首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A new polymorph of carbon, hexagonal diamond, has been discovered in the Canyon Diablo and Goalpara meteorites. This phase had been synthesized recently under specific high-pressure conditions in the laboratory. Our results: provide strong evidence that diamonds found in these meteorites were produced by intense shock pressures acting on crystalline graphite inclusions present within the meteorite before impact, rather than by disintegration of larger, statically grown diamonds, as some theories propose.  相似文献   

2.
Fine-grained diamonds, the most abundant form of circumstellar dust isolated from primitive meteorites, have elemental and isotopic characteristics that are dependent on the host meteorite type. Carbon isotopic compositions vary from -32 to -38 per mil, and nitrogen associated with the diamond changes in overall abundance by over a factor of four from 0.2 to 0.9 weight percent, between ordinary and CM2-type chondrites. Although the ratio of carbon to nitrogen evolves in a distinctive way during combustion of diamond separates, metamorphic degassing of nitrogen is not the main cause of the differences in nitrogen content. The data suggest that intrinsic differences must have been inherited by the diamonds at the time of their formation and that the diamonds were distributed heterogeneously in the solar nebula during condensation. However, the hypothesis that a distinct nitrogen carrier remains hidden within the diamond cannot be ruled out.  相似文献   

3.
Diamonds with delta(13)C values of -2 per mil and less than 50 parts per million (by mass) nitrogen have been isolated from the Abee enstatite chondrite by the same procedure used for concentrating Cdelta, the putative interstellar diamond found ubiquitously in primitive meteorites and characterized by delta(13)C values of -32 to -38 per mil, nitrogen concentrations of 2,000 to 12,500 parts per million, and delta(15)N values of -340 per mil. Because the Abee diamonds have typical solar system isotopic compositions for carbon, nitrogen, and xenon, they are presumably nebular in origin rather than presolar. Their discovery in an unshocked meteorite eliminates the possibility of origins normally invoked to account for diamonds in ureilites and iron meteorites and suggests a low-pressure synthesis. The diamond crystals are approximately 100 nanometers in size, are of an unusual lath shape, and represent approximately 100 parts per million of Abee by mass.  相似文献   

4.
A large body of evidence strongly suggests that the shergottite, nakhlite, and Chassigny (SNC) meteorites are from Mars. Various mechanisms for the ejection of large rocks at martian escape velocity (5 kilometers per second) have been investigated, but none has proved wholly satisfactory. This article examines a number of possible ejection and cosmic-ray exposure histories to determine which is most plausible. For each possible history, the Melosh spallation model is used to estimate the size of the crater required to produce ejecta fragments of the required size with velocities >/=5 kilometers per second and to produce a total mass of solid ejecta consistent with the observed mass flux of SNC meteorites. Estimates of crater production rates on Mars are then used to evaluate the probability that sufficiently large craters have formed during the available time. The results indicate that the SNC meteorites were probably ejected from a very large crater (> 100 kilometers in diameter) about 200 million years ago, and that cosmic-ray exposure of the recovered meteorites was initiated after collisional fragmentation of the original ejecta in space at much later times (0.5 to 10 million years ago).  相似文献   

5.
Advances in the deposition process have led to dramatic improvements in the electronic properties of polycrystalline diamond films produced by chemical vapor deposition (CVD). It is now possible to produce CVD diamond with properties approaching those of IIa natural diamonds. The combined electron-hole mobility, as measured by transient photoconductivity at low carrier density, is 4000 square centimeters per volt per second at an electric field of 200 volts per centimeter and is comparable to that of the best single-crystal IIa natural diamonds. Carrier lifetimes measured under the same conditions are 150 picoseconds for the CVD diamond and 300 picoseconds for single-crystal diamond. The collection distance at a field of 10 kilovolts per centimeter is 15 micrometers for the CVD diamond as compared to 30 micrometers for natural diamonds. The electrical qualities appear to correlate with the width of the diamond Raman peak. Also, although the collection distance at the highest fields in the films nearly equals the average grain size, there is no evidence of deleterious grain boundary effects.  相似文献   

6.
The existence of a hexagonal (wurtzite) form of silicon, similar to that form of diamond (carbon) observed in meteorites and in the laboratory, has been identified by x-ray diffraction in reaction-bonded silicon nitride containing unreacted silicon. The presence of this phase is due to stresses created in the silicon by the nitridation reaction.  相似文献   

7.
The link between H chondrites and silicate inclusions in group IIE iron meteorites has long been suspected, but direct evidence for a common parentage has remained elusive. The discovery of an unmelted chondritic inclusion in the Techado iron meteorite sheds light on the genetic relation between these two groups, providing clues on the origin of chondritic materials as inclusions in iron meteorites. It is proposed that the complex IIE iron meteorite breccias formed by collisions with several different bodies, followed by deep burial of metal and silicate fragments in the asteroidal megaregolith.  相似文献   

8.
Cratering flow calculations for a series of oblique to normal (10 degrees to 90 degrees ) impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether or not the gas produced upon shock-vaporizing both projectile and target material would form a downstream jet that could entrain and propel SNC meteorites from the Martian surface. The difficult constraints that the impact origin hypothesis for SNC meteorites has to satisfy are that these meteorites are lightly to moderately shocked and yet have been accelerated to speeds in excess of the Martian escape velocity (more than 5 kilometers per second). Two-dimensional finite difference calculations were performed that show that at highly probable impact velocities (7.5 kilometers per second), vapor plume jets are produced at oblique impact angles of 25 degrees to 60 degrees and have speeds as great as 20 kilometers per second. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 kilometer, the resulting vapor jets have densities of 0.1 to 1 gram per cubic centimeter. These jets can entrain Martian surface rocks and accelerate them to velocities greater than 5 kilometers per second. This mechanism may launch SNC meteorites to earth.  相似文献   

9.
We performed high-resolution computer simulations of impacts into homogeneous and layered martian terrain analogs to try to account for the ages and characteristics of the martian meteorite collection found on Earth. We found that craters as small as approximately 3 kilometers can eject approximately 10(7) decimeter-sized fragments from Mars, which is enough to expect those fragments to appear in the terrestrial collection. This minimum crater diameter is at least four times smaller than previous estimates and depends on the physical composition of the target material. Terrain covered by a weak layer such as an impact-generated regolith requires larger, therefore rarer, impacts to eject meteorites. Because older terrain is more likely to be mantled with such material, we estimate that the martian meteorites will be biased toward younger ages, which is consistent with the meteorite collection.  相似文献   

10.
Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.  相似文献   

11.
Cohenite [(Fe, Ni)(3)C] is found almost exclusively in meteorites containing from 6 to 8 percent nickel (by weight). On the basis of iron-nickel-carbon phase diagrams at 1 atmosphere and of kinetic data, the occurrence of cohenite within this narrow composition range as a low-pressure metastable phase and the nonoccurrence of cohenite in meteorites outside the range 6 to 8 percent nickel can be explained. Cohenite formed in meteorites containing less than 6 to 8 percent nickel decomposed to metal and graphite during cooling; it cannot form in meteorites containing more than about 8 percent. The presence of cohenite in meteorites cannot be used as an indicator of pressure of formation. However, the absence of cohenite in meteorites containing the assemblage, metal plus graphite, requires low pressures during cooling.  相似文献   

12.
Whether many of the 10,000 meteorites collected in the Antarctic are unlike those failing elsewhere is contentious. The Antarctic H chondrites, one of the major classes of stony meteorites, include a number of individuals with higher induced thermoluminescence peak temperatures than observed among non-Antarctic H chondrites. The proportion of such individuals decreases with the mean terrestrial age of the meteorites at the various ice fields. These H chondrites have cosmic-ray exposure ages of about 8 million years, experienced little cosmic-ray shielding, and suffered rapid postmetamorphic cooling. Breakup of the H chondrite parent body, 8 million years ago, may have produced two types of material with different size distributions and thermal histories. The smaller objects reached Earth more rapidly through more rapid orbital evolution.  相似文献   

13.
Ozima M  Zashu S 《Science (New York, N.Y.)》1983,219(4588):1067-1068
Thirteen diamond stones from various unspecified mines in South Africa were analyzed for the isotopic ratio of helium-3 to helium-4. Values of the ratio ranged from less than 10(-7) to (3.2 +/- 0.25) x 10(-4). The latter value is higher than the primordial helium-3/helium-4 ratio in meteorites and close to the ratio for solar-type helium. Such extremely high values may represent primitive helium that evolved very little (that is, showed very little increase in radiogenic helium-4) since the formation of the earth.  相似文献   

14.
Significant abundances of trapped argon, krypton, and xenon have been measured in shock-altered phases of the achondritic meteorite Elephant Moraine 79001 from Antarctica. The relative elemental abundances, the high ratios of argon-40 to argon-36 (>/= 2000), and the high ratios of xenon-129 to xenon-132 (>/= 2.0) of the trapped gas more closely resemble Viking data for the martian atmosphere than data for noble gas components typically found in meteorites. These findings support earlier suggestions, made on the basis of geochemical evidence, that shergottites and related rare meteorites may have originated from the planet Mars.  相似文献   

15.
Craters attributable to hypervelocity impacts of micrometeorites have been discovered on rare chondrule-like objects from the gas-rich meteorite Kapoeta. These chondrule-like objects, probably generated by impacts themselves, provide further evidence for the regolith origin of Kapoeta. The micrometeorite flux at the time of formation of the meteorites was probably an order of magnitude higher than the present flux, but the solar luminosity could not have been higher than 1.7 times its present value.  相似文献   

16.
Current issues and problems in the chemical vapor deposition (CVD) of diamond are those which relate to its characterization, its nucleation on foreign surfaces, the question of its formation in preference to the other phases of solid carbon (for example, graphite, chaoite, or lonsdaleite), why different morphologies and crystallographic orientations (textures) are seen in different experiments or with different parameters in the same experiment, and finally whether well-crystallized metastable phases can be obtained by CVD in other material systems or are only a peculiarity of carbon chemistry. Whether a given carbon coating is justly described as diamond has been such an issue, and coatings should clearly show evidence for diamond by x-ray diffraction and Raman spectroscopy before the claim of diamond is made. Experimental results have not been consistent in many cases, and much work remains to be done before an accurate assessment can be made of the technological impact of the development.  相似文献   

17.
Eighty-five percent of the iron meteorites collected outside Antarctica are assigned to 13 compositionaily and structurally defined groups; the remaining 15 percent are ungrouped. Of the 31 iron meteorites recovered from Antarctica, 39 percent are ungrouped. This major difference in the two sets is almost certainly not a stochastic variation, a latitudinal effect, or an effect associated with differences in terrestrial ages. It seems to be related to the median mass of Antarctic irons, which is about 1/100 that of non-Antarctic irons. During impacts on asteroids, smaller fragments tend to be ejected into space at higher velocities than larger fragments, and, on average, small meteoroids have undergone more changes in orbital velocity than large ones. As a result, the set of asteroids that contributes small meteoroids to Earth-crossing orbits is larger than the set that contributes large meteoroids. Most small iron meteorites may escape from the asteroid belt as a result of impact-induced changes in velocity that reduce their perihelia to values less than the aphelion of Mars.  相似文献   

18.
Binzel RP  Xu S 《Science (New York, N.Y.)》1993,260(5105):186-191
For more than two decades, asteroid 4 Vesta has been debated as the source for the eucrite, diogenite, and howardite classes of basaltic achondrite meteorites. Its basaltic achondrite spectral properties are unlike those of other large main-belt asteroids. Telescopic measurements have revealed 20 small (diameters 相似文献   

19.
The growth of small ( approximately 10-micrometer) diamond particles (on 0.1-or 0.25-micrometer seed crystals) using an effusive glow discharge nozzle for H.and a separate supersonic pyrolysis jet for .CH(3) is reported. Laser micro-Raman, scanning electron microscopy, and x-ray photoelectron spectroscopy data are presented as evidence that well-crystallized diamond is indeed formed. Resonant multiphoton ionization spectroscopy is used as a diagnostic for the gas-phase chemistry indicating that the radical sources are clean and quantitative and that there is no detectable interconversion of .CH(3) to C(2)H(2) under the conditions of the experiment. Diamond growth is found at substrate temperatures greater than or equal to 650 degrees C with no marked increase in the rate of growth up to 850 degrees C. Acetylene does not give good quality diamond under similar conditions.  相似文献   

20.
Although ordinary chondrite (OC) meteorites dominate observed falls, the identification of near-Earth and main-belt asteroid sources has remained elusive. Telescopic measurements of 35 near-Earth asteroids ( approximately3 kilometers in diameter) revealed six that have visible wavelength spectra similar to laboratory spectra of OC meteorites. Near-Earth asteroids were found to have spectral properties that span the range between the previously separated domains of OC meteorites and the most common (S class) asteroids, suggesting a link. This range of spectral properties could arise through a diversity of mineralogies and regolith particle sizes, as well as through a time-dependent surface weathering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号