首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lunar atmosphere is the likely source of excess argon-40 in lunar surface material; about 8.5 percent of the argon-40 released into the lunar atmosphere will be implanted in the surface material by photoionization and subsequent interaction with fields in the solar wind. The atmosphere is also likely to be the source of other unexpected surface elements or of solar wind elements that impact from non-solar wind directions.  相似文献   

2.
Concentrations of potassium, rubidium, strontium, barium, and rareearth elements have been determined by mass spectrometric isotope dilution for eight Apollo 11 lunar samples and for some separated phases. Potassiumn and ritbidium are at chondritic levels, strontium at 15 times, and barium and rare earths at 30 to 100 times chondritic levels. There are trace element similarities between the lunar samples and basaltic achondrites, terrestrial dredge basalts and the bulk earth. The trace element data appear to be consistent with these lunar samples being the result of limited partial fusion of some material similar to the brecciated eucrite meteorites.  相似文献   

3.
A neuttron activation scheme for determining 25 elements in lunar samples weighing 20 milligrams is described and applied to a suite of Apollo 11 lunar materials. Concentrations of titanium, chromium, scandium, tantalum, hafnium, and rare earths are higher than in avercage basalt, whereas cobalt, nickel, and copper are lower. Chemical variations show groupings of elements possibly associated with the major phases, pyroxene, plagioclase, and ilmenite. The high concentration of "refractory oxides" and low volatile content implies that the raw material for the Apollo 11 samples was condensed from the primitive solar nebula at high temperatures.  相似文献   

4.
The theories of Harold C. Urey (1893-1981) on the origin of the moon are discussed in relation to earlier ideas, especially George Howard Darwin's fission hypothesis. Urey's espousal of the idea that the moon had been captured by the earth and has preserved information about the earliest history of the solar system led him to advocate a manned lunar landing. Results from the Apollo missions, in particular the deficiency of siderophile elements in the lunar crust, led him to abandon the capture selenogony and tentatively adopt the fission hypothesis.  相似文献   

5.
The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.  相似文献   

6.
The glassy coating of lunar rock 12017 is enriched in 15 trace elements relative to the crystalline interior. It apparently consists chiefly of shock-melted rock, somewhat richer in rare earth elements and alkali metals than rock 12017 itself. The glass has been contaminated by about 0.5 percent carbonaceous-chondrite-like material or, alternatively, by a mixture of 0.06 to 0.3 percent fractionated meteoritic material and approximately 10 to 15 percent local soil. The glazing seems to represent molten material splashed from a nearby meteorite impact and not in situ melting by a sudden increase in solar luminosity.  相似文献   

7.
During the Surveyor V landing, a footpad with an attached permanent magnet assembly slid for about a meter through lunar surface material at a depth of about 10 centimeters. Subsequent pictures showed material adhering to the magnetic pole edges, where the magnetic field strength is greatest. Comparison of these pictures with those made under simulated laboratory conditions permits three conclusions. (i) Iron is present on the lunar surface in one of the forms attracted to a 500-gauss magnet. (ii) A 1-percent addition by volume of powdered free iron to a powdered terrestrial rock represents an upper limit for the lunar results. (iii) The lunar results are most similar to a terrestrial plateau basalt with no addition of free iron.  相似文献   

8.
Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface for hundreds of millions of years. Future work will require sampling distinctly different regions of the moon in order to provide data concerning other important lunar events, such as the time of formation of the highland regions and of the mare basins, and of the extent to which lunar volcanism has persisted subsequent to the first third of lunar history. This work will require a sufficient number of Apollo landings, and any further cancellation of Apollo missions will jeopardize this unique opportunity to study the development of a planetary body from its beginning. Such a study is fundamental to our understanding of the earth and other planets.  相似文献   

9.
Nuclear gamma resonance measurements for the nuclide (57)Fe in lunar material were made in transmission on lunar fines and in scattering on intact lunar rock chips. No appreciable amnount of ferric iron was detected. Resonances were observed for ilmenite in all samples. Strong resonances attributed to ferrous iron in silicates, including pyroxenes and, in some samples, glasses and olivine, were also present. Metallic iron, alloyed with nickel, and troilite were also detected in the lunar fines. Differences in the spectra of various samples of lunar material and their significance are discussed.  相似文献   

10.
Abundances of 30 elements in seven lunar rocks and soil were determined by instrumental and radiochemical activation analysis. Seven major and minor elements in chips from 27 rocks were determined by instrumental activation analysis. Abundances of ten bulk elements overlap for the breccia rocks and soil samples. All lunar rare earth elements distribution patterns resemble those found in terrestrial abyssal subalkaline basalt, but with Eu depleted by about 60 percent in all lunar samples compared to the adjacent rare earth elements. Precipitation of plagioclase and hypersthene achondritic-like minerals from a melt could account for Eu depletion and the observed distribution of rare earth elements. Abundances of Ti, Al, Ca, Na, and Mn determined by instrumental activation analysis in five core-tube soil samples indicate uniformity for Al and Mn and apparent differences (10 to 20 percent) for Ti, Ca, and Na at 7.8 and 10.5 centimeters as compared to 0to5.2 centimeter depths.  相似文献   

11.
Data from total melt and step-by-step heating experiments on the Apollo 11 lunar samples suggest a close affinity between lunar and meteoritic rare gases. Trapped neon-20/neon-22 ratios range from 11.5 to approximately 15, resembling those for the gas-rich meteorites. Trapped krypton and xenon in the lunar fines and in the carbonaceous chondrites are similar except for an interesting underabundance of the heavy isotopes in both lunar gases which suggests that the fission component found in carbonaceous chondrites is depleted in lunar material. Spallation gases are in most cases quite close to meteoritic spallation gases in isotopic composition.  相似文献   

12.
Lunar material returned from the first manned landing on the moon was assayed for the presence of replicating agents possibly harmful to life on earth. Ten species of lower animals were exposed to lunar material for 28 days. No pathological effects attributable to contact with lunar material were detected.  相似文献   

13.
A new combined rhenium-osmium- and platinum-group element data set for basalts from the Moon establishes that the basalts have uniformly low abundances of highly siderophile elements. The data set indicates a lunar mantle with long-term, chondritic, highly siderophile element ratios, but with absolute abundances that are over 20 times lower than those in Earth's mantle. The results are consistent with silicate-metal equilibrium during a giant impact and core formation in both bodies, followed by post-core-formation late accretion that replenished their mantles with highly siderophile elements. The lunar mantle experienced late accretion that was similar in composition to that of Earth but volumetrically less than (approximately 0.02% lunar mass) and terminated earlier than for Earth.  相似文献   

14.
Lunar meteorites represent a more random sampling of lunar material than the Apollo or Luna collections and, as such, lunar meteorite impact melt ages are the most important data in nearly 30 years with which to reexamine the lunar cataclysm hypothesis. Within the lunar meteorite breccias MAC 88105, QUE 93069, DaG 262, and DaG 400, seven to nine different impact events are represented with 40Ar-39Ar ages between 2.76 and 3.92 billion years ago (Ga). The lack of impact melt older than 3.92 Ga supports the concept of a short, intense period of bombardment in the Earth-moon system at approximately 3.9 Ga. This was an anomalous spike of impact activity on the otherwise declining impact- frequency curve.  相似文献   

15.
Apollo 11 and Apollo 12 lunar rock suites differ in their potassium-uranium abundance systematics. This difference indicates that relatively little exchange of regolith material has occurred between Mare Tranquillitatis and Oceanus Procellarum. The two suites appear to have been derived from materials of identical potassium and uranium content. It appears unlikely that bulk lunar material has the ratio of potassium to uranium found in chondrites. However, systematic differences in the potassium-uranium ratio between Apollo samples and crustal rocks of the earth do not preclude a common potassium-uranium ratio for bulk earth and lunar material.  相似文献   

16.
Three kinds of experiments were performed in an effort to detect and identify organic compounds present in the lunar material (fines 10,086): (i) vaporization of the volatilizable components directly into the ion source of a high-resolution mass spectrometer, and (ii and iii) extraction of the material with organic solvents before and after dissolving most of the inorganic substrate in hydrochloric and hydrofluoric acid. The extracts were investigated by a combination of gas chromatography and mass spectrometry. Although a number of organic compounds or compound types have been detected, none appears to be indigenous to the lunar surface.  相似文献   

17.
A chemically distinct group of lunar rocks with the trace element characteristics of basaltic lunar rocks is apparently ubiquitous on the lunar surface. Such rocks have been found at the Apollo 15, Apollo 16, and Luna 20 landing sites. They may be derived from the plains-forming material that has been designated Cayley Formation.  相似文献   

18.
It has been assumed that Nb and Ta are not fractionated during differentiation processes on terrestrial planets and that both elements are lithophile. High-precision measurements of Nb/Ta and Zr/Hf reveal that Nb is moderately siderophile at high pressures. Nb/Ta values in the bulk silicate Earth (14.0 +/- 0.3) and the Moon (17.0 +/- 0.8) are below the chondritic ratio of 19.9 +/- 0.6, in contrast to Mars and asteroids. The lunar Nb/Ta constrains the mass fraction of impactor material in the Moon to less than 65%. Moreover, the Moon-forming impact can be linked in time with the final core-mantle equilibration on Earth 4.533 billion years ago.  相似文献   

19.
The formation of the lunar farside highlands has long been an open problem in lunar science. We show that much of the topography and crustal thickness in this terrain can be described by a degree-2 harmonic. No other portion of the Moon exhibits comparable degree-2 structure. The quantified structure of the farside highlands unites them with the nearside and suggests a relation between lunar crustal structure, nearside volcanism, and heat-producing elements. The farside topography cannot be explained by a frozen-in tidal bulge. However, the farside crustal thickness and the topography it produces may have been caused by spatial variations in tidal heating when the ancient crust was decoupled from the mantle by a liquid magma ocean, similar to Europa's present ice shell.  相似文献   

20.
Elemental abundances, so far obtained, derived from the analysis of Apollo 11 lunar material are reported. Similarities and differences exist between lunar material, the eucritic achondrites, and the augite achondrite Angra dos Reis, the analysis of which is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号