首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Unusually long reverberations were recorded from two lunar impacts by a seismic station installed on the lunar surface by the Apollo 12 astronauts. Seismic data from these impacts suggest that the lunar mare in the region of the Apollo 12 landing site consists of material with very low seismic velocities near the surface, with velocity increasing with depth to 5 to 6 kilometers per second (for compressional waves) at a depth of 20 kilometers. Absorption of seismic waves in this structure is extremely low relative to typical continental crustal materials on earth. It is unlikely that a major boundary similar to the crustmantle interface on earth exists in the outer 20 kilometers of the moon. A combination of dispersion and scattering of surface waves probably explains the lunar seismic reverberation. Scattering of these waves implies the presence of heterogeneity within the outer zone of the mare on a scale of from several hundred meters (or less) to several kilometers. Seismic signals from 160 events of natural origin have been recorded during the first 7 months of operation of the Apollo 12 seismic station. At least 26 of the natural events are small moonquakes. Many of the natural events are thought to be meteoroid impacts.  相似文献   

2.
Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface for hundreds of millions of years. Future work will require sampling distinctly different regions of the moon in order to provide data concerning other important lunar events, such as the time of formation of the highland regions and of the mare basins, and of the extent to which lunar volcanism has persisted subsequent to the first third of lunar history. This work will require a sufficient number of Apollo landings, and any further cancellation of Apollo missions will jeopardize this unique opportunity to study the development of a planetary body from its beginning. Such a study is fundamental to our understanding of the earth and other planets.  相似文献   

3.
Seismic signals recorded from impacts of missiles at the White Sands Missile Range are radically different from the signal recorded from the Apollo 12 lunar module impact. This implies that lunar structure to depths of at least 10 to 20 kilometers is quite different from the typical structure of the earth's crust. Results obtained from this study can be used to predict seismic wave amplitudes from future man-made lunar impacts. Seismic energy and crater dimensions from impacts are compared with measurements from chemical explosions.  相似文献   

4.
Apollo 11 and Apollo 12 lunar rock suites differ in their potassium-uranium abundance systematics. This difference indicates that relatively little exchange of regolith material has occurred between Mare Tranquillitatis and Oceanus Procellarum. The two suites appear to have been derived from materials of identical potassium and uranium content. It appears unlikely that bulk lunar material has the ratio of potassium to uranium found in chondrites. However, systematic differences in the potassium-uranium ratio between Apollo samples and crustal rocks of the earth do not preclude a common potassium-uranium ratio for bulk earth and lunar material.  相似文献   

5.
The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.  相似文献   

6.
Gold T  Soter S 《Science (New York, N.Y.)》1970,169(3950):1071-1075
The seismic signal caused by the Apollo 12 lunar module is interpreted in terms of propagation between source and receiver through a layer of powder in which sound velocity increases with depth. This increase, which is due to compaction, extends over several kilometers and leads to a concentration of seismic waves toward the surface. Computer simulations with the use of ray acoustics and on the assumption of a randomly undulating lunar surface approximate well the observed signal. Seismic amplitudes are greatly enhanced in such a medium compared to solid rock, so that the observed signal requires less power to be transmitted than previously estimated.  相似文献   

7.
A chemically distinct group of lunar rocks with the trace element characteristics of basaltic lunar rocks is apparently ubiquitous on the lunar surface. Such rocks have been found at the Apollo 15, Apollo 16, and Luna 20 landing sites. They may be derived from the plains-forming material that has been designated Cayley Formation.  相似文献   

8.
Concentrations of potassium, rubidium, strontium, barium, and rareearth elements have been determined by mass spectrometric isotope dilution for eight Apollo 11 lunar samples and for some separated phases. Potassiumn and ritbidium are at chondritic levels, strontium at 15 times, and barium and rare earths at 30 to 100 times chondritic levels. There are trace element similarities between the lunar samples and basaltic achondrites, terrestrial dredge basalts and the bulk earth. The trace element data appear to be consistent with these lunar samples being the result of limited partial fusion of some material similar to the brecciated eucrite meteorites.  相似文献   

9.
Data on terrestrial eruptions of pyroclastic material and ballistic considerations suggest that in the lunar environment (vacuum and reduced gravity) low-rimmed pyroclastic rings are formed rather than the high-rimmed cinder cones so abundant on the earth. Dark blanketing deposits in the Taurus-Littrow region (Apollo 17 landing area) are interpreted as being at least partly composed of lunar counterparts of terrestrial cinder cones.  相似文献   

10.
Moonquakes     
Although the average rate of seismic energy release within the moon appears to be far below that of the earth, over 100 events believed to be moonquakes have been recorded by the two seismic stations installed on the lunar surface during Apollo missions 12 and 14. With few exceptions, the moonquakes occur at monthly intervals near times of perigee and apogee and show correlations with the longer-term (7-month) lunar gravity variations. The repeating moonquakes are believed to occur at not less than 10 different locations. However, a single focal zone accounts for 80 percent of the total seismic energy detected. This active zone appears to be 600 kilometers south-southwest of the Apollo 12 and 14 sites and deep within the moon. Each focal zone must be small (less than 10 kilometers in linear dimension) and fixed in location over a 14-month period. Cumulative strain at each location is inferred. Thus, the moonquakes appear to be releasing internal strain of unknown origin, the release being triggered by tidal stresses.  相似文献   

11.
The theories of Harold C. Urey (1893-1981) on the origin of the moon are discussed in relation to earlier ideas, especially George Howard Darwin's fission hypothesis. Urey's espousal of the idea that the moon had been captured by the earth and has preserved information about the earliest history of the solar system led him to advocate a manned lunar landing. Results from the Apollo missions, in particular the deficiency of siderophile elements in the lunar crust, led him to abandon the capture selenogony and tentatively adopt the fission hypothesis.  相似文献   

12.
Petrographic and electron-microprobe studies combined with high pressure-temperature investigations of phase relationships in average Apollo 11 basalt and possible source material show that the lower parts of maria may be composed of eclogite (density 3.74 grams per cubic centimeter), thus explaining the existence of mascons. The Apollo 11 basalt was probably formed at depths of 200 to 400 kilometers by a small degree of partial melting from pyroxenitic source material [FeO/(FeO + MgO) = 0.25, A1(2)O(3) 4 percent, CaO 3 percent]. This composition may be representative of the lunar interior and yields the observed mean lunar density and moment of inertia. Present data are in conflict with fission, binary planet, and capture hypotheses of lunar origin but are consistent with Ringwood's (1966) precipitation hypothesis.  相似文献   

13.
Comparison of values of the specific radioactivities reported for lunar surface material from the Apollo 11 mission with analogous data for stone meteorites suggests that energetic particles from the solar flare of 12 April 1969 may have produced most of the cobalt-56 observed.  相似文献   

14.
Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 x-ray fluorescence data. The data quality improvement is amply demonstrated by (i) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering and (ii) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.  相似文献   

15.
One-atmosphere melting data show that Apollo 11 samples are near cotectic. Melting relations at pressures up to 35 kilobars show that clinopyroxenite or amphibole peridotite are possible lunar interiors. Mascons cannot be eclogite; they may be ilmenite accumulate. Hot lunar surface material will boil off alkalis.  相似文献   

16.
Ultrathin amorphous coatings on lunar dust grains   总被引:1,自引:0,他引:1  
UItrathin amorphous coatings have been observed by high-voltage electron microscopy on micrometer-sized dust grains from the Apollo 11, Apollo 12, Apollo 14, and Luna 16 missions. Calibration experiments show that these coatings result from an "ancient" implantation of solar wind ions in the grains. This phenomenon has interdisciplinary applications concerning the past activity of the sun, the lunar albedo, the ancient lunar atmosphere and magnetic field, the carbon content of lunar soils, and lunar dynamic processes.  相似文献   

17.
Several Apollo 16 breccias, including one containing goethite, are strikingly enriched in volatile elements such as bromine, cadmium, germanium, antimony, thallium, and zinc. Similar but smaller enrichments are found in all highland soils. It appears that volcanic processes took place in the lunar highlands, involving the release of volatiles including water. The lunar thallium/uranium ratio is 2 x 10-(4) of the cosmic ratio, which suggests that the moon's original water content could not have exceeded the equivalent of a layer 22 meters deep. The cataclastic anorthosites at the Apollo 16 site may represent deep ejecta from the Nectaris basin.  相似文献   

18.
Rock fragments consisting of orthopyroxene-calcic plagioclase assemblages appear to be more common in Apollo 12 soil samples than in the breccias or soil from Apollo 11 and are mineralogically and chemically different from any of the crystalline rocks returned by either Apollo 11 or Apollo 12. Compositionally, these fragments are orthopyroxenites and feldspathic orthopyroxenites. They are probably not fragments of meteorites; other considerations point to a near-surface lunar origin.  相似文献   

19.
Although only part of the information from the x-ray fluorescence geochemical experiment has been analyzed, it is clear that the experiment was highly successful. Significant compositional differences among and possibly within the maria and highlands have been detected. When viewed in the light of analyzed lunar rocks and soil samples, and the data from other lunar orbital experiments (in particular, the Apollo 15 gamma-ray spectroscopy experiment), the results indicate the existence of a differential lunar highland crust, probably feldspathic. This crust appears to be related to the plagioclase-rich materials previously found in the samples from Apollo 11, Apollo 12, Apollo 14, Apollo 15, and Luna 16.  相似文献   

20.
Plastic pellets were fired into sand targets at a launch angle of 4 degrees and a velocity of 1.68 kilometers per second, the conditions of the Apollo 12 lunar module impact. Shallow elliptical or doublet craters were formed, similar to certain lunar craters. Analysis of the ejecta suggests (i) that lunar module debris skipped and, with some crater ejecta, reimpacted far downrange, but (ii) this ballistic rain does not account for the anomalous seismic signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号