首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Concentrations of U, Th, and Pb in Apollo 11 samples studied are low (U. 0.16 to 0.87; Th, 0.53 to 3.4; Pb, 0.29 to 1.7, in ppm) but the extremely radiogenic lead in samples allows radiometric dating. The fine dust and the breccia have a concordant age of 4.66 billion years on the basis of (207)Pb/(206)Pb, (206)Pb/(238)U, (207)Pb/(235U), and(208)Pb/(232)Th ratios. This age is comparable with the age of meteorites and with the age generally accepted for the earth. Six crystalline and vesicular samples are distinctly younger than the dust and breccia. The (238)U/(235)U ratio is the same as that in earth rocks, and (234)U is in radioactive equilibrium with parent (238)U.  相似文献   

2.
The concentration of carbon and sulfur in six samples ranged between 20 to 200 and 650 to 2300 parts per million, respectively. Carbon was present in gaseous, volatilizable, and nonvolatile forms, and terrestrial contaminants were recognized. Sulfur appeared to exist only as acid-volatile sulfide. The bulk fines contain a high concentration of carbon and a low concentration of sulfur. They are always enriched in the heavier isotope carbon-13 or sulfur-34. The fine-grained basaltic rocks show the reverse relation; lowest carbon, highest sulfide concentrations, and no apparent enrichment in heavy isotopes. The breccias are of intermediate composition.  相似文献   

3.
Data on six lunar crystalline rocks give an apparent Rb-Sr isochron age of 4.42 +/- 0.24 x 10(9) years (95 percent confidence limits) and initial (87)Sr/(86)Sr ratio similar to that in a basaltic achondrite. Relationships between K, Rb, Sr, and Ba and depletion of Eu in these samples point to plagioclase separation from the melts that produced these rocks. The abundance of (157)Gd in the three lunar samples is similar to terrestrial abundance within < 0.2 percent, thus setting a limit of < 6 x 10(15) neutrons per square centimeter for the integrated thermal neutron flux difference between lunar and terrestrial materials.  相似文献   

4.
Appreciable natural thermoluminescence with glow curve peaks at about 350 degrees centigrade for lunar fines and breccias and above 400 degrees centigrade for crystalline rocks has been recognized in lunar samples. Plagioclase has been identified as the principal carrier of thermoluminescence, and the diference in peak temperatures indicates compositional or structural differences between the feldspars of the different rock types. The present thermoluminescence in the lunar samples is probably the result of a dynamic equilibrium between acquisition from radiation and loss in the lunar thermal environment. A progressive change in the glow curves of core samples with depth below the surface suggests the use of thermoluminescence disequilibrium to detect surfaces buried by recent surface activity, and it also indicates that the lunar diurnal temperature variation penetrates to at least 10.5 centimeters.  相似文献   

5.
The lunar samples consist largely of augite, calcic plagioclase, and ilmenite. Olivine is a minor constituent of some rocks, as is cristobalite. Other minerals present in small amounts include tridymite, chromite, kamacite, taenite, and troilite. The principal rock types can be broadly grouped into ilmenite basalts and breccias. Except for their high ilmenite content, the lunar rocks resemble the calcium-rich achondritic meteorites (eucrites and howardites) in composition and structure. Evidence of a meteoritic increment in the lunar soil is provided by the presence of nickel-iron particles in glass and breccia, and the occurrence of metal-troilite spheroids; the breccias contain occasional silicate aggregates that resemble meteoritic chondrules. The lunar fines contain 325 parts of watersoluble calcium per million.  相似文献   

6.
Sample 10084,40 (fines, less than 1 millimeter) contains substantial amounts of the inert gases. Their concentrations are inversely proportional to particle size; hence the gases appear to be surface-correlated in the soil fragments. The most likely origin of the gas is solar wind or solar cosmic rays. Glass and feldspar are generally poorer in gas than lithic fragments. Ratios of elements in the sample differ significantly from solar values. Ratios of isotopes in the sample are similar to those in meteorites. Argon-40 appears to consist of a radiogenic and a surface-correlated component. An apparent potassium-argon age of 4.42(+0.24)(-0.28) billion years is calculated.  相似文献   

7.
Nuclear gamma resonance measurements for the nuclide (57)Fe in lunar material were made in transmission on lunar fines and in scattering on intact lunar rock chips. No appreciable amnount of ferric iron was detected. Resonances were observed for ilmenite in all samples. Strong resonances attributed to ferrous iron in silicates, including pyroxenes and, in some samples, glasses and olivine, were also present. Metallic iron, alloyed with nickel, and troilite were also detected in the lunar fines. Differences in the spectra of various samples of lunar material and their significance are discussed.  相似文献   

8.
Glass spherules, glass fragments, augite, ferroaugite, titanaugite, pyroxmangite, pigeonite, hypersthene, plagioclase, potassium feldspar, maskelynite, olivine, silica, ilmenite, TiO(2), "ferropseudobrookite," spinel, ulv?spinel, native iron, nickel-iron, troilite, and chlorapatite were analyzed with the electron microprobe. There are no indications of large-scale chemical differentiation, chemical weathering, or hydrous minerals. Contributions of meteoritic material to lunar surface rocks are small. Rocks with igneous textures originated from a melt that crystallized at or near the surface, and oxygen fugacities have been low. Shock features indicate that at least some surface material is impact-produced.  相似文献   

9.
Twelve rock chips and two samples of fines all have electronic absorption bands in diffuse reflected light between 0.32 and 2.5 micrometers. Major bands occur between 0.94 and 1.00 micrometer and at 2.0 micrometers, and arise from Fe(2+) in clinopyroxene and to a lesser extent in olivine. A band at 0.95 micrometer and other details of curve slope and shape for the lunar surface fines match McCord's telescopic curve for an 18-kilometer area that includes the Apollo-il site. Results confirm mineralogical predictions based on telescopic data and support the feasibility of obtaining mineralogical information by remote and in glass content. reflectivity measurements.  相似文献   

10.
Indications of shock metamorphism produced by pressures up to the megabar region have been observed in the fine material and the breccias, but very rarely in the coarser fragments of crystalline rocks. These indications are deformation structures in plagioclase and pyroxene, diaplectic plagioclase glasses, and glasses formed by shock-induced melting of lunar rocks. Two sources of shock waves have been distinguished: primary impact of meteorites and secondary impact of crater ejecta. There are two major chemical types of shock-induced melts. The differences in chemistry may be related to impact sites in mare and highland areas.  相似文献   

11.
Lunar samples contain mercury, which may be volatilized at lunar daytime temperatures. Such mercury may constitute part of the tenuous lunar atmosphere. If mercury can escape from the atmosphere by a nonthermal mechanism, an interior reservoir or exterior sources (such as meteorite infall or solar wind, or both) are required to replenish it. Core samples exhibit an increase in surface-related mercury with depth, which suggests that a cold trap exists below the surface. The orientation of rocks on the lunar surface may be inferred by differences in the amounts of surface-related mercury found on exterior and interior samples.  相似文献   

12.
The magnetic properties of samples of rock, fines, and magnetic separate from the fines from Apollo 11 have been measured. Native iron, or possibly nickel-iron, of submicroscopic particle size is the most important constituent, with minor contributions from ilmenite, paramagnetic iron minerals, and other iron-titanium oxides. The remanent magnetization of a sample of the micro-breccia rapidly acquires a viscous magnetization and does not appear to have a significant stable remanence. The crystalline sample has a weak natural remanence showing some stability.  相似文献   

13.
The crystallization age of an Apollo 15 anorthosite rock, 15415,9, returned from the lunar highlands has been measured to be (4.09 +/- 0.19) x 10(9) years. The primitive lunar crust must have been formed in the first 300 to 400 x 10(6) years. The results give some credence to the hypothesis that the primitive lunar surface was molten and large-scale fractional crystallization occurred in the early history of the moon.  相似文献   

14.
The remanent magnetismn of a lunar type C breccia sample includes a large viscous component with a time constant of several hours, and a high coercivity remanence, possibly acquired by impact processes on the lunar surface. Ilmenite(?) and metallic iron in breccias, and ferrous and metallic iron in glass beads separated from lunar fines (type D) were identified by high-field and low-temperature experiments. The iron appears to occur in a wide range of grain sizes including the single domain and multidomain states.  相似文献   

15.
Microscope study and electron microprobe analysis of lunar rocks and soil show that ilmenite, troilite, and native iron are accompanied by trace amounts of ulv?spinel, titanochromite (new mineral name), an unidentified Ti-Fe oxide, and a complex Zr-Y silicate. The assemblage requires a strongly reducing environment. Textures and modal proportions show that the rocks present are not a differentiation series. The restricted nature of the opaque mineral assemblage suggests a narrow range of composition for the materials from which the parent liquids of the rocks were generated. Textural variety mnust reflect differences in cooling rates, probably related to depths of formation.  相似文献   

16.
Fine-grained samples disrupted after exposure to oxygen and oxygen with 3.5 percent water above 2 torr. Chemical etching revealed plastic deformation in some samples, adhesion due to impact melting in others, dislocations in crystalline phases and evidence that some glasses were partially devitrified. Specimens of rock that were fractured in ultrahigh vacuum exhibited a time-dependent adhesion and a network of localized electrostatically charged areas.  相似文献   

17.
Fragments of igneous rocks and breccias, and one coarse-grained rock with thin sections, have been studied. Minerals found include pyroxene, plagioclase, olivine, ilmenite, troilite, ulv?spinel, native iron, cristobalite, tridymite, alkali feldspar, apatite, and quartz. Textures are described and interpreted. Among features revealed by optical, microprobe, x-ray diffraction, and electron microscope methods are extreme zoning and unmixing in pyroxene grains, compositional variations in ilmenites, and effects of shock metamorphism. Some trace elements were determined by x-ray fluorescence analysis.  相似文献   

18.
Chemical analyses and norms of four samples are presented which confirm original estimates of low silica, unusual abundance of titania, and low oxidation state of the rocks. Accounts are given of mineralogy and petrology of fine-and coarse-grained igneous rocks and microbreccias with emphasis on chemical composition of individual minerals and glasses. The glasses are either spheres that scatter widely around the composition of lunar basalts or coating glasses that approximate basalts and microbreccias in composition.  相似文献   

19.
Observations on the mineralogy and deformation in samples of crystalline rocks, breccias, and fines from Tranquillity Base provide evidence for magmatic and impact processes. Overall homogeneity, igneous textures, and absence of xenoliths in the crystalline rocks indicate derivation from a common titanium-rich magma by internal, anorogenic volcanism rather than by impact. Crystallization conditions allowed strong compositional variation in pyroxenes, olivine, and plagioclase and the growth of a new mineral, the iron analog of pyroxmangite. Subsequently, impact produced breccias containing shock-deformed crystals and glasses of varying compositions.  相似文献   

20.
Plagioclase feldspar, clinopyroxene, and ilmenite in a polished thin section of a type A crystalline rock were analyzed. The clinopyroxene grains are compositionally variable, and both high Ca and low Ca phases are present. The plagioclase is compositionally homogeneous. The ilmenite is chemically homogeneous except for occasional, small areas of high local chromium concentration. Accessory minerals are: apatite (containing Cl, F, Y, and Ce), troilite, and metallic iron. Glassy spherules from the lunar soil are for the most part similar in composition to the crystalline rocks; however, some appear to have been monomineralic. The crystalline rock has apparently formed by relatively rapid cooling of a silicate melt under conditions of low oxygen partial pressure. Many components of the soil appear to have formed by meteoritic impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号