the presence of the pathogen. Similarly, testing combined samples of 5–10 leaves enabled reliable detection of the pathogen in an infected tree. The development of this assay enables reliable detection of V. dahliae in infected olive trees that can aid in management decisions for the implementation of integrated disease management.  相似文献   

9.
Verticillium dahliae causes severe yield reductions in a variety of important annual crops worldwide. Control of verticillium wilt has relied on soil fumigation; however, the use of the main soil fumigant, methyl bromide, has been banned in the European Union since 2010, creating a demand for novel crop protectants. As such, the use of biocontrol agents (BCAs) is an appealing management strategy. Prerequisites for the development of a successful BCA are an understanding of the modes of action of the antagonist, its ecological fitness and an efficient and economically feasible delivery system. Therefore, two BCAs (Paenibacillus alvei K165 or the nonpathogenic Fusarium oxysporum F2) and two release strategies (seed coating or amendment of the transplant soil plug) were assessed against verticillium wilt of aubergine (eggplant). Mixing the transplant soil plug with K165 or F2, at a rate of 10 and 20% (v/v), respectively, reduced verticillium wilt symptom development. Furthermore, a positive correlation was revealed between the release strategy and the BCA rhizosphere population. Correlation analysis also showed that disease severity was negatively correlated to the rhizosphere size of the BCA population. In addition, qPCR analysis showed that both BCAs induced the expression of the pathogenesis‐related (PR) proteins PR1 and PR4 in the stem of aubergines before and after inoculation with V. dahliae in a manner that suggests a link with the rhizosphere size of the BCA population.  相似文献   

10.
Castanea sativa is susceptible to Phytophthora spp., a serious root pathogen causing ink disease, while C. crenata and C. mollissima show resistance to infection. Interspecific controlled crosses were established for introgression of resistance genes from the resistant species into the susceptible C. sativa, and two mapping populations were created. Phytophthora cinnamomi resistance of each progeny was evaluated by root and excised shoot inoculation tests. The number of days of survival after root inoculation was the best discriminator of resistance to P. cinnamomi while the percentage of shoots with internal lesions was the symptom most associated with survival. The lesion progression rate in the excised shoot inoculation test was strongly and negatively correlated with survival in the root inoculation test. The excised shoot inoculation test appears to be a reliable approach for screening the resistance of chestnut genotypes to P. cinnamomi. Strong genetic correlations were obtained between survival and ink disease symptoms and among symptoms, indicating that common or linked genes might influence resistance to P. cinnamomi. The most resistant genotypes selected from this study will be tested for other commercial variables, such as ease of vegetative propagation and stock–scion compatibility.  相似文献   

11.
Since 2006, verticillium wilt of olive induced by Verticillium dahliae has caused considerable economic losses in olive orchards in Tunisia. The genetic structure of V. dahliae isolates collected from different olive growing regions was investigated using virulence tests, vegetative compatibility grouping (VCG) and amplified fragment length polymorphism (AFLP) analyses. In total, 42 isolates of V. dahliae from diseased olive trees were tested. Cluster analysis and principal coordinate analysis revealed that geographic origin was the main factor determining the genetic structure of V. dahliae populations and both methods indicated a genetic separation between the central and coastal isolates. Isolates were divided into two major groups: the AFLP‐I group included all isolates from Sidi Bouzid, Kairouan, Kasserine and Sfax (centre of the country) and the AFLP‐II group included isolates from Monastir, Zaghouane, Sousse, Mahdia (coastal region), and two isolates from Sfax. Analysis of the molecular variance (amova ) indicated a significant level of genetic differentiation among (76%) and within (23%) the two populations. Analyses of both the defoliating (D) and non‐defoliating (ND) pathotypes and VCG markers indicated that most of the isolates belong to VCG 2A and 4B/ND pathotype. The disease severity was highly variable among the isolates tested (< 0·05) with no evidence of association between aggressiveness and geographical origin of the isolates. Overall, results of this study revealed a clear association between the genetic diversity of the isolates and their geographic origin, but not between genetic diversity and virulence patterns.  相似文献   

12.
Bacterial wilt caused by Ralstonia solanacearum is a serious disease of peanut (Arachis hypogaea) in China. However, the molecular basis of peanut resistance to R. solanacearum is poorly understood. Arachis duranensis, a wild diploid species of the genus Arachis, has been proven to be resistant to bacterial wilt, and thus holds valuable potential for understanding the mechanism of resistance to bacterial wilt and genetic improvement of peanut disease resistance. Here, suppression subtractive hybridization (SSH) and macroarray hybridization were employed to detect differentially expressed genes (DEGs) in the roots of A. duranensis after Rsolanacearum inoculation. A total of 317 unique genes were obtained, 265 of which had homologues and functional annotations. KEGG analysis revealed that a large proportion of these unigenes are mainly involved in the biosynthesis of phytoalexins, particularly in the biosynthetic pathways of terpenoids and flavonoids. Subsequent real‐time polymerase chain reaction (PCR) analysis showed that the terpenoid and flavonoid synthesis‐related genes showed higher expression levels in a resistant genotype of A. duranensis than in a susceptible genotype, indicating that the terpenoids and flavonoids probably played a fundamental role in the resistance of Aduranensis to R. solanacearum. This study provides an overview of the gene expression profile in the roots of wild Arachis species in response to R. solanacearum infection. Moreover, the related candidate genes are also valuable for the further study of the molecular mechanisms of resistance to R. solanacearum.  相似文献   

13.
E. C. TJAMOS 《EPPO Bulletin》1993,23(3):505-512
Control of verticillium wilt of olive currently depends on preventive measures. Since systemic fungicides are unable to prevent or control the disease, its control should primarily be based on cultural methods, including irrigation systems which restrict dissemination of Verticillium dahliae propagules by irrigation water and avoidance of intercropping with hosts susceptible to V. dahliae. Since leaves from affected olive trees contribute, through formation of microsclerotia, to the inoculum in the soil, pruning should be practised prior to branch defoliation. As for resistant olive rootstocks or cultivars, promising verticillium-wilt resistance has been found in two rootstocks selected in California (US). However, these have to be tested under local conditions before they can be released to Mediterranean growers, while further search for other resistant rootstocks is needed. Soil solarization applied to individual diseased trees in established olive groves could substantially contribute to recovery or long-lasting symptom remission in the treated trees. This effect is mainly attributed to the decrease or eradication of V. dahliae microsclerotia in the treated soil but also to heat-tolerant fungal antagonists of the pathogen. Using herbicides to control weeds, and limiting soil rotovation, can restrict symptom development. Biological control can also be considered as a promising trend in controlling the disease by searching, testing and exploiting potential fungal or bacterial antagonists.  相似文献   

14.
The grey mould disease caused by Botrytis cinerea leads to substantial economic losses in strawberry production all over the world. Control of the disease requires an extensive amount of fungicide that is applied in varying complexes because the pathogen easily develops resistance against the active compounds. Planting of resistant cultivars seems to be a promising alternative for fruit growers, but there are currently no cultivars available combining resistance to B. cinerea with attractive horticultural traits. Breeding of new cultivars requires the effective identification of resistant strawberry genotypes; therefore the current study was aimed at the evaluation of strawberry genetic resources under controlled conditions by establishing an artificial inoculation assay. The method presented in this study is an artificial inoculation of ripe fruits with a defined spore suspension under laboratory conditions. The results show that this assay is fast and simple and leads to reproducible results that correlate with field observations. Over 3 years a total of 107 strawberry genotypes of the German National Fruit Genebank at the JKI in Dresden‐Pillnitz were evaluated. Five partly resistant genotypes, cultivars Diana, Joerica and Kimberly, and Fragaria virginiana ‘Wildmare Creek’ and F. vesca subsp. bracteata, were identified with mean disease levels of <20% at 6 days post‐inoculation. The obtained results are discussed with regard to future breeding activities.  相似文献   

15.
The angular leaf spot disease caused by Xanthomonas fragariae is an important plant disease with major impact for the strawberry nursery industry. Currently there is no plant protection product available for controlling the disease effectively. Planting of resistant cultivars seems to be promising, but all commercially used cultivars are susceptible and no donor with a high level of resistance has yet been found. Therefore, a total of 145 genotypes from the Fruit Genebank Dresden (Germany) were evaluated for resistance to X. fragariae by artificial inoculation. Six genotypes were classified as partly resistant, out of which only two (US4808 and US4809) are octoploid. Fragaria vesca f. alba, Fragaria nilgerrensis ‘Yunnan’, F. vesca ‘Illa Martin’ and F. moschata ‘Bauwens’ were also classified as partially resistant, but they are only of limited use for breeding because of their variable ploidy level. Fully resistant genotypes could not be detected. The systemic dispersal of the bacteria in strawberry plants was investigated after inoculation of leaves with X. fragariae strain XF3.9.C and the GFP‐tagged strain XF3.9.C(pKAN). The systemic spread was evaluated after 3, 7, 14 and 28 days post‐inoculation (dpi) by nested PCR and fluorescence microscopy. After 3 dpi, X. fragariae could be found in all tissues tested including the inoculated leaf, its petiole, the rhizome, the heart bud up to the youngest fully expanded leaf and its petiole. The systemic spread was also detectable in partially resistant genotypes.  相似文献   

16.
The time course of accumulation of two phytoalexins, the terpenoid rishitin and the polyacetylene cis-tetradeca-6-ene-1,3-diyne-5,8-diol, was determined in near-isogenic susceptible and resistant tomato lines inoculated with either Verticillium albo-atrum or Fusarium oxysporum f.sp. lycopersici.Cultivars containing the Ve gene for verticillium wilt resistance accumulated phytoalexins at a rate similar to that in susceptible plants following stem inoculation with V. albo-atrum. Higher amounts of phytoalexins were isolated from susceptible than from resistant plants at 11 days after inoculation. Inoculum concentrations of 105, 106, 107 and 108 conidia ml−1 had no differential effect on phytoalexin accumulation at 3 days after inoculation. Also, no differences were observed between fungal growth in susceptible and resistant cultivars during that period.A cultivar containing the I-1 gene for fusarium wilt resistance contained more rishitin than did susceptible plants at 2 and 3 days after inoculation with 107 conidia of F. oxysporum f.sp. lycopersici ml−1, but at 7 and 11 days after inoculation more rishitin had accumulated in the susceptible plants.No difference was observed between the rate of accumulation of phytoalexin in stem segments from resistant and susceptible plants inoculated by vacuum-infiltration.To estimate the concentration of phytoalexins in the xylem fluid, sap was expressed from vascular tissue and amounts of phytoalexins were determined in the sap and in the expressed tissue. Less than 5% of the phytoalexins present in stem segments was recovered from the sap, indicating that their concentration in the xylem fluid may be relatively low.The role of phytoalexins in resistance to verticillium and fusarium wilt is discussed.  相似文献   

17.
Dutch elm disease (DED) is a vascular wilt disease that causes the occlusion and cavitation of xylem vessels. Therefore, it is hypothesized that those elms that are less vulnerable to cavitation by drought might be more resistant to DED. To test this hypothesis, the relationship between xylem vulnerability to cavitation and susceptibility to DED was examined in progenies of crosses between susceptible and resistant individuals of Ulmus minor. Hydraulic conductivity and xylem vulnerability curves were evaluated and anatomical features such as vessel size, length and grouping were measured. Next, elms were inoculated with Ophiostoma novo‐ulmi, the cause of DED, and pre‐dawn and midday water potentials, stomatal conductance and wilting percentages were assessed. Progenies of R × R crosses showed significantly lower mean wilting percentages (30–50%) than the progeny of S × S crosses (75%). Fifty percent conductivity loss was reached at c. ?1 MPa, pointing out a high vulnerability of this species to drought‐induced cavitation. Crown wilting percentage as a result of inoculation and xylem vulnerability to cavitation by water stress did not show any significant correlation. Nevertheless, significant differences in theoretical hydraulic conductivity and vessel size parameters (diameter, length and size distributions) were found among the tested progenies. Susceptible trees had significantly wider and longer vessels. Xylem structure of resistant elms seems to restrict pathogen spread rather than prevent cavitation.  相似文献   

18.
In the present study, we evaluated the susceptibility of different commercial olive cultivars to verticillium wilt. Two Verticillium dahliae isolates, obtained from olive and artichoke, were used in pathogenicity tests. Two-year-old rooted cuttings were inoculated using either the root-dip or the stem-wounding method. The results were similar with both inoculation methods. Cvs Carolea and Cipressino proved to be moderately susceptible whereas Cassanese, Nocellara del Belice, Nocellara Etnea, Tonda Iblea and Uovo di Piccione were very susceptible. The response of cv. Coratina varied from susceptibility to moderate susceptibility.  相似文献   

19.
In plant–pathogen interactions, strong structural and biochemical barriers may induce a cascade of reactions in planta, leading to host resistance. The kinetic speed and amplitudes of these defence mechanisms may discriminate resistance from susceptibility to necrotrophic fungi. The infection processes of two Ascochyta lentis isolates (FT13037 and F13082) on the recently identified ascochyta blight (AB)‐resistant Lens orientalis genotype ILWL180 and two cultivated genotypes, ILL7537 (resistant) and ILL6002 (susceptible), were assessed. Using histopathological methods, significant differences in early behaviour of the isolates and the subsequent differential defence responses of the hosts were revealed. Irrespective of virulence, both isolates had significantly lower germination, shorter germ tubes and delayed appressorium formation on the resistant genotypes (ILWL180 and ILL7537) compared to the susceptible genotype (ILL6002); furthermore, these were more pronounced on genotype ILWL180 than on genotype ILL7537. Subsequently, host perception of pathogen entry led to the faster accumulation and notably higher amounts of reactive oxygen species and phenolic compounds at the penetration sites of the resistance genotypes ILWL180 and ILL7537. In contrast, genotype ILL6002 responded slowly to the A. lentis infection and reaffirmed previous gross disease symptomology reports as highly susceptible. Interestingly, quantification of H2O2 was markedly higher in ILWL180 particularly at 12 h post‐inoculation compared to ILL7537, potentially indicative of its superior resistance capability. Faster recognition of A. lentis is likely to be a major contribution to the superior resistance observed in genotype ILWL180 to the highly aggressive isolates of A. lentis assessed.  相似文献   

20.
The variability of resistance durability in different potato genotypes harbouring the same resistance QTL but differing by their genetic background was explored. The indirect consequences of the resistance adaptation in terms of local (i.e. genotype‐specific) adaptation and cross‐virulence was also investigated. Following the virulence of the potato cyst nematode Globodera pallida in a long‐term experimental evolution protocol, the results showed that nematode populations were able to adapt to the resistance of four potato genotypes carrying the QTL GpaV from Solanum vernei, and that the plant genetic background has an impact upon the durability of resistance. The pattern of local adaptation observed here indicates that divergent selection has occurred during the experimental evolution performed from the same initial nematode population, and revealed a trade‐off between the adaptation to a resistant potato genotype and the adaptation to another resistant genotype differing in its genetic background. In terms of cross‐virulence between potato genotypes derived from different resistance sources (S. sparsipilum and S. spegazzinii), this study shows that the adaptation to resistance QTL GpaVvrn does not necessarily allow the adaptation to collinear GpaV loci. The results presented here could be useful for predicting evolution of nematode populations in natural agro‐ecosystems and identifying durable strategies for resistance deployment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号