首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Several findings indicate an impact of ozone on stem diameter growth leaving the question unanswered, if and how the intra-annual growth pattern is changed. In this study the hypotheses are tested, that (1) ozone will alter the absolute growth and (2) alter and shift the period of growth activity within a year. Our data originates from the free air ozone fumigation experiment ‘Kranzberger Forst’ in a mixed stand of Norway spruce and common beech near Freising/Germany. Annual and intra-annual growth reactions of a sample of five adult beech and five spruce trees, exposed to double ambient ozone were examined and compared to the same number of untreated reference trees. Diameter increments were measured with plastic diameter girth bands and high-resolution, automatically logging micro-dendrometers, mounted at breast height (1.3 m). We used the increment data from the growth periods 2000 to 2005. The high-resolution micro-dendrometer data were examined by fitting a Weibull function to the standardized annual growth profiles to obtain curve parameters for statistical tests. We estimated the parameters ‘T’ which represents the point of time, when 63% of the annual diameter increment is performed and the parameter ‘m’, the Weibull module, which was used as an indicator for the span of time needed to complete the annual growth. The statistical significance of these curve parameters, together with the absolute diameter increment, was tested by use of mixed regression models. The analysis of the growth curve parameters revealed a significantly altered intra-annual growth pattern of both species induced by ozone. Spruce under ozone showed reduced absolute annual diameter increment and a preponed growth activity compared to untreated trees. Beech’s absolute diameter increment was not affected under ozone, but its growth activity was delayed. For both species, ozone fumigation did not alter the individual length of the annual growing season. These results are discussed with respect to drought, tree ring anatomy and tree allometry. The study shows that ozone is able to change growth behaviour of trees even if increment losses are not obvious. This article belongs to the special issue "Growth and defence of Norway spruce and European beech in pure and mixed stands".  相似文献   

2.
Seasonal fluxes of CO2 from soil and the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) were estimated for a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) in Central Europe. Mature trees of each species were girdled in August 2002 to eliminate carbohydrate allocation to roots. SR was measured at distances of 0.5, 1.0, and 1.5/2.0 m from the bole of each tree at 1–2 weeks intervals throughout the fall of 2002 and monthly during the spring and summer of 2003. The contribution of roots and mycorrhizae to total SR was estimated by the decrease in SR compared to ungirdled control trees to account for seasonal patterns evident in controls. SR decreased with soil temperature in the fall 2002 and increased again in 2003 as soil warmed. During most of the study period, SR was strongly related to soil temperature. During the dry summer of 2003, however, SR appeared to be uncoupled from temperature and was strongly related to soil water content (SWC). Mean rates of SR in beech and spruce control plots as well as root densities did not show a clear pattern with distance from the bole. SR decreased to levels below controls in beech within a few days after girdling, whereas spruce did not show a significant decrease until October 2002, 6 weeks after girdling. In both beech and spruce, decreased SR in response to girdling was greatest closest to the bole, possibly reflecting increased mycorrhizal activity close to the bole. Autotrophic respiration was estimated in beech to be as much as 50% of the total SR in the stand. The contribution of autotrophic respiration was less certain for spruce, although close to the bole, the autotrophic fraction may contribute to total SR as much as in beech. The large fraction of autotrophic respiration in total SR requires better understanding of tree level stresses that affect carbon allocation below ground.  相似文献   

3.
Summary The aim of the present study was to investigate whether the resistance of beech foliage(Fagus sylvatica) against oxidative stress was affected by soil quality, nitrogen or CO2 fertilisation, or lachnid infestation(Phyllaphis fagi). For this purpose young beech trees were grown for four years in reconstructed calcareous or acidic forest soils in open top chambers under ambient or elevated CO2 concentrations with two levels of nitrogen fertilisation. At harvest lachnid colonisation was observed, preferentially on leaves from trees in calcareous soil and on leaves from trees fertilised with the high nitrogen level. General leaf characteristics such as pigment concentrations, dry mass, and leaf mass ber area were not affected by the soil type, nitrogen fertilisation or CO2 regime. Leaves colonised with lachnids displayed slightly increased leaf mass per area. When the stress resistance was challenged by exposure to paraquat — a herbicide inducing oxidative stress — leaves from trees grown on calcareous soil maintained significantly longer membrane integrity and, thus, were better protected against stress than leaves from trees on acidic soil. Other experimental variables had negligible or no effects on the resistance against oxidative stress.   相似文献   

4.
Crown transparency estimates of Scots pine, Norway spruce, common beech, pedunculate and sessile oak, annually surveyed between 1990 and 2004 within a grid over Germany, provide a suitable response variable to study drought effects on forest trees. Major climatic factors, available on a monthly basis as plot-specifically interpolated values and parameters of site and stand conditions, biotic and other relevant factors were used as predictors in different cross- and length-sectional, and longitudinal models. Stand age is a considerable and most constant driver of crown transparency in all species. Pine, spruce and beech responded—mainly with a delay of 1 year—with some foliar loss in areas where there was a surplus of temperature after the generally hot and dry summer of 2003. Parallel time-series analyses delivered species-specific geographic large-scale patterns with delayed or recent precipitation deficits or temperature surpluses. Even if beech is partly responding in current years with leaf loss towards precipitation surpluses, defoliation is especially high 1 year after hot summers, partly a result of high seed sets after such summers. Crown condition of oak responds in dry and warm areas according to the drought stress hypothesis, however, in cool and wet mountainous ranges oak responds after wet summers with higher defoliation. Longitudinal approaches revealed for all 4-tree species significant relationships between crown condition and deviations from the long-term means of temperature, precipitation but also global radiation and wind speed. Results do not always match the drought stress hypothesis, however, this is not to expect considering the heterogeneous site, stand and climatic conditions across Germany. Complex interactions of climatic and biotic factors also impede simple relationships. Soil-related clusters reveal higher sensitivity of spruce and beech towards climatic drought factors on more acid soils with thin humus layers. Also clusters constructed from plot-specific courses of defoliation reveal groups with rather closer relationships like a group of pine plots in the Oberpfalz, which seems to be especially sensitive to summer drought.  相似文献   

5.
We present a field study on the drought effects on total soil respiration (SRt) and its components, i.e., “autotrophic” (SRa: by roots/mycorrhizosphere) and “heterotrophic” respiration (SRh: by microorganisms and soil fauna in bulk soil), in a mature European beech/Norway spruce forest. SRa and SRh were distinguished underneath groups of beech and spruce trees using the root exclusion method. Seasonal courses of SRa and SRh were studied from 2002 to 2004, with the summer of 2003 being extraordinarily warm and dry in Central Europe. We (1) analyzed the soil temperature (T s) and moisture sensitivity of SRa and SRh underneath both tree species, and (2) examined whether drought caused differential decline of SRa between spruce and beech. Throughout the study period, SRa of beech accounted for 45–55% of SRt, independent of the soil water regime; in contrast, SRa was significantly reduced during drought in spruce, and amounted then to only 25% of SRt. In parallel, fine-root production was decreased during 2003 by a factor of six in spruce (from 750 to 130 mg l−1 a−1), but remained at levels similar to those in 2002 in beech (about 470 mg l−1 a−1). This species-specific root response to drought was related to a stronger decline of SRa in spruce (by about 70%) compared to beech (by about 50%). The sensitivity of SRa and SRh to changing T s and available soil water was stronger in SRa than SRh in spruce, but not so in beech. It is concluded that SRa determines the effect of prolonged drought on the C efflux from soil to a larger extent in spruce than beech, having potential implications for respective forest types. This article belongs to the special issue "Growth and defence of Norway spruce and European beech in pure and mixed stands."  相似文献   

6.
Saplings of Fagus sylvatica and Picea abies were grown under conditions of intra and interspecific competition in a 2-year phytotron study under combinations of ambient and elevated ozone (+O3 which is 2 × O3, but <150 nl l−1) as well as carbon dioxide concentrations (+CO2 which is amb. CO2 + 300 μl CO2 l−1) in a full factorial design. Saplings were analysed for various mineral nutrients in different plant organs as well as biomass production and crown development. The study was based on the assumption that nutritional parameters important for growth and competitiveness are affected by stress defence under limiting nutrient supply. The hypotheses tested were (1) that nutrient uptake-related parameters (a) as well as efficiencies in nutrient use for above-ground competition (b) of beech rather than spruce are impaired by the exposure to elevated O3 concentrations, (2) that the efficiency in nutrient uptake of spruce is enhanced by elevated CO2 concentrations in mixed culture, and (3) that the ability to occupy above-ground space at low nutrient cost is co-determinant for the competitive success in mixed culture. Clear nitrogen deficiencies were indicated for both species during the 2-year phytotron study, although foliar nitrogen-biomass relationships were not so close for spruce than for beech. O3 stress did not impair nutrient uptake-related parameters of beech; thus hypothesis (1a). was not supported. A negative effect of elevated O3 (under amb. CO2) on the N and P based efficiencies in above-ground space occupation (i.e. lower crown volume per unit of N or P invested in stems, limbs and foliage) of beech supported hypothesis (1b). It appeared that ozone stress triggered a nutrient demand for stress defence and tolerance at the expense of above-ground competition (trade-off). Crown volume of beech under O3 stress was stabilized in monoculture by increased nutrient uptake. In general, the +CO2-treatment was able to counteract the impacts of 2 × O3. Elevated CO2 caused lower N and S concentrations in current-year foliage of both tree species, slightly higher macronutrient amounts in the root biomass of spruce, but did not increase the efficiencies in nutrient uptake of spruce in mixed culture. Therefore hypothesis (2) was not supported. At the end of the experiment spruce turned out to be the stronger competitor in mixed culture as displayed by its higher total shoot biomass and crown volume. The amounts of macronutrients in the above-ground biomass of spruce individuals in mixed culture distinctly exceeded those of beech, which had been strongly reduced by interspecific competition. The superior competitiveness of spruce was related to higher N and P-based efficiencies in above-ground space occupation as suggested in hypothesis (3). This article belongs to the special issue “Growth and defence of Norway spruce and European beech in pure and mixed stands”.  相似文献   

7.
Growth of regenerating trees in different light environments was studied for the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were silver fir (Abies alba Mill.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected and measured in different stands from two different geographical locations. Regenerating trees were measured for height and diameter growth during the summer of 2002. For each seedling/sapling, percentage of above canopy light (PACL) and stand basal area (BA) were used to assess available and occupied growing space respectively. Regeneration growth was compared against these two variables and regression relationships were developed. Using these models, we predicted the dynamics of regeneration as both growth and species composition. Our results showed that in low-light environments (PACL<20–35%; BA>30 m2/ha), shade tolerant fir and beech clearly outcompeted the spruce. Therefore, in dense stands, spruce could be eliminated by the shade tolerant species. For intermediate levels of cover (PACL=35–70%; BA=15–35 m2/ha) the spruce grew at comparable rates as the beech and fir. All three species showed similar growth rates in open conditions (PACL>80–90%; BA<15–20 m2/ha) with the spruce having a tendency to outgrow the others. However, in terms of establishment, such conditions favor spruce and inhibit fir and beech.  相似文献   

8.
The chemical fertility of the forest soils in the Belgian Ardenne is threatened by acidifying and eutrophying deposition and by the nutrient removal due to timber harvesting. Experiments were launched to evaluate the ability of liming and fertilization to improve foliar nutrition, maintain or restore crown condition and promote tree growth. In 1995, 10 liming and fertilization trials were installed in even-aged stands of European beech (5) and Norway spruce (5) distributed throughout the Ardenne. In each stand, two treatments were tested: liming with 3,000 kg ha−1 of dolomitic limestone and liming plus fertilization with 0 to 800 kg ha−1 of rock phosphate and 0 to 350 kg ha−1 of K2SO4. Between 1995 and 2006, the foliar Ca and Mg status of spruce and beech trees improved in the limed stands, which limited significantly but did not prevent the decline in crown condition triggered by the summer drought in 2003. For spruce, liming also increased the increment in basal area. The additional fertilization increased the foliar nutrition in P but had no significant effects on soil chemistry and tree vitality.  相似文献   

9.
Elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) affect primary metabolism of trees in opposite ways. We studied their potential interactions on carbohydrate concentrations and contents. Two hypotheses currently under debate were tested. (1) Stimulation of primary metabolism by prolonged exposure to elevated [CO2] does not compensate for the adverse effects of O3 on carbohydrate accumulation and biomass partitioning to the root. (2) Growth in a mixed-species planting will repress plant responses to elevated [O3] and [CO2] relative to conditions in a monoculture. To this end, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) saplings grown under conditions of intra- and interspecific competition were pre-acclimated for 1 year to ambient or elevated [CO2]. In the following 2-year phytotron study, trees were exposed to factorial combinations of ambient and elevated [O3] and [CO2]. The total carbohydrate content (sugar and starch) of spruce was greater in plants exposed to elevated [CO2] than in plants exposed to ambient [CO2]. In beech, the opposite response was observed, especially when this species was grown in combination with spruce. Overall, the data did not support Hypothesis 1, because the adverse effects of O3 were counteracted by elevated [CO2]. Support for Hypothesis 2 was species-dependent. In beech saplings, reduction of carbohydrates by elevated [O3] and stimulation by elevated [CO2] were repressed by competitive interaction with spruce. In contrast, in spruce, stimulation of carbohydrates by elevated [CO2] was similar in mono- and mixed cultures. Thus Hypothesis 2 was supported for beech but not spruce. We conclude that, in juvenile beech and spruce, a 3-year exposure to elevated [CO2] counteracts the adverse effects of O3 on carbohydrate concentrations and contents. For beech, sensitivity to elevated [CO2] and [O3] was high in monoculture but was largely repressed by interspecific competition with spruce. In contrast, the response of spruce to perturbations of atmospheric chemistry was not significantly affected by either intra- or interspecific competition.  相似文献   

10.
Yezo spruce trees (Picea jezoensis), approximately 40-year-old were inoculated with eight ophiostomatoid fungi associated withIps typographus f.japonicus to compare relative virulence of the fungi. Among them,Ophistoma penicillatum formed the longest necrotic lesion on inner bark around inoculation points, followed byO. aenigmaticum, Ceratocystis polonica, andO. bicolor, whileC. polonica formed a larger dry zone in sapwood than the other fungi. Yezo spruce trees were also mass inoculated withC. polonica, O. penicillatum, O. piceae singly or mixed to demonstrate the ability of the fungi to kill Yezo spruce trees. The trees inoculated withC. polonica, O. penicillatum or the mixed inoculum showed discoloration of needles in the early summer of the next year and died by autumn. However, the trees inoculated withO. piceae or the control inocula did not die, except for one tree. These results indicated thatC. polonica andO. penicillatum were more virulent thanO. piceae and suggested that they might be at least partially responsible for the mortality of the beetle-infested Yezo spruce trees. Part of this study was supported by the Sumitomo Foundation, Japan to Y. Yamaoka and I. Takahashi. Part of this study was presented at the 107th meeting of the Japanese Forestry Society, April 1–4, 1996, Tsukuba, Ibaraki, at the 42nd annual meeting of the Mycological Society of Japan, May 16–17, 1998, Kyoto, and at the 110th meeting of the Japanese Forestry Society, April 2–5, 1999, Matsuyama, Ehime. Contribution No. 143, Laboratories of Plant Pathology and Mycology, Institute of Agriculture and Forestry, University of Tsukuba.  相似文献   

11.
12.
Bauer G  Schulze ED  Mund M 《Tree physiology》1997,17(12):777-786
Mineral nutrition of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) was investigated along a transect extending from northern Sweden to central Italy. Nitrogen (N) concentrations of needles and leaves in stands growing on acid soils did not differ significantly between central Italy and southern Sweden (1.0 +/- 0.1 mmol N g(-1) for needles and 1.9 +/- 0.14 mmol N g(-1) for leaves). In both species, foliar N concentrations were highest in Germany (1.2 mmol N g(-1) for needles and 2.0 mmol N g(-1) for leaves) and decreased by 50% toward northern Sweden (0.5 mmol N g(-1)). Both species showed constant S/N and P/N ratios along the transect. Calcium, K and Mg concentrations generally reflected local soil conditions; however, Mg concentrations reached deficiency values in Germany. Leaf area per unit dry weight varied significantly along the transect with lowest values for Norway spruce recorded in northern Sweden and Italy (3.4 m(2) kg(-1)) and a maximum in central Europe (4.7 m(2) kg(-1)). A similar pattern was observed for beech. Despite the low variation in foliar N concentrations on the large geographic scale, local and regional variations in N concentrations equalled or exceeded the variation along the entire continental transect. Furthermore, nutrient contents (i.e., nutrient concentration x dry weight per needle or leaf) showed a greater variation than nutrient concentrations along the transect. Nitrogen contents of Norway spruce needles reached minimum values in northern Sweden (2.4 micro mol N needle(-1)) and maximum values in Denmark (5.0 micro mol N needle(-1)). The N content of beech leaves was highest in Denmark (242 micro mol N leaf(-1)). At the German site, foliar N content rather than N concentration reflected the seasonal dynamics of foliar growth and N storage of the two species. During foliage expansion, there was an initial rapid increase in N content and a decrease in N concentration. This pattern lasted for about 2 weeks after bud break and was followed by 6 weeks during which dry weight and N content of the foliage increased, resulting in a further decrease in N concentration. During summer, dry weight and N content of mature needles of Norway spruce increased further to reach a maximum in autumn, whereas N concentration remained constant. In spring, reallocation of N from 1- and 2-year-old needles was 1.5 and 1.0 micro mol N needle(-1), respectively. This remobilized N was a major source of N for the development of new needles, which had an N content of 1.5 micro mol N needle(-1) after bud break. The seasonal remobilization of N from old foliage decreased with increasing needle age. Needle N content and dry weight decreased progressively with age (1 micro mol N needle(-1) between age classes 2 and 5), whereas N concentrations remained constant. For Norway spruce, annual stemwood production was correlated with needle N content but not with foliar N concentration or with the total amount of N in the canopy. Interspecific and geographical differences in plant nutrition are discussed on the basis of competitive demands for C and N between growth of foliage and wood.  相似文献   

13.
The broad range in plant responses to chronic O(3) exposure compels a search for integrative, underlying principles. One such approach is the unifying theory proposed by Reich (1987), which combines the O(3) response of contrasting physiognomic classes of plants on the basis of their intrinsic leaf diffusive conductance and, hence, capacity for O(3) uptake. Physiognomic classes differ in the proportional decline in photosynthesis and growth when compared on the basis of cumulative O(3) exposure per unit time, but converge when compared on the basis of O(3) uptake per unit time or cumulative O(3) uptake over the entire lifetime of the leaf. The theory is based on observations on a large number of contrasting plant species, relying primarily on studies of juvenile trees subjected to short-term O(3) exposure. To test the applicability of the unifying theory to mature trees, broadleaf deciduous European beech (Fagus sylvatica L.) and the evergreen conifer Norway spruce (Picea abies (L.) Karst.) in a mature mixed stand were exposed to either ambient air (control) or air with twice the ambient O(3) concentration delivered into the canopy by means of a free-air fumigation system. We accounted for differences in growing season length, leaf longevity and O(3)-related effects on leaf diffusive conductance in determining total O(3) uptake over the lifetime of the leaf. On this basis, Norway spruce needles required 5 years to take up as much O(3) as did beech leaves in one growing season. The core of the unifying theory on O(3) sensitivity was substantiated in relation to O(3) exposure and uptake. However, contrary to the unifying theory, which was formulated on the basis of results with juvenile trees, the O(3) response of mature trees in a natural stand was more complex. The increased complexity was attributed to additional environmental stressors, stress compensation at the whole-tree level, and differential O(3) sensitivities of leaves according to age class and position within the canopy. Contrary to the theory, photosynthesis was no less sensitive to O(3) in Norway spruce than that of beech, and was reduced in the twice-ambient O(3) regime in the first year of exposure.  相似文献   

14.
The ecological effects of planting exotic Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in Central Europe are still poorly understood. The aim of this study was to answer the question of whether Douglas-fir affects tree specific arthropod communities in different mature forest types (Douglas-fir, spruce and beech dominated) in Southern Germany. Therefore, arthropod communities of stem and tree crown strata of Douglas-fir and spruce (Picea abies L.) were sampled in the years 1999–2001 using arboreal photo-eclectors and flight interception traps. Statistical analysis was conducted for all species and focused on conifer specialists at three levels: (1) species diversity, (2) guild structure and (3) community structure. Within the stem stratum, species diversity was significantly higher on spruce than on Douglas-fir independent of year and stand composition. This could not be explained by a single feeding guild, rather by species changing strata during the vegetation period. In contrast, species diversity in tree crowns was approximately the same for both conifer species. However, communities in Douglas-fir crowns were conspicuously different from those in spruce crowns, especially in the Douglas-fir dominated stand type. While zoophagous insects exhibited higher activity on Douglas-fir in 2000, xylophagous beetles were more abundant on spruce in 2001. In European beech stands with widely spaced Douglas-fir trees, the site specific and broad-leaved tree related fauna might be maintained. In addition, Douglas-fir with its resource of Adelges cooleyi and crowns that overtop the broad-leaved tree canopy, offer additional resources for several aphidophagous and thermophile species.  相似文献   

15.
Extrapolation of the effects of ozone on seedlings to large trees and forest stands is a common objective of current assessment activities, but few studies have examined whether seedlings are useful surrogates for understanding how mature trees respond to ozone. This two-year study utilized a replicated open-top chamber facility to test the effects of subambient, ambient and twice ambient ozone concentrations on light-saturated net photosynthesis (P(max)) and leaf conductance (g(l)) of leaves from mature trees and genetically related seedlings of northern red oak (Quercus rubra L.). Gas exchange measurements were collected four times during the 1992 and 1993 growing seasons. Both P(max) and g(l) of all foliage followed normal seasonal patterns of ontogeny, but mature tree foliage had greater P(max) and g(l) than seedling foliage at physiological maturity. At the end of the growing season, P(max) and g(l) of the mature tree foliage exposed to ambient ( approximately 80-100 ppm-h) and twice ambient ( approximately 150-190 ppm-h) exposures of ozone were reduced 25 and 50%, respectively, compared with the values for foliage in the subambient ozone treatment ( approximately 35 ppm-h). In seedling leaves, P(max) and g(l) were less affected by ozone exposure than in mature leaves. Extrapolations of the results of seedling exposure studies to foliar responses of mature forests without considering differences in foliar anatomy and stomatal response between juvenile and mature foliage may introduce large errors into projections of the response of mature trees to ozone.  相似文献   

16.
Effects of enhanced nitrogen deposition on nutrient foliar concentrations and net photosynthesis of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh) and red spruce (Picea rubens Sarg.) were evaluated at the Bear Brook Watershed in Maine (BBWM). The BBWM is a paired-watershed forest ecosystem study with one watershed treated since 1989 with bimonthly dry ammonium sulfate ((NH4)2SO4) additions at a rate of 25.2 kg N ha−1 year−1, while the other watershed serves as a reference. The (NH4)2SO4 treatment resulted in significant increases in foliar N concentrations for all three species and significant reductions in foliar Ca, Mg and Zn concentrations for American beech and red spruce. Treatment effects on foliar concentrations of other nutrients were not significant in any species. Despite higher N concentrations in all species, only treated sugar maple showed significantly higher photosynthetic rates. The non-response in net photosynthesis to higher foliar N in American beech and red spruce might be attributed to their low foliar Ca and/or Mg concentrations. Higher net photosynthetic rates in sugar maple might be explained by the higher foliar N and by the ability of this species to maintain an adequate Ca and Mg supply. Results suggested that nutrient imbalances due to inadequate supply of Ca and Mg might have counteracted a potential increase in net photosynthesis induced by higher N concentrations in American beech and red spruce.  相似文献   

17.
During summer 2001, leaf samples were collected from seven beech stands that are part of the Italian network of permanent monitoring plots (CONECOFOR). In each plot, sun leaves from the upper crown were collected from five trees and subjected to chemical analysis (C, N, P, S, K, Ca and Mg) and morphological analysis (area, dry mass, thickness and thickness of individual tissues). Based on the measurements, nutrient ratios (N/C, N/K, N/P, N/Ca, N/Mg, K/Ca, Mg/Ca), sclerophylly indices (leaf mass per area (LMA) and leaf density (LD)) and nitrogen content per leaf area unit (NLA) were determined. Stomatal density was also measured. Among stands, leaf area was smallest and sclerophylly (indicated as LMA) was greatest in the southernmost stands and under drought conditions. Reduced leaf area and increased LMA also appeared to be strongly related to tropospheric ozone concentrations, whereas crown transparency was related mainly to site factors such as rainfall and temperature and, to a lesser extent, ozone concentration. The southernmost stands had a lower N/C ratio than the more northern stands, suggesting that the apoplastic fraction of cells within the leaf played a greater role. In the northern stands (especially at Lombardy and in Piedmont) where ozone concentrations were high, nutrient ratios were unbalanced and the high value of LMA appeared to be related primarily to the contribution of plasmatic components. Overall, leaf morphology was most sensitive to climate stress at the southern plots and to environmental pollution (nitrogen deposition and tropospheric ozone concentration) at some of the northern plots.  相似文献   

18.
In Central Europe, the conversion of pure Norway spruce stands (Picea abies [L.] Karst.) into mixed stands with beech (Fagus silvatica L.) and other species like e.g. Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) is accomplished mainly by underplanting of seedlings beneath the canopy of overstorey spruce trees after partial cutting treatments what means exposure to shade and below-ground root competition by the overstorey to the seedlings. Particularly about the second factor, our knowledge is limited. Therefore, we carried out a below-ground competition exclusion experiment by root trenching and investigated the effects on soil resources, growth, and biomass partitioning of underplanted beech and Douglas fir saplings under target diameter and strip cutting treatments. The exclusion of overstorey root competition by trenching increased the soil water potential in the second year that had a fairly dry growing season and led to significantly higher foliar concentrations of most nutrients, particularly in Douglas fir, indicating an amended nutrient supply. Both improvements were accompanied by an increase in length and diameter increment of the underplanted saplings, appearing in both species only after having surpassed a species-specific threshold light value (Douglas fir 16% of above canopy radiation, beech 22%). We also found significant interactions between trenching and light for specific fine root length and further biomass and morphological parameters. Judged by the much steeper increase in height and diameter growth with increasing light after release from below-ground competition, Douglas fir saplings appeared to be more sensitive to root competition than beech saplings what conforms to older findings for beech. According to our results, a strip cutting seems to be more appropriate than a target diameter cutting treatment to replace a pure spruce stand by a mixed stand with beech and Douglas fir.  相似文献   

19.
Tree growth was measured before, and 9 years after draining a boreal fen that supported a 50- to 60-year-old stand of tamarack (Larix laricina (Du Roi) K. Koch) and black spruce (Picea mariana (Mill.) B.S.P.). Treatments consisted of a series of ditches spaced 30, 40 or 50 m apart, and an undrained control. Nine years after drainage, the diameter, height, basal area, and volume growth of tamarack had increased by 2–5 times that on the control site. Black spruce growth on the drained site was 1.6–5 times that on the control. Tamarack average volume growth (1.20 m3 ha−1 year−1) on the drained site was superior to that of black spruce (0.21 m3 ha−1 year−1). In general for both species, there were no significant differences in growth between trees on the different ditch spacings. This result was attributed to the water table being low enough that adequate aeration zones existed across the strips between ditches on all spacings. Regeneration after treatment was greater on the drained than on the control plots, particularly in the disturbed areas near the ditches where new tamarack seedlings reached densities between 9400 and 12,000 stems ha−1. There was no relationship between increased tree growth and tree distance from the ditches for both species, probably because the water table had been lowered sufficiently so that inadequate substrate aeration was no longer a limiting factor.  相似文献   

20.
The influence of canopy composition on litterfall and throughfall was investigated in a mixed spruce beech forest in central Germany. We hypothesised that different parts of the mixed canopy created distinct patterns of element inputs via litterfall and throughfall. The investigation was carried out in two plots, representing the most contrasting cases of mixed forests: a stand greatly dominated by spruce (SDP) and a stand greatly dominated by beech (BDP). The canopies of the two plots were classified in four categories: pure beech, pure spruce, mixed canopy and gap. Amounts of throughfall water were lower and major element fluxes were higher under spruce than under beech in both plots, indicating that the nutrient inputs under the canopies of individual trees are driven by species-specific properties of the canopies and are quite independent of the degree of admixture. With the exception of K+, mixed canopies showed intermediate element inputs via throughfall, compared with pure canopy classes. The K+ input was significantly greater under mixed canopies, and these differences were more pronounced in the SDP than in the BDP. Results suggest that individual spruce trees in the BDP induce greater spatial heterogeneity of throughfall input than individual beech trees in the SDP. Nutrient inputs via foliar litterfall were similar among the different canopy classes, but the Mg input was lower under spruce canopy. This effect was balanced by higher Mg input via spruce throughfall. In our study, throughfall was the main source of heterogeneity in nutrient inputs, while foliar litterfall had a homogenising effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号