首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three different treatments were compared to improve pregnancy per artificial insemination (P/AI) in repeat-breeder (RB) dairy cows. All cows (n = 103) were assigned to one of four groups: (1) gonadotropin-releasing hormone (GnRH); (2) human chorionic gonadotropin (hCG); (3) once-used controlled internal drug release (CIDR) device; and (4) control. All treatments performed 5-6 days after artificial insemination (AI) and milk samples were collected just before treatment for progesterone assays. There were no significant differences in milk fat progesterone concentration among trial groups. Cows were observed for estrus signs thrice daily. Pregnancy per AI on day 45 in hCG and CIDR groups were significantly higher than GnRH and control groups (60.0% and 56.0% vs. 26.9% and 29.6%, respectively), but there were no differences in P/AI between GnRH and control groups. There were also no significant differences between hCG and CIDR groups. Milk fat progesterone concentrations were compared between pregnant and non-pregnant cows in each group and only in the hCG group it was significantly lower in pregnant cows. In conclusion, treating repeat-breeder cows with hCG or once-used CIDR 5-6 days after AI improved P/AI.  相似文献   

2.
AIM: To determine if the reproductive performance of dairy cows not previously detected in oestrus but with a detectable corpus luteum before the planned start of mating (PSM), could be improved by treatment with progesterone, oestradiol benzoate (ODB) and prostaglandin F2alpha (PGF). METHODS: Cows in 18 herds which had not been detected in oestrus, but which had a detectable corpus luteum present at veterinary examination 7 days prior to the PSM (Day -7), were allocated to 1 of 2 groups. Treated cows (n=232) received an injection of 2 mg ODB and an intravaginal progesterone releasing device (CIDR insert) on Day -7, and an injection of PGF on the day of insert removal 7 days later (Treated group). The Control group (n=243) remained untreated. Cows were mated to detected oestrus from Day 0, and conception dates confirmed by manual palpation or transrectal ultrasonography. RESULTS: During the first 7 days of mating, 37.4% of Control cows and 65.9% of Treated cows were inseminated on detection of oestrus (p<0.001). Pregnancy rates for this period were 20.4% and 36.3%, respectively (p=0.001). Conception rates to first insemination, pregnancy rates after 21 days of mating and at the end of the mating period were similar between groups (p>0.1). Median interval from the PSM to conception did not differ between treatment groups (24 and 23 days for Control and Treated, respectively, p>0.1). CONCLUSION: Treating postpartum dairy cows which had not previously been detected in oestrus but which had a detectable corpus luteum, with progesterone, ODB and PGF did not significantly improve their reproductive performance compared with no hormonal intervention. KEY WORDS: dairy cattle, postpartum, anoestrous, reproduction, progesterone treatment.  相似文献   

3.
AIM: To determine whether conception rates of anoestrous dairy cows treated with progesterone and oestradiol benzoate (ODB) could be increased by treating them with additional progesterone following insemination at the induced oestrus. METHODS: Cows which had not been detected in oestrus for at least 21 days after calving in 18 herds were confirmed anovulatory anoestrus (AA) by veterinary examination, due to the absence of a detectable corpus luteum in the ovaries. All cows were treated with intra-vaginal progesterone (CIDR insert) for 6 days and injected with 1 mg ODB 24 h after insert removal (Day 0). Only cows which were seen in oestrus on Days 0, 1 or 2 were enrolled in the trial. These cows were either treated with a second CIDR insert on Day 8, for 7 days (P4+; n=422), or remained untreated (Control; n=756). Milk progesterone concentrations were measured in a subset of enrolled cows (n=669) on Day 8 to determine the proportion of cows that ovulated following the induced oestrus. RESULTS: Conception rates to first insemination were similar in P4+ and Control cows (40.3% and 37.2%, p=0.59). Of cows which had milk progesterone concentrations measured on Day 8, 78.6% displayed oestrus and ovulated, (range: 53.8% to 94.6% among herds). Of the cows that ovulated, conception rate to first insemination was 46.8% and 43.5% in P4+ and Control cows, respectively (p=0.86). CONCLUSION: Conception rates to first insemination in AA cows treated with progesterone and ODB were not increased by progesterone supplementation using CIDR inserts following insemination. KEY WORDS: dairy cattle, postpartum anoestrus, reproduction, progesterone treatment, CIDR insert.  相似文献   

4.
AIM: To compare 2 treatments for anovulatory anoestrus (AA) in postpartum dairy cows. The treatments were combinations of gonadotropin-releasing hormone (GnRH) and prostaglandin F2 (PG) or progesterone (P4) and oestradiol benzoate (ODB). METHODS: Forty AA cows from each of 5 herds were blocked by age (2 or 2 years old) and randomly assigned to 1 of 2 treatments. The first group (GPG) were treated with 250 mug of a GnRH analogue, gonadorelin, followed 7 days later by 15 mg of the PG analogue, luprostiol. Two days later the cows were injected with 250 mug of gonadorelin. Cows were artificially inseminated 16-24 h after the second GnRH injection. The second group (P4+ODB) were treated with an intravaginal P4 releasing device for 6 days, followed 24 h after device removal by injection of 1 mg of ODB. Cows were pregnancy tested 35-40 days after the initial insemination and twice again at 6-8 week intervals thereafter. RESULTS: There was no significant difference between P4+ODB and GPG groups in the percentage of cows submitted for insemination in the first 7 days (94.0% vs 100% for P4+ODB vs GPG, respectively; p>0.3), in conception rate to first insemination within the first 7 days (43.6% vs 35.0% for P4+ODB vs GPG, respectively; p>0.2), in the percentage of cows conceiving in the first 28 days of the breeding period (68.0% vs 58.3%, P4+ODB vs GPG, respectively; p>0.1), or in median interval from the end of treatment to conception (20 vs 21 days; p>0.1). CONCLUSIONS: No differences in the reproductive performance of AA cows treated with either P4+ODB or GPG were detected. However, given the small number of animals enrolled, further data are required before the GPG protocol can be recommended for treatment of AA cows.  相似文献   

5.
This study evaluated the pregnancy rates following either a controlled internal drug release (CIDR)-based timed artificial insemination (TAI) or an embryo transfer (TET) protocol compared with that following a single PGF(2alpha) injection and AI after estrus (AIE) in lactating repeat breeder dairy cows. Fifty-three lactating dairy cows diagnosed as repeat breeders were used in this study and were randomly assigned to the following three treatments. (1) Cows, at random stages of the estrous cycle, received a CIDR device and 2 mg estradiol benzoate (EB; Day 0), a 25 mg PGF(2) (alpha) injection at the time of CIDR removal on Day 7 and a 1 mg EB injection on Day 8. The cows then received TAI 30 h (Day 9) after the second EB injection using dairy semen (TAI group, n=13). (2) Cows, at random stages of the estrous cycle, received the same hormonal treatments as in the TAI group. The cows then received TET on Day 16 using frozen-thawed blastocysts or morula embryos collected from Korean native cattle donors (TET group, n=13). (3) Cows, at the luteal phase, received a 25 mg injection of PGF(2alpha) and AIE using dairy semen (control group, n=27). The ovaries of the cows in the TET group were examined by transrectal ultrasonography to determine ovulation of the preovulatory follicles, and blood samples were collected for serum progesterone (P4) analysis. The pregnancy rate was significantly higher in the TET group (53.8%) than in the control (18.5%) or TAI (7.7%) groups (P<0.05). The ultrasonographic observations demonstrated that all the cows in the TET group ovulated the preovulatory follicles and concomitantly formed new corpora lutea. Accordingly, the mean serum P4 concentration remained constant between Day 0 and Day 7 of the luteal phase, decreased dramatically on Day 8 (P<0.01) and subsequently increased by Day 16 (P<0.01). These data suggest that the CIDR-based TET protocol can be used to effectively increase the pregnancy rate in lactating repeat breeder dairy cows.  相似文献   

6.
AIM: To compare 2 treatments for anovulatory anoestrus (AA) in postpartum dairy cows. The treatments were combinations of gonadotropin-releasing hormone (GnRH) and prostaglandin F2𝛂 (PG) or progesterone (P4) and oestradiol benzoate (ODB).

METHODS: Forty AA cows from each of 5 herds were blocked by age (2 or >2 years old) and randomly assigned to 1 of 2 treatments. The first group (GPG) were treated with 250 𝛍g of a GnRH analogue, gonadorelin, followed 7 days later by 15 mg of the PG analogue, luprostiol. Two days later the cows were injected with 250 𝛍g of gonadorelin. Cows were artificially inseminated 16–24 h after the second GnRH injection. The second group (P4+ODB) were treated with an intravaginal P4 releasing device for 6 days, followed 24 h after device removal by injection of 1 mg of ODB. Cows were pregnancy tested 35–40 days after the initial insemination and twice again at 6–8 week intervals thereafter.

RESULTS: There was no significant difference between P4+ODB and GPG groups in the percentage of cows submitted for insemination in the first 7 days (94.0% vs 100% for P4+ODB vs GPG, respectively; p>0.3), in conception rate to first insemination within the first 7 days (43.6% vs 35.0% for P4+ODB vs GPG, respectively; p>0.2), in the percentage of cows conceiving in the first 28 days of the breeding period (68.0% vs 58.3%, P4+ODB vs GPG, respectively; p>0.1), or in median interval from the end of treatment to conception (20 vs 21days;p>0.1).

CONCLUSIONS: No differences in the reproductive performance of AA cows treated with either P4+ODB or GPG were detected. However, given the small number of animals enrolled, further data are required before the GPG protocol can be recommended for treatment of AA cows.  相似文献   

7.
The objective of this experiment was to examine the effects of varying the interval from follicular wave emergence to progestin (controlled internal drug-releasing insert, CIDR) withdrawal on follicular dynamics and the synchrony of estrus. A secondary objective was to assess the effects of causing the dominant follicle (DF) to develop in the presence or absence of a corpus luteum (CL) on follicular dynamics and the synchrony of estrus and ovulation. The experiment was designed as a 2 x 2 x 2 factorial arrangement of treatments with injection of GnRH or estradiol-17 beta and progesterone (E2 + P4) at treatment initiation, duration of CIDR treatment, and injection of PG (prostaglandin F2 alpha) or saline at the time of CIDR insertion as main effects. Estrous cycles (n = 49) in Angus cows were synchronized, and treatments commenced on d 6 to 8 of the estrous cycle. Cows were randomly assigned to receive a CIDR containing 1.9 g of P4 for 7 or 9 d. Approximately half the cows from each CIDR group received either GnRH (100 micrograms) or E2 + P4 (1 mg of E2 + 100 mg of P4) at CIDR insertion. Cows in GnRH or E2 + P4 groups were divided into those that received PG (37.5 mg) or saline at CIDR insertion. All cows received PG (25 mg) 1 d before CIDR removal. Daily ovarian events were monitored via ultrasound. The intervals from GnRH or E2 + P4 treatment to follicular wave emergence were 1.4 and 3.3 d, respectively (P < 0.05). The interval from follicular wave emergence to CIDR removal was longer (P < 0.05) for cows treated with GnRH (6.6 d) than those treated with E2 + P4 (4.7 d) and longer (P < 0.05) for those fitted with a CIDR for 9 d (6.5 d) than those with a CIDR in place for 7 d (4.8 d). Cows treated with PG or GnRH at CIDR insertion had a larger (P < 0.05) DF at CIDR removal than those treated with saline or E2 + P4. Treatment with a CIDR for 9 d also resulted in a larger (P < 0.07) DF at CIDR removal compared with cows fitted with a CIDR for 7 d. The interval from CIDR removal to estrus was shorter (P < 0.05) in cows treated with PG than those treated with saline. The synchrony of estrus and ovulation was not affected by any of the treatments (P > 0.05). Altering the interval from follicular wave emergence to progestin removal or creating different luteal environments in which the DF developed caused differences in the size of the DF at CIDR removal and the timing of the onset of estrus, but it did not affect the synchrony of estrus or ovulation.  相似文献   

8.
The objectives of this study were to determine the effects of incorporating a progesterone intravaginal insert (CIDR) between the day of GnRH and PGF2alpha treatments of a timed AI protocol using estradiol cypionate (ECP) to synchronize ovulation on display of estrus, ovulation rate, pregnancy rate, and late embryonic loss in lactating cows. Holstein cows, 227 from Site 1 and 458 from Site 2, were presynchronized with two injections of PGF2alpha on study d 0 and 14, and subjected to a timed AI protocol (100 mixrog of GnRH on study d 28, 25 mg of PGF2alpha on study d 35, 1 mg of ECP on study d 36, and timed AI on study d 38) with or without a CIDR insert. Blood was collected on study d 14 and 28 for progesterone measurements to determine cyclicity. Ovaries were scanned on d 35, 37, and 42, and pregnancy diagnosed on d 65 and 79, which corresponded to 27 and 41 d after AI. Cows receiving a CIDR had similar rates of detected estrus (77.2 vs. 73.8%), ovulation (85.6 vs. 86.6%), and pregnancy at 27 (35.8 vs. 38.8%) and 41 d (29.3 vs. 32.3%) after AI, and late embryonic loss between 27 and 41 d after AI (18.3 vs. 16.8%) compared with control cows. The CIDR eliminated cows in estrus before the last PGF2alpha injection and decreased (P < 0.001) the proportion of cows bearing a corpus luteum (CL) at the last PGF2alpha injection because of less ovulation in response to the GnRH and greater spontaneous CL regression. Cyclic cows had greater (P = 0.03) pregnancy rates than anovulatory cows at 41 d after AI (33.8 vs. 20.4%) because of decreased (P = 0.06) late embryonic loss (16.0 vs. 30.3%). The ovulatory follicle was larger (P < 0.001) in cows in estrus, and a greater proportion of cows with follicles > or = 15 mm displayed estrus (P < 0.001) and ovulated (P = 0.05) compared with cows with follicles <15 mm. Pregnancy rates were greater (P < 0.001) for cows displaying estrus, which were related to the greater (P < 0.001) ovulation rate and decreased (P = 0.08) late embryonic loss for cows in estrus at AI. Cows that were cyclic and responded to the presynchronization protocol (high progesterone at GnRH and CL at PGF2alpha) had the highest pregnancy rates. Incorporation of a CIDR insert into a presynchronized timed AI protocol using ECP to induce estrus and ovulation did not improve pregnancy rates in lactating dairy cows. Improvements in pregnancy rates in cows treated with ECP to induce ovulation in a timed AI protocol are expected when more cows display estrus, thereby increasing ovulation rate.  相似文献   

9.
AIMS: (a) To compare the reproductive performance of anovulatory anoestrous (AA) postpartum dairy cows following treatment with 1 of 2 progesterone (P4) and oestradiol benzoate (ODB)-based treatment regimens; (b) To determine whether resynchronisation of cows initially treated for AA would improve reproductive performance and; (c) to determine whether cows not detected in oestrus but with a corpus luteum (CL) present (NDO/CL+), treated with P4 and ODB, would conceive earlier than untreated controls. METHODS: Cows (n=1386) from 11 herds, that had not been detected in oestrus before the start of the seasonal mating period (PSM) and in which a CL was not detected were diagnosed AA, blocked by age (2 or >2 years old), then randomly assigned to be treated with an intravaginal P4-releasing device for either 6 (6-Day group) or 8 days (8-Day group). Cows in the 8-Day group were injected intramuscularly (IM) with 2 mg ODB at device insertion and all cows were injected with 1 mg ODB 24 h after device removal (Day 0). Cows detected in oestrus from Days 0-3 were subsequently assigned to be either resynchronised or left as untreated controls. Resynchronised cows had a used P4-releasing device reinserted on Day 14 for 8 days and were injected with 1 mg ODB at device reinsertion and again 24 h after device removal. NDO/CL+ cows were assigned to be either treated the same as the 8-Day group or left as untreated controls. All cows were inseminated on detection of oestrus and pregnancy tested approximately 10 weeks after the PSM and again 6-8 weeks after the end of the mating period. RESULTS: For AA cows, the 14-day submission rate was similar between 6-Day and 8-Day groups (p0.1). However, the pregnancy rate by Day 14 was higher for the 8-Day than the 6Day group (43.0% vs 35.2%; p=0.006). Resynchrony treatment decreased the 14-day pregnancy rate compared with untreated controls (35.2% vs 42.5%; p=0.026). The resynchrony treatment increased the submission rate between Days 14-28 for non-pregnant cows compared with untreated controls (80.6% vs 57.4%; p=0.049). However, conception rate to resynchronised heats was lower than for cows that returned to oestrus naturally (56.6% vs 67.9%; p=0.025). Neither initial treatment type nor resynchrony treatment increased the 28-day pregnancy rate (p>0.1). There were no differences between treatment groups in the final non-pregnant rate (4.5% vs 4.6%; p>0.1). Treated NDO/CL+ cows had a higher 14-day submission rate (88.1% vs 49.4%; p>0.001), higher 14-day and 28-day pregnancy rates (42.9% vs 20.7%, p>0.001 and; 56.0% vs 42.5%, p=0.094, respectively) and conceived earlier (21 vs 36 days from PSM to median day of conception; p>0.05), than untreated NDO/CL+ cows. CONCLUSIONS: The 8-Day, ODB-P4-ODB treatment regimen resulted in a higher pregnancy rate by 14 days but not 28 days than the 6-Day, P4-ODB treatment. The resynchrony treatment increased the proportion of non-pregnant cows inseminated on days 14-28, but did not increase the 28-day pregnancy rate or final pregnancy rate. Treatment of NDO/CL+ cows with the 8-Day, ODB-P4-ODB treatment improved reproductive performance compared with no treatment.  相似文献   

10.
OBJECTIVE: To compare the use of gonadotrophin releasing hormone (GnRH) and oestradiol benzoate (ODB) administered following a synchronised pro-oestrus on reproductive performance of lactating dairy cows and the submission rates of non-pregnant cows following resynchronisation. DESIGN: Cohort study. PROCEDURE: Lactating Holstein cows enrolled in a controlled breeding program were first treated with an intravaginal progesterone releasing insert (IVP4) for 8 days, 2.0 mg of ODB intramuscular (i.m.) at device insertion (Day 0), an analogue of PGF2alpha at device removal and either 1.0 mg of ODB i.m., 24 h after device removal (ODB group, n = 242), or 0.25 mg of a GnRH agonist (GnRH group, n = 152) injected i.m. approximately 34 h after device removal. Every cow was artificially inseminated between 49 and 56 h after removal of its insert (Day 10). Cows detected in oestrus 1 day after artificial insemination (AI) that were not detected in oestrus on the previous day were re-inseminated on that day. All cows treated on Day 0 were resynchronised for reinsemination by insertion of a used IVP4 device on Day 23. Oestradiol benzoate at a dose of 1.0 mg was administered i.m. at the time of device insertion. Inserts were removed 8 days later (Day 31) and 1.0 mg of ODB was injected i.m. 24 h later. Those cows detected in oestrus between Days 31 and 35 were artificially inseminated. On Day 46 these cows were resynchronised for a third round of AI by insertion of an IVP4 device, used previously to synchronise cows for the first and second rounds of AI, and administration of 1.0 mg of ODB i.m.. Eight days later inserts were removed. Cows detected in oestrus between Days 54 and 58 were artificially inseminated. Bulls were run with the herd between rounds of AI and removed after 21 weeks of mating. RESULTS: Treatment with ODB or GnRH at the first synchronised pro-oestrus did not significantly alter the reproductive performance over three rounds of AI or over a 21-week breeding period. Treatment also did not alter submission rates at the second round of AI or the proportion of non-pregnant and non-return cows ('phantom' cows) detected and did not result in significant differences in concentrations of progesterone in plasma 10 and 18 days after removal of inserts at the first round of AI. Treatment with GnRH reduced the proportion of cows detected in oestrus at the first round of AI (36.2 vs 97.5%; P < 0.001). CONCLUSION: Administration of GnRH compared to ODB at a synchronised pro-oestrus results in similar reproductive performance. Treatment with GnRH reduced the proportion of cows detected in oestrus following treatment. This may offer advantages to the way AI is managed by enabling insemination at a fixed-time and removing the need for the detection of oestrus.  相似文献   

11.
Four experiment stations (IL, KS, MN, and MO) conducted experiments to determine effects of introducing a CIDR (controlled internal device release) into an ovulation control program for postpartum suckled beef cows. Five hundred sixty cows were assigned randomly to two treatments: 1) 100 microg of GnRH (i.m.) followed in 7 d with 25 mg of PGF2alpha, followed in 48 h by a second injection of GnRH and one fixed-time insemination (Cosynch; n = 287) or 2) Cosynch plus one CIDR during the 7 d between the first injection of GnRH and PGF2alpha (Cosynch+P; n = 273). Cows at three stations were inseminated at the time of the second GnRH injection (n = 462), whereas 98 cows at the fourth station were inseminated 16 to 18 h after that injection. Blood samples were collected at d -17, -7, 0, and 2 relative to PGF2alpha to determine concentrations of progesterone. Ultrasonography was used to monitor follicle diameter on d 2 and to determine the presence of an embryo at 30 to 35 d after insemination. Pregnancy rates were greater (P < 0.05) for Cosynch+P- (58%) than for Cosynch-treated (48%) cows. No station x treatment interaction occurred; however, cows at MO (62%) and KS (60%) had greater (P < 0.05) pregnancy rates than those at IL (47%) and MN (44%). Cows that had follicles > 12 mm on d 2 had greater (P < 0.01) pregnancy rates than those with follicles < or = 12 mm regardless of treatment. Pregnancy rates were similar between Cosynch and Cosynch+P treatments when cycling cows had elevated concentrations of progesterone at d 0, but pregnancy rates were greater (P < 0.05) in the Cosynch+P (79%) than in the Cosynch (43%) treatment when cycling cows had low concentrations of progesterone on d 0 (at PGF2alpha injection). Similarly, among noncycling cows, pregnancy rates were greater (P < 0.05) in the Cosynch+P (59%) treatment than in the Cosynch (39%) treatment. Cows in greater body condition at the onset of the breeding season experienced improved (P < 0.001) overall pregnancy rates. Pregnancy rates for cows that calved > 50 d before the onset of the breeding season were greater (P < 0.01) than those for cows that calved < or = 50 d. Thus, treatment of suckled cows with Cosynch yielded acceptable pregnancy rates, but addition of a CIDR improved pregnancy rates in noncycling cows. Body condition and days postpartum at initiation of the breeding season affected overall efficacy of the Cosynch and Cosynch+P protocols.  相似文献   

12.
Application of AI in extensive beef cattle production would be facilitated by protocols that effectively synchronize ovarian follicular development and ovulation to enable fixed-time AI (TAI). The objectives were to determine whether use of a controlled internal drug release (CIDR) device to administer progesterone in a GnRH-based estrous synchronization protocol would optimize blood progesterone concentrations, improve synchronization of follicular development and estrus, and increase pregnancy rates to TAI in beef cows. Beef cows (n = 1,240) in 6 locations within the US Meat Animal Research Center received 1 of 2 treatments: 1)?an injection of GnRH [100 μg intramuscularly (i.m.)] followed by PGF(2α) (PGF; 25 mg i.m.) 7 d later (CO-Synch), or 2) CO-Synch plus a CIDR during the 7 d between GnRH and PGF injections (CO-Synch + CIDR). Cows received TAI and GnRH (100 μg i.m.) at 60 h after PGF. Progesterone was measured by RIA in blood samples collected 2 wk before and at initiation of treatment (d 0) and at PGF injection (d 7). Estrous behavior was monitored by Estrotect Heat Detectors. Pregnancy was diagnosed by ultrasonography 72 to 77 d after TAI. Plasma progesterone concentrations did not differ (P > 0.10) between synchronization protocols at first GnRH injection (d 0), but progesterone was greater (P < 0.01) at PGF injection (d 7) in cows receiving CO-Synch + CIDR vs. CO-Synch as a result of fewer CIDR-treated cows having progesterone ≤1 ng/mL at PGF (10.7 vs. 29.6%, respectively). A greater (P < 0.01) proportion of CO-Synch + CIDR vs. CO-Synch cows were detected in estrus within 60 h after PGF (66.7 vs. 57.8 ± 2.6%, respectively) and a greater (P < 0.01) proportion were pregnant to TAI (54.6 vs. 44.3 ± 2.6%, respectively). For both synchronization protocols, cows expressing estrus within 60 h before TAI had a greater pregnancy rate than cows without estrus. For cows with plasma progesterone ≤1 ng/mL at PGF injection, CO-Synch + CIDR increased pregnancy rate (65.2 ± 5.9 vs. 30.8 ± 3.4% with vs. without CIDR), whereas pregnancy rates did not differ (P > 0.10) between protocols (52.1 ± 2.1 vs. 50.0 ± 2.4%, respectively) when progesterone was >1 ng/mL (treatment × progesterone; P < 0.01). Inclusion of a CIDR in the synchronization protocol increased plasma progesterone concentration, proportion of cows detected in estrus, and pregnancy rate; however, the increase in pregnancy rate from inclusion of the CIDR was primarily in cows with decreasing or low endogenous progesterone secretion during treatment.  相似文献   

13.
AIMS: To determine the reproductive performance of cows diagnosed as anoestrus prior to the planned start of mating (PSM) when they were either treated when first diagnosed, or left untreated until 16 days after the PSM. METHODS: A clinical trial was conducted during the 1996/97 and 1997/98 breeding seasons involving 823 anoestrous dairy cows in 14 herds. On Day -8 (PSM = Day 0), cows in one group (Treated) were each treated with an intravaginal device containing 1.9 g of progesterone (CIDR). The CIDR device was removed on Day -2, and on Day -1 each cow was injected intramuscularly with 1 mg oestradiol benzoate. Cows in the second group (Control) remained untreated at the time of first examination. All cows detected in oestrus after the PSM were mated by artificial insemination (AI) or a bull. Sixteen days after the PSM, all cows that had not been mated were presented for veterinary examination, and those which were still classified as anoestrus were treated with the previously described CIDR regimen. Pregnancy status and approximate date of conception were determined by palpation per rectum 10 -13 weeks after the PSM or 6 weeks after the end of the mating period. RESULTS: Treatment of anoestrous cows 8 days before the PSM significantly increased the number of cows detected in oestrus (95.0% vs 63.1%; p<0.001) and conceiving (59.5% vs 38.8%; p<0.001) during the first 21 days of mating, and reduced the interval from PSM to conception by 7.5 days (p<0.001). There was no significant difference between the conception rate of cows mated following the CIDR treatment regimen compared to cows mated at their first spontaneous oestrus after calving (52.4% vs 58.3%; p = 0.143). CONCLUSION: Diagnosis and treatment of anoestrous dairy cows prior to the start of mating significantly improves their reproductive performance under the seasonal mating conditions typical of spring-calving New Zealand dairy herds.  相似文献   

14.
This study compared two types of controlled internal drug release (CIDR)-based timed artificial insemination (TAI) protocol for treatment of repeat breeder dairy cows. In the first trial of the experiment, 55 repeat breeder cows were randomly assigned to the following two treatments. (1) In the EB group, a CIDR device was inserted into the cows, and then the cows were administered an injection of 1 mg estradiol benzoate (EB) plus 50 mg progesterone (P4; Day 0). On Day 7, they were given an injection of PGF(2alpha) and the CIDR device was removed. The cows were given an injection of 1 mg EB on Day 8 and were subjected to TAI 30 h later (n=27). (2) In the gonadotrophin releasing hormone (GnRH) group, a CIDR device was inserted into the cows, and then the cows were administered an injection of 250 microg gonadorelin (GnRH; Day 0). On Day 7, they were given an injection of PGF(2alpha) and the CIDR device was removed. The cows were given an injection of 250 microg GnRH on Day 9 and were subjected to TAI 17 h later (n=28). In the second trial, 41 repeat breeder cows that were confirmed as not pregnant in the first trial were randomly assigned to the same two treatments used in the first trial (an EB group of 20 cows and a GnRH group of 21 cows). The ovaries of 15 cows from each group were examined by transrectal ultrasonography in order to observe the changes in ovarian structures, and blood samples were collected for analysis of serum P4 concentrations. The pregnancy rates following TAI in the first (18.5 vs. 32.1%) and second (40.0 vs. 38.1%) trials and the combined rates (27.7 vs. 34.7%) did not differ between the EB and GnRH groups. The proportions of cows with follicular wave emergence within 7 days did not differ between the EB (12/15) and GnRH groups (13/15). The interval to wave emergence was shorter (P<0.01) in the GnRH group than in the EB group, but there was no difference in the mean diameters of dominant follicles on Day 7 between the groups. Moreover, the proportions of cows with synchronized ovulation following a second EB or GnRH treatment did not differ between the groups. In conclusion, treatment with either EB or GnRH in a CIDR-based TAI protocol results in synchronous follicular wave emergence, follicular development, synchronous ovulation, and similar pregnancy rates for TAI in repeat breeder cows.  相似文献   

15.
Two experiments were conducted to evaluate whether hCG administered 7 d before initiating the CO-Synch + controlled internal drug release (CIDR) ovulation synchronization protocol (Exp. 1 and 2), or replacing GnRH with hCG at the time of AI (Exp. 1), would improve fertility to a fixed-time AI (TAI) in suckled beef cows. In addition, the effects of hCG on follicle dynamics, corpus luteum development, and concentrations of progesterone (P4) were evaluated. In Exp. 1, cows were stratified by days postpartum, age, and parity and assigned randomly to a 2 × 2 factorial arrangement of 4 treatments: 1) cows received 100 μg of GnRH at CIDR insertion (d -7) and 25 mg of PGF(2α) at CIDR removal (d 0), followed in 64 to 68 h by a TAI plus a second injection of GnRH at TAI (CG; n = 29); 2) same as CG but the second injection of GnRH at the time of insemination was replaced by hCG (CH; n = 28); 3) same as CG, but cows received hCG 7 d (d -14) before CIDR insertion (HG; n = 28); and 4) same as HG, but cows received hCG 7 d (d -14) before CIDR insertion (HH; n = 29). Pregnancy rates were 52, 41, 59, and 38% for GG, GH, HG, and HH, respectively. Cows receiving hCG (39%) in place of GnRH at TAI tended (P = 0.06) to have poorer pregnancy rates than those receiving GnRH (56%). Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows with concentrations of P4 >1 ng/mL at d -7, increased (P < 0.02) concentration of P4 on d -7, and decreased (P < 0.001) the size of the dominant follicle on d 0 and 3, compared with cows not treated with hCG on d -14. In Exp. 2, cows were stratified based on days postpartum, BCS, breed type, and calf sex and then assigned to the CG (n = 102) or HG (n = 103) treatments. Overall pregnancy rates were 51%, but no differences in pregnancy rates were detected between treatments. Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows cycling on d -7 and increased (P < 0.05) concentrations of P4 on d -7 compared with pre-CO-Synch controls. Therefore, pretreatment induction of ovulation after hCG injection 7 d before initiation of CO-Synch + CIDR protocol failed to enhance pregnancy rates, but replacing GnRH with hCG at the time of AI may reduce pregnancy rates.  相似文献   

16.
The objective of this study was to compare the reproductive performance of anoestrous dairy cows treated just prior to the mating start date (MSD) with a Controlled Internal Drug Releasing Device (CIDR) which was placed intravaginaly for either 6 or 8 days, and a combination of oestradiol benzoate. Lactating dairy cows (n = 926) that had been diagnosed with anovulatory anoestrus were divided into two sub-groups. A hormonal treatment protocol that involved the use of a CIDR device containing 1.9 g of progesterone was inserted into the vagina of each cow and left intravaginally for either 6 (6-day group, n = 441) or 8 days (8-day group, n = 485). Every cow in the trial was inseminated after being detected in oestrus from Day -2 onwards (where Day 0, was a herd's MSD), using an appropriate detection aid according to the herds' preference. Cows that had been seen in oestrus and were inseminated by Day 2 were selected for re-synchrony. The standardised re-synchrony involved the re-insertion of a previously used CIDR device into the vagina of each cow on Day 14, together with an injection of 1.0 mg oestradiolbenzoate i.m. This CIDR device was removed on Day 22 and each of these cows injected with 1.0 mg oestradiol benzoate i.m. on Day 23. Each re-synchronised cow that was detected in oestrus was re-inseminated. Treatment with an 8-day CIDR increased the proportion of cows submitted for insemination within the first 3 days of the MSD, compared with the 6-day group (83.7 % vs 71.2%, respectively, P < 0.001), as well as the proportion of cows conceiving within the first 3 days of MSD (36.2% vs 27.7%, P = 0.02), but reduced both the interval from MSD to the first service (4.5 +/- 0.5 vs 6.8 +/- 0.7, P = 0.01), and the interval from MSD to conception (28.1 +/- 1.5 vs 34.0 +/- 1.8, P = 0.009). A greater percentage of the cows in the 6-day group that were not pregnant to the first insemination were submitted for a second insemination by Day 28 compared with the 8-day group (81.1% vs 68.3%, P < 0.001). Conception rates for cows submitted for this second insemination by Day 28 of the MSD were also higher in the 6-day than in the 8-day group (48.4% vs 33.9%, P = 0.009). The percentage of cows pregnant at the end of a herd's AI period of 6 weeks did not differ (57.1% vs 54.8% for 8-day and 6-day groups, respectively, P = 0.42); neither did the proportion of cows pregnant at the end of the a herd's combined AI and natural mating period of 21 weeks (81.4% vs 79.2%, for 8-day and 6-day groups respectively P = 0.36). Treatment of anovulatory anoestrous dairy cows with a combination of an 8-day CIDR and oestradiol benzoate before the MSD improved their reproductive performance by increasing the portion of cows submitted for insemination within the first 3-days of the MSD by reducing the interval from MSD to first service and by increasing the conception rate to the first insemination to collectively reduce the average interval from MSD to conception.  相似文献   

17.
This experiment was conducted to investigate the effects of different exogenous progesterone sources administrated after artificial insemination (AI) on serum progesterone (P(4) ) concentration and pregnancy rates in Holstein lactating cows. Sixty-four lactating Holstein dairy cows were allocated to four different treatments (n = 16 per treatment): the cows 1) were injected with physiological saline on days 5 and 13 after AI (control group); 2) were injected with progesterone on days 5 and 13 after AI (P group); 3) received controlled internal drug releasing device (CIDR) for a period from day 5 to 19 after AI (CIDR group); and 4) were injected with gonadotropin-releasing hormone (GnRH) agonist on days 5 and 13 after AI (GnRH group). Blood samples were collected on days 0 (AI day), 5, 13, 16 and 19 after AI to determine serum P(4) concentration. The results revealed a significant difference among treatment groups for serum P(4) concentration on days 13, 16 and 19 with the lowest concentration of serum P(4) for the control group. The pregnancy rate was also positively affected by all the treatments with CIDR having the greatest effect on pregnancy rate. Overall, the results indicated that CIDR has the greatest effect on serum P(4) concentration and pregnancy rate, although the administration of P and GnRH during days after AI increased serum P(4) concentration in lactating dairy cows as well.  相似文献   

18.
This experiment compared the reproductive performance of synchronised anoestrous dairy cows that were treated initially with a combination of progesterone and oestradiol benzoate and then with either gonadotrophin-releasing hormone (GnRH) or oestradiol benzoate to resynchronise returns to service. It was hypothesised that injecting anoestrous dairy cows with GnRH 12-15 days after insemination and coinciding with the time of insertion of a controlled intravaginal progesterone-releasing (CIDR) device would increase conception rates to the preceding 1st insemination compared with oestradiol benzoate treated cows; both GnRH and oestradiol benzoate would resynchronising the returns to service of those cows that did not conceive to the preceding insemination. Groups of cows in 11 herds were presented for a veterinary examination after they had not been seen in oestrus postpartum. Those cows diagnosed with anovulatory anoestrus (n = 1112) by manual rectal palpation and/or ultrasonography were enrolled in the trial. Each enrolled cow was injected with 2 mg oestradiol benzoate i.m. on Day -10, (where Day 0 was the 1st day of the planned insemination) concurrently with vaginal insertion of a CIDR device. The device inserted was withdrawn on Day -2 and then each cow injected i.m. with 1 mg of oestradiol benzoate on Day -1 unless it was in oestrus. Observation for oestrus preceded each insemination. Every cow that had been inseminated on Days -1,0,1 or 2 was presented for treatment for resynchrony on Day 14 (n = 891). They were divided into 2 groups; those with an even number were each injected i.m. with 250 microg of a GnRH agonist (Treatment group n = 477); each of the cows with an odd number injected i.m. with 1 mg of oestradiol benzoate (control group, n = 414). Each GnRH or oestradiol benzoate injection preceded reinsertion of a CIDR device previously inserted from Days -10 to -2. It was withdrawn on Day 22, 24 hours before injecting 1 mg oestradiol benzoate. Cows observed in oestrus were submitted for a 2nd insemination. Every enrolled cow still present in the herd was pregnancy tested by palpation of uterine contents per rectum about 6 weeks later and again at the end of a herd's seasonal breeding programme. The alternative use of GnRH instead of oestradiol benzoate did not affect the percentage of cows conceiving within 3 days of the mating start date (MSD) (35.6 % vs 35.3 %, P = 0.90), resubmission rates for a 2nd insemination among cows not pregnant to the 1st insemination (81.6 % vs 83.5 %, P = 0.41), 6-week pregnancy rate (59.3 % vs 60.6 %, P = 0.65), 21-weekpregnancy rate (86.6 vs 85.0, P = 0.36), mean interval from MSD to conception (32.5 +/- 1.8 days vs 29.9 +/- 1.8 days, P = 0.26) or conception rate of cows reinseminated by Day 28 (43.3 % vs 38.8 %, P = 0.39). When GnRH was compared with oestradiol benzoate, it did not increase conception rates to the 1st service; it was as effective as oestradiol benzoate in synchronising returns to service in previously treated anoestrous cows that did not conceive to the 1st service. Its use affected neither conception rates to the preceding 1st inseminations nor to the following 2nd inseminations.  相似文献   

19.
A group of 97 spring-calving beef cows were initially oestrus synchronised with controlled internal drug release (CIDR) intravaginal progesterone implants inserted for nine days and a prostaglandin injection on day 7. Approximately half the cows were given 10 microg buserelin when the implants were inserted, and they all received a single fixed-time artificial insemination (AI) 56 hours after the withdrawal of the implants. The overall pregnancy rate to the first synchronised AI was 55 per cent, the buserelin-treated cows having a pregnancy rate of 63 per cent compared with 47 per cent in the untreated cows (P>0.05). Sixteen days after the first synchronised AI all the cows were re-implanted with used CIDR implants which were removed five days later, and the cows received a second synchronised AI on days 23 to 24. Cows which received the second AI were implanted with new CIDR devices 16 days later and these were removed after five days and the non-pregnant cows received a third synchronised AI. The pregnancy rates to the second and third synchronised services were 74 per cent and 75 per cent, respectively.  相似文献   

20.
We studied the effects of administering estradiol benzoate (EB) plus progesterone (P4) as part of a CIDR-based protocol during the growth or static phases of dominant follicle development on follicular wave emergence, follicular growth, synchrony of ovulation and pregnancy rate following CIDR withdrawal, treatment with PGF(2alpha) and GnRH, and fixed-time artificial insemination (TAI). Forty-one previously synchronized lactating Holstein dairy cows were randomly allocated to three treatment groups. The control group (n=14) received a CIDR on the third day after ovulation only (Day 0). The two treatment groups were administered CIDRs comprising 2 mg EB and 50 mg P4 either on the third (T1, n=14) or eighth day (T2, n=13) after ovulation (Day 0). All cows received PGF(2alpha) after CIDR removal on Day 7, GnRH on Day 9, and TAI 16 h after GnRH treatment. The proportion of cows with follicular wave emergence within 8 days of treatment differed (P<0.01) among the control (14.3%), T1 (85.7%), and T2 groups (92.9%). However, the mean intervals between treatment and wave emergence were not significantly different. There were significant differences in the diameters of the dominant follicles on Day 7 (P<0.01) and in preovulatory follicles on Day 9 (P<0.01), with the largest follicles observed in the control group and the smallest follicles observed in the T2 group. In contrast, the numbers of cows showing synchronous ovulation after GnRH treatment (92.9 to 100.0%) and pregnancy following TAI (46.2 to 50.0%) were similar between the treatment groups. The results showed that, irrespective of the phase (growth or static) of the dominant follicle, administration of 2 mg EB plus 50 mg P4 to CIDR-treated lactating dairy cows induced consistent follicular wave emergence and development, synchronous ovulation after GnRH administration, and similar pregnancy rates following TAI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号