共查询到18条相似文献,搜索用时 171 毫秒
1.
基于多特征融合和深度信念网络的植物叶片识别 总被引:1,自引:2,他引:1
基于叶片数字图像的植物识别是自动植物分类研究的热点。但是随着植物种类的增加,传统的分类方法由于提取的特征比较单一或者分类器结构过于简单,导致叶片识别率较低。为此,本文提出使用纹理特征结合形状特征进行识别,并且使用深度信念网络构架作为分类器。纹理特征通过局部二值模式、Gabor滤波和灰度共生矩阵方法得到。而形状特征向量由Hu氏不变量和傅里叶描述子组成。为了避免过拟合现象,使用“dropout”方法训练深度信念网络。这种基于多特征融合的深度信念网络的植物识别方法,在Flavia数据库中,对32种叶片的识别率为99.37%;在ICL数据库中,对220种叶片的识别率为93.939%。这表明相比一般的叶片识别方法,此方法鲁棒性更强,并且识别率更高。 相似文献
2.
基于性能改善深度信念网络的棉花病虫害预测方法 总被引:1,自引:0,他引:1
针对与棉花病虫害发生相关的环境信息数据具有大容量、多样性的特点,提出一种基于环境信息和改进深度信念网络(MDBN)相结合的棉花病虫害预测模型。该模型由3层限制玻尔兹曼机(RBM)网络和1个BP网络组成。利用MDBN提取与病虫害发生相关的特征变量,并利用BP神经网络进行病虫害预测。该方法的特点是将自适应学习率引入到DBN的无监督预训练阶段,并从训练数据批次的选择、参数调优的迭代周期以及在线学习训练等多个方面对MDBN的性能进行优化和改善,从而能够利用MDBN充分挖掘数据集中病虫害预测的特征向量,提高网络的预测精度。对实际棉花病虫害的预测结果表明,MDBN比传统预测模型具有更高的预测精度,是一种有效的农作物病虫害预测方法。 相似文献
3.
基于分层卷积深度学习系统的植物叶片识别研究 总被引:2,自引:3,他引:2
深度学习已成为图像识别领域的研究热点。本文以植物叶片图像识别为研究对象,对单一背景和复杂背景图像分别给出了优化预处理方案;设计了一个8层卷积神经网络深度学习系统分别对Pl@antNet叶片库和自扩展的叶片图库中33 293张简单背景和复杂背景叶片图像进行训练和识别,并与传统基于植物叶片多特征的识别方法进行了比较分析。实验证明:本文提供的CNN+SVM和CNN+Softmax分类器识别方法对单一背景叶片图像识别率高达91.11%和90.90%,识别复杂背景叶片图像的识别率也能高达34.38%,取得了较好的识别效果。利用本文实现的分层卷积深度学习识别系统在数据量大而无法做出更多优化的情况下,叶片图像的识别率更高,尤其是针对复杂背景下的叶片图像,取得了极佳的识别效果。 相似文献
4.
苹果叶片病害形态相似、斑点大小不同,依靠人工和农业专家识别的传统方式效率较低。为此提出一种基于改进残差网络的苹果病害识别模型REP-ResNet。该模型在基准模型ResNet-50的基础上通过采用批标准化、激活函数、卷积层的残差结构顺序,加入通道注意力机制和并行卷积的方式进行改进。训练过程中,将公开数据集PlantVillage预训练的模型权重参数迁移至上述网络模型中重新训练,达到加快网络的收敛速度和提高模型识别能力的目的。采用数据扩充的方式解决训练过程中样本不均的问题。结果表明,REP-ResNet模型与基准网络模型相比识别准确率提高2.41个百分点。模型使用迁移学习的方式进行训练,在复杂背景下的苹果叶片病害识别中准确率达到97.69%,与传统卷积神经网络相比识别效果有较大提高。 相似文献
5.
6.
7.
[目的 /意义]互联网的发展带动了社交网络的快速发展,为用户提供了一个方便的信息发布、传播和接受的渠道,但其低门槛的特性也催生了一批灰黑色力量——网络水军,他们传递虚假信息,破坏网络秩序,成为互联网生态中的一大问题。[方法 /过程]本研究提出了一种基于深度学习的网络水军识别模型,结合用户的基础信息、历史言论、交互行为3方面特征,并加入了“社交亲密度”属性,通过特征提取与向量融合,利用卷积神经网络构建起水军识别模型。[结果 /结论]通过实证分析与模型对比,实验构建的模型在精确率、准确率等指标均取得了较好的效果,可以为网络水军识别提供一定技术支持与理论指导。实验表明,利用机器学习方法主动识别网络水军账号,对重点账号进行实时监管与事前防范,可以更加及时有效地避免恶性网络事件发生,降低非法势力破坏舆情生态的风险。 相似文献
8.
[目的/意义]科技文献摘要往往由承担特定功能的部分构成,利用深度学习对科技文献摘要结构功能进行识别有助于实现科技文献文本深度分析。[方法/过程]本文将科技文献摘要特征功能识别任务转换为文本分类问题,将结构功能分为“引言-方法 -结果 -结论 (Introduction-Methods-Results-Conclusions,IMRC)”4类,基于摘要句内容及其上下文特征,利用BERT、BERT-Bi LSTM、BERT-TextCNN、ERNIE等模型构建分类器,实现摘要结构功能自动识别。[结果/结论]在eHealth领域3 130篇文献数据集上开展实验,结果表明:ERNIE模型的各项指标均高于其他模型,BERT-TextCNN模型在短句子上效果更好,而BERT-Bi LSTM模型对于长句子的识别效果更好。本研究有助于实现科技文献摘要文本的细粒度功能理解,对文献结构的解析能够服务于科技文献深度挖掘和基于文献的知识发现。 相似文献
9.
《信阳农业高等专科学校学报》2020,(1):117-121
提出了一种基于深度学习的高鲁棒性恶意软件识别算法,该算法利用软件的操作码序列来检测恶意软件。首先采用类信息增益进行特征选择,然后提出了基于启发式规则的图生成算法,并将图转换为矢量空间,最后应用基于堆叠自编码器的深度学习框架对恶意和正常软件进行分类。实验评估结果说明了与现有的算法相比,恶意软件识别算法具有较高的鲁棒性。 相似文献
10.
本文以水稻稻瘟病图像为研究对象,提出一种基于深度学习的水稻稻瘟病识别方法。基于Tensor Flow开源框架,使用TensorFlow-Keras建立起深度学习模型,通过对水稻的常见健康状态、稻瘟病的图片集学习获取模型特征,最终获得的模型可以用于检测判断。深度学习模型采用ReLU作为激活函数,并对模型中的超参数学习率进行网格搜索,获取更合适的模型超参数。对改进后的模型进行测试,测试验证率达78%。本研究提出的方法可有效识别水稻稻瘟病,为水稻病害防治提供了有效的技术支持。 相似文献
11.
为改善直线翼垂直轴风力机叶片周围流场特性,在叶片后部加设辅助小翼调整叶片尾流流场,利用数值模拟方法研究该风力机气动特性。以NACA0018翼型2叶片风力机为对象,辅助小翼与主叶片在同一在旋转圆周上,通过改变小翼与主叶片弦长比和安装角调整小翼与主叶片位置。结果表明,小翼尺度与安装位置对直线翼垂直轴风力机气动特性影响较大,在低尖速比时辅助小翼可改善叶片尾流流场,提高风力机气动特性,功率系数在尖速比从0到获得最大功率系数之前均较不带小翼风力机有不同程度提高,当辅助小翼弦长比为0.4,相对夹角为14°时,对主叶片周围流场改善效果最显著,风力机获得最大功率系数尖速比提前至2.2附近。 相似文献
12.
为利用计算机或人工智能技术协助番茄病虫害防治,以存在病虫害侵害问题的番茄植株图像为研究对象,针对番茄病虫害目标小而密的特点提出基于Swin Transformer的YOLOX目标检测网络,用于精确定位图像中的病虫害目标,并采用基于经典卷积神经网络构建的旋转不变Fisher判别CNN分类网络,以此提高病虫害分类的准确率。结果表明:1)将测试结果与传统的目标检测模型和分类模型作对比,基于Swin Transformer的YOLOX网络在番茄病虫害测试集上的精确度比Faster R-CNN和SSD分别高了7.9%和9.5%,旋转不变Fisher判别CNN对病虫害类别的识别准确率与AlexNet、VGGNet相比分别提升了8.7%和5.2%;2)与基于Transformer的目标检测模型DETR和近年来新兴的图像分类模型Vision Transformer(ViT)在番茄病虫害测试集上的结果相比较,本研究的检测和分类方法也存在优势,病虫害检测精度和分类准确率分别提高了3.9%和4.3%。此外消融试验也证明了本研究方法改进的有效性。总之,本研究所构建的网络在番茄病虫害的目标检测和分类识别方面的性能优于其他网络,有助于提升番茄病虫害的防治效果,对计算机视觉在农业领域的应用具有重要意义。 相似文献
13.
文章提出一种在叶片尾缘加装弯板改善直线翼垂直轴风力机叶片周围流场,提高风力机转矩特性的方法。选取NACA0024和NACA0012两种直线翼垂直轴风力机常用翼型,利用数值模拟计算包括不加装弯板在内具有7种弯板长度2叶片直线翼垂直轴风力机输出转矩特性和静态起动转矩特性。结果表明,在NACA系列对称翼型尾缘加弯板叶片可在一定程度上改善直线翼垂直轴风力机输出转矩特性和静态起动特性。叶片尾缘加装弯板后可在某些旋转角下改变叶片上下表面压力分布,减少涡旋和流动分离产生,提高叶片气动特性,改善风力机转矩特性。研究发现,弯板长度为弦长40%风力机转矩特性改善效果最好,最大输出转矩系数较无弯板风力机提高17%,静态平均起动转矩提高26.4%。 相似文献
14.
为研究外荷载冲击作用下管道裂纹损伤的识别方法,以自制的落球控制装置对空管和充水埋土管道2种不同服役工况下的健康管道、单损伤管道以及多损伤管道进行荷载冲击试验.利用压电陶瓷传感器拾取外荷载冲击不同损伤工况下的空管以及充水埋土管道所产生的应力波信号,先以小波包能量公式分别健康与损伤管道上传感器监测信号的能量,再根据均方根偏差计算得到损伤指数,基于损伤指数变化进行管道损伤识别可行性研究.结果表明,空管损伤指数随着传感器至损伤距离的增大而减小,同时损伤识别的灵敏度也随之降低,空管的损伤指数随着损伤轴向宽度的增大而增加;以损伤指数为判定指标,不仅能有效定位空管单个裂纹损伤和多个裂纹损伤的存在和存在位置,还能有效识别裂纹损伤的严重程度;改变管道的服役工况,基于该指标仍能实现不同服役工况下管道单损伤与多损伤的存在位置及损伤严重程度的识别.以损伤指数为指标来进行管道损伤识别的方法切实可行且具有普遍性.该研究成果为服役管道的健康监测提供了重要参考. 相似文献
15.
基于深度学习的苹果树侧视图果实识别 总被引:1,自引:2,他引:1
【目的】传统果树侧面果实识别方法精度难以满足实际果实识别的需求,研究深度学习方法对提高苹果树侧面果实识别精度、增强模型对苹果复杂生长环境的适应性和泛化性具有重要意义。【方法】文章提出基于深度卷积神经网络对广域复杂背景环境下的侧面苹果特征进行学习的方法,完成苹果树侧面果实多目标识别任务。【结果】在广域复杂场景下,基于VGG16为特征提取网络的Faster-RCNN多目标检测模型在果实多目标检测任务中,识别精度达到91%,单幅影像识别时间约为1.4 s,相较于ResNet50作为特征提取层的目标检测模型识别精度提高4%;在相同影像数据下,模型识别精度的主要影响因素是遮挡,导致模型漏判果实数量较多,VGG16在不同程度遮挡区域的漏判率比ResNet低6%。【结论】基于VGG16卷积神经网络果树侧视图果实识别算法对广域复杂场景下的果实提取效果较好,特别是在具有遮挡情况下的识别结果更优,能够为果园产量估算提供一定的借鉴。 相似文献
16.
【目的】 虫害是影响荔枝产量与品质的重要制约因素,基于深度学习的荔枝虫害识别可以为荔枝种植过程中的虫害防治工作提供技术支持,对提高荔枝产量及品质,提高果园生态安全具有重要作用。【方法】 文章针对目前荔枝虫害识别领域存在的问题,为提高虫害目标识别精度和效率,以荔枝蝽象为目标虫害,提出一种基于YOLO v4的目标检测方法,首先使用专业摄像头、大型数据库、智能虫情测报灯3种方式采集荔枝虫害图像,配合数据增强方法,用LableImg平台进行数据标注,制作一个特征丰富的数据集,在CSP Dark net框架下进行网络模型训练,得到荔枝虫害识别模型。【结果】 基于深度学习的荔枝虫害识别技术在广州从化荔枝现代农业产业园进行应用,取得了较好的应用效果,证明该技术可以实现真实复杂环境中荔枝虫害的有效识别。【结论】 基于深度学习的荔枝虫害识别模型,能够实现虫害的科学监测,降低农户对于虫害的投入成本,减少化学农药的使用,改善荔枝生长的环境,进一步实现荔枝生产绿色化要求,增加作物的经济价值。 相似文献
17.
《仲恺农业工程学院学报》2017,(4)
为了提高南美白对虾(Litopenaeus vannamei)养殖溶解氧预测的精度,提出了深度信念网络融合最小二乘支持向量回归机(Deep belief nets-least squares support vector regression,DBN-LSSVR)的南美白对虾养殖溶解氧预测模型.首先,采用深度信念网络(Deep belief nets,DBN)方法,多尺度提取养殖水质时序数据的特征向量;然后,使用提取的养殖水质特征向量训练和优化DBN-LSSVR,构建了基于DBN-LSSVR的对虾养殖水质溶解氧预测模型;最后,以广州市番禺区南美白对虾养殖水质溶解氧实测数据为基础,对预测模型进行了实验验证,并与浅层BP神经网络、标准最小二乘支持向量回归机进行了对比分析.所构建的模型具有较高的预测精度和泛化性能,是一种有效的南美白对虾养殖溶解氧预测方法. 相似文献
18.
基于深度学习的农作物病害图像识别技术进展 总被引:5,自引:0,他引:5
农作物病害的无损检测和早期识别是精准农业和生态农业发展的关键。随着图像采集和图像处理技术的进步,高光谱成像等先进成像探测技术和基于深度学习的图像分析技术越来越多地应用于农作物病虫害的无损检测中。本文首先简单介绍了以深度学习为代表的图像识别技术的基本原理,然后系统地阐述了基于深度学习的先进成像技术和先进图像识别分析技术在农作物病害检测识别中的国内外研究现状,分析了其在农作物病害检测识别上存在的优缺点,如具有快速、准确率高等优点以及数据量过大处理不便等缺点,并进一步指出,利用高光谱成像和热红外成像与深度学习相结合,将成为今后研究农作物病虫害早期检测的主要发展方向。 相似文献