首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The interactive impacts of arbuscular mycorrhizal fungi (AMF, Glomus intraradices) and earthworms (Aporrectodea trapezoides) on maize (Zea mays L.) growth and nutrient uptake were studied under near natural conditions with pots buried in the soil of a maize field. Treatments included maize plants inoculated vs. not inoculated with AMF, treated or not treated with earthworms, at low (25 mg kg−1) or high (175 mg kg−1) P fertilization rate. Wheat straw was added as feed for earthworms. Root colonization, mycorrhiza structure, plant biomass and N and P contents of shoots and roots, soil available P and NO3–N concentrations, and soil microbial biomass C and N were measured at harvest. Results indicated that mycorrhizal colonization increased markedly in maize inoculated with AMF especially at low P rate, which was further enhanced by the addition of earthworms. AMF and earthworms interactively increased maize shoot and root biomass as well as N and P uptake but decreased soil NO3–N and available P concentrations at harvest. Earthworm and AMF interaction also increased soil microbial biomass C, which probably improved root N and P contents and indirectly increased the shoot N and P uptake. At low P rate, soil N mobilization by earthworms might have reduced potential N competition by arbuscular mycorrhizal hyphae, resulting in greater plant shoot and root biomass. Earthworms and AMF interactively enhanced soil N and P availability, leading to greater nutrient uptake and plant growth.  相似文献   

2.
Arbuscular mycorrhizal (AM) grasses compete for nutrients with ectomycorrhizal (EM) pine in the southeastern United States. Our objective was to determine if benomyl could be used to selectively inhibit the function of AM and thereby reduce grass competition in the field. The effects of Benlate (active ingredient: benomyl) in the greenhouse and field were evaluated. No effect was observed on pine inoculated with Pisolithus tinctorius in the greenhouse. Colonized root length of benomyl-treated Zea mays L. plants inoculated with Glomus sp. in the greenhouse remained static over time and the response was not dose dependent at concentrations of 0, 20, 60 and 150kg benomyl ha–1 equivalent. In contrast, colonization of nontreated plants increased over time. In the field, a minimal reduction of grass colonization was observed following four applications of benomyl ranging from 5 to 20kgha–1. We conclude that benomyl can successfully inhibit development of AM fungi under controlled conditions in the greenhouse with no inhibitory effects on the EM fungus P. tinctorius; however, in the field several factors may interfere with the effect of benomyl on AM fungi. These factors include: (a) the presence of ground cover which obstructs penetration of the fungicide to the soil, (b) timing of application in relation to mycorrhizal development, and (c) the application method of benomyl, a soil drench being preferable to a foliar spray. Received: 30 September 1996  相似文献   

3.
In this paper, the effects of arbuscular mycorrhizal (AM) fungi and phosphate amendments on protection of the tropical grass Brachiaria decumbens Stapf. against metal toxicity caused by Zn, Cd, Cu, and Pb were studied in a sterilized soil. Plants inoculated with a mixture of AM fungi (Acaulospora morrowiae, Gigaspora albida, and Glomus clarum) isolated from a heavy-metal-contaminated site or amended with P (added as triple superphosphate) exhibited marked positive growth responses, indicating the ameliorating effects of these two factors. Soil metal concentrations needed to inhibit plant growth by 50% were around twofold higher for AM plants as compared to those for non-inoculated ones. Similarly, phosphate showed ameliorating effects for B. decumbens, but its effects were not related to mycorrhizal conditions. Although mycorrhiza and phosphate act independently, their protecting effects were additive. Metal bioaccumulation factor of B. decumbens is high, especially for Cd; but AM inoculation prevents metal transference from roots to shoots, retaining these metals in the roots. AM fungus and phosphate represent a promising tool for enhancing ground vegetation in heavy-metal-contaminated sites.  相似文献   

4.
ABSTRACT

This experiment aimed to study phosphorus efficiency of six wheat genotypes (Triticum aestivum) inoculated with arbuscular mycorrhizal fungi (AMF) and to quantify the contribution of root and mycorrhizal hyphae length to P uptake by using NST 3.0 model. The results showed that all wheat genotypes with AMF (except V4) attained more than 80% of the maximum shoot yield. NST 3.0 predicted approximately 49% and 30% of observed P uptake for V4 with and without mycorrhizae, respectively, at the lowest P level. Additionally, the predicted values of P uptake increased rapidly with increasing P levels by up to 90% and 89% with and without mycorrhizae, respectively, at the highest P level. The model predicted 58% and 43% of the observed P uptake for V6 with and without mycorrhizae, respectively, at the lowest P level and increased up to 98% and 95% respectively at the highest P level. Soil P depletion zones of plants without mycorrhizal fungi (V4 and V6) did not extend as far as those of plants with mycorrhizal fungi. In conclusion, we recommend that V6 (Gemmeiza12) is suitable for growth in calcareous soil with or without mycorrhizal fungi inoculation (highly P efficient). The results of this study suggest that root growth and mycorrhizal hyphae length are the main parameters suitable for selecting P-efficient wheat genotypes, especially under limited P supplies. The current study clearly shows that (NST 3.0) model provide useful tools for studying the role of (AMF) and root length in plant P uptake.  相似文献   

5.
 The effect of the inoculation of Glomus mosseae and Scutellospora fulgida, singly or in mixed inocula, was tested on the growth and mycorrhizal characteristics of Vigna luteola. Soil depletion by mycorrhizal inoculation was determined as exchangeable 32PO4. Five treatments were performed: non-inoculated control (C); inoculated with a suspension of microorganisms free of mycorrhizae (M); inoculated with S. fulgida plus microorganisms (Sf+M); inoculated with G. mosseae plus microorganisms (Gm+M) and a treatment inoculated with both S. fulgida and G. mosseae plus microorganisms (Sf+Gm+M). G. mosseae was the most efficient fungus in promoting growth of V. luteola. This fungus produced higher shoot dry weight, P uptake in shoots (Pshoot) and Pshoot/arbuscules ratio than the S. fulgida inoculum, even though percent arbuscular-mycorrhizal (AM) colonization was similar for the two single AM-inoculated treatments. The highest value of isotopically exchangeable P was recorded for treatment M (P<0.05). In comparison with M, Gm+M treatment reduced the different P pools more than Sf+M treatment. Cp values were reduced to half by Gm+M and Sf+M treatments and were minimum for the combined treatment. Pools A (exchangeable phosphate between 1 min and 1 day) and B (exchangeable phosphate between 1 day and 3 months) were reduced by Gm+M treatment in contrast to Sf+M, which left them unchanged. The depression of isotopically exchangeable P for all pools obtained for the Sf+Gm+M treatment suggested that specific characteristics of fungi caused differences in P absorption, which in addition was altered by the possible interactions among them, when multiple inocula were used in a soil low in native P. Received: 29 January 1999  相似文献   

6.
Previous research, mostly in temperate agricultural systems, has shown that management practices such as fallow period, tillage, crop rotation, and phosphorus (P) fertilizer applications can influence the abundance of arbuscular mycorrhizal fungi (AMF), but relatively little is known about their effect in smallholder farmers’ fields in sub-Saharan Africa. In this study, we evaluated the effect of four subsistence crops that form associations with AMF, moderate P fertilization, tillage, and fallow period on the subsequent AMF abundance on three contrasting low fertility soils in south-western Zimbabwe. Arbuscular mycorrhizal fungal abundance was estimated based on early mycorrhizal colonization of maize (Zea mays L.) or lablab (Lablab purpureus L.) following the various treatments. The previously grown crop significantly affected AMF abundance (p < 0.001). It was highest after lablab followed by pigeonpea (Cajanus cajan L.), maize, and groundnut (Arachis hypogaea L.), and there were significant positive correlations between AMF abundance and aboveground biomass of pigeonpea, lablab, and maize. Contrary to much previous research, P fertilization, fallowing, and tillage did not significantly decrease AMF abundance. In smallholder farmers’ fields in the semi-arid tropics of sub-Saharan Africa, therefore, growing vigorous mycorrhizal plants prior to the dry season could be more important than minimizing P fertilizer applications, fallow periods, and tillage to maintain or increase AMF abundance.  相似文献   

7.
Arbuscular Mycorrhizae Fungi (AMF) inoculations may improve growth and nutrient uptake of cotton (Gossypium hirsutum L.) plant. Although the importance of mycorrhizal symbioses for growth and nutrient acquisition of cotton plant is known, less is known about mycorrhizal dependency on P and Zn nutrition under low Zn fertile soil conditions. A greenhouse experiment was conducted to investigate the effect of different of P and Zn fertilizer addition on cotton plant growth as well as Zn and P uptake. Sterilized and non-sterilized low Zn fertile Konya series soil was treated with different levels of P and Zn. Soils were inoculated with two mycorrhizae species like Funneliformis mosseae and Claroideoglomus etunicatum after sterilization. Results showed that mycorrhizal inoculation on plant growth and nutrient uptake has significant effect when soil was sterilized. Cl. etunicatum mycorrhizae species has greater effect than Fu. mosseae mycorrhizae species. Root colonization increased 23–65% due to mycorrhizal amendment. The shoot: root ratio increased by 13 and 22% for non-sterile and sterile condition respectively in mycorrhiza amended soil. Mycorrhizal dependency varies 1–55% and 3–64% for non-sterile and sterile soil respectively on mycorrhizae, P and Zn amended soil. Mycorrhizal dependency analysis showed that cotton plant in both sterile and non-sterile soil conditions depends on mycorrhizae species, P nutrition, however is less depend on Zn nutrition. This study concluded that the inoculation of cotton plant with selected mycorrhizae is necessary under both sterile and non-sterile soil conditions.  相似文献   

8.
Two microcosm experiments were conducted to study the role of extraradical mycelium (ERM) of arbuscular mycorrhizal fungi (AMF) in establishment and growth of tree species used for revegetation in anthropogenic substrates. Inoculated or non-inoculated Acer pseudoplatanus, Alnus glutinosa or Salix purpurea seedlings were grown with Calamagrostis epigejos (a grass spontaneously colonising degraded ecosystems) in two substrates (fly ash and coal mine spoil) either in direct root contact or in rhizoboxes with interaction only via ERM network. In both experiments, inoculation with AMF mostly had a positive effect on the growth of trees and increased the aggregation of fly ash. When plants grew in direct root-to-root contact, grass presence negatively affected tree growth, but it significantly improved mycorrhizal development (colonization of tree seedlings, spore number and ERM length). When grass and tree roots interacted via the ERM network, tree seedlings were successfully colonised by the ERM spreading from the C. epigejos roots. Mechanical disturbance of the ERM links between plants reduced AMF development and tree height in both substrates, but tree shoot biomass was not affected. In fly ash, inoculated, non-disturbed treatments showed significant transfer of 32P from the grass to the tree seedlings. It can be concluded that roots of A. pseudoplatanus, A. glutinosa or S. purpurea seedlings can be colonised from the ERM network radiating from quickly growing grasses, which can act as important agents for AMF distribution and facilitate mycorrhization of planted trees. In particular for willow, grass seems to be an essential nurse plant to achieve successful root colonisation.  相似文献   

9.
Effectiveness of arbuscular mycorrhizal fungi (AMF) is crucial for maximum plant growth and acquisition of mineral nutrients under drought. The objective of this research was to determine effects of varied rates of AMF inoculum on plant growth and acquisition of phosphorus (P), zinc (Zn), copper (Cu), and manganese (Mn) by barley (Hordeum vulgare L. cv. SLB‐6) grown with and without drought stress (WS and nonWS). Plants inoculated with four inoculum rates [control (M0), 120 (M1), 240 (M2), and360 (M3) spores per 100 g dry soil] of Glomus mosseae were grown in a low P silty clay (Typic Xerochrept) soil (pH=8.0) mix in a greenhouse for 45 days. Root AMF colonization increased as inoculum rate increased in plants grown with WS and nonWS. Leaf area and shoot and root dry matter (DM) increased as inoculum rate increased up to M2 regardless of soil moisture. Shoot concentrations of P, Cu, and Mn were generally higher for mycorrhizal (AMF) than for nonmycorrhizal (nonAMF) plants grown with both WS and nonWS. Shoot contents of P, Zn, Cu, and Mn were higher for AMF than for nonAMF plants grown with nonWS, and shoot contents of P were higher for AMF than for nonAMF plants with WS. For plants grown with WS and nonWS, contents of P, Zn, Cu, and Mn were generally higher for plants inoculated with M2 compared to other rates of inoculum. The results of this study indicated that plant responses to root colonization with AMF were dependent on AMF rate and soil moisture. Based on enhancements in plant DM and mineral acquisition traits, M2 inoculum was the most effective rate of inoculation for this AMF isolate.  相似文献   

10.
 Leguminous cover crops such as Mucuna pruriens (mucuna) have the potential to contribute to soil N and increase the yields of subsequent or associated cereal crops through symbiotic N fixation. It has often been assumed that mucuna will freely nodulate, fix N2 and therefore contribute to soil N. However, results of recent work have indicated mucuna's failure to nodulate in some farmers' fields in the derived savanna in Benin. One of the management practices that can help to improve mucuna establishment and growth is the use of rhizobial inocula to ensure compatibility between the symbiotic partners. Experiments were conducted in 1995 and 1996 on 15 farmers' fields located in three different villages (Eglimé, Zouzouvou and Tchi) in the derived savanna in Benin. The aim was to determine the response of mucuna to inoculation and examine the factors affecting it when grown in relay cropping with maize. The actual amount of N2 fixed by mucuna in the farmers' fields at 20 weeks after planting (WAP) averaged 60 kg N ha–1 (range: 41–76 kg N ha–1) representing 55% (range: 49–58%) of the plant total N. The result suggested that mucuna in these farmers' fields could not meet its total N demand for growth and seed production only by N2 fixation. It was estimated that after grain removal mucuna led to a net N contribution ranging from –37 to 30 kg N ha–1. Shoot dry weight at 20 WAP varied between 1.5 and 8.7 t ha–1 and N accumulation ranged from 22 to 193 kg N ha–1. Inoculation increased shoot dry matter by an average of 28% above the uninoculated treatments, but the increase depended on the field, location and year. For the combinations of inoculated treatments and farmers' fields, the response frequency was higher in Eglimé and Tchi than in Zouzouvou. The response to inoculated treatments was dependent on the field and inversely related to the numbers of rhizobia in the soil. Soil rhizobial populations ranged from 0 to >188 cells g–1 soil, and response to inoculation often occurred when numbers of indigenous rhizobia were <5 cells g–1 soil. In two farmers' fields at Zouzouvou where extractable P was below 10 μg g–1 soil, mucuna did not respond to rhizobial inoculation despite a higher population of rhizobia. Significant relationships between mycorrhizal colonization, growth and nodulation of mucuna were observed, and inoculated plants with rhizobia had a higher rate of colonization by arbuscular mycorrhizal fungi (%AMF) than uninoculated ones. Therefore, it was shown that mucuna will establish and fix N2 effectively in those fields where farmer's management practices such as good crop rotation and rhizobial inoculation allow a build up of AMF spores that might lead to a high degree of AMF infection and alleviate P deficiency. Received: 14 June 1999  相似文献   

11.
 The effects of organic residues and inorganic fertilizers on P availability and maize yield were compared in a Nitisol of western Kenya. Leaf biomass of Calliandra calothyrsus, Senna spectabilis, Croton megalocarpus, Lantana camara, Sesbania sesban, and Tithonia diversifolia were incorporated into the soil at 5 Mg ha–1 for six consecutive seasons in 3 years and responses compared with those following the application of 120 kg N ha–1, 0 kg P ha–1 (0P); 120 kg N ha–1, 10 kg P ha–1; and 120 kg N ha–1 25 kg P ha–1 as urea and triple superphosphate (TSP); K was supplied in all treatments. Addition of Tithonia, Lantana and Croton increased soil resin-extractable P over that of fertilizer-amended soil throughout the first crop, but the amounts in the former treatments became similar to those for soils amended with inorganic fertilizers for subsequent crops. Addition of Sesbania, Calliandra and Senna had a similar effect on resin P as inorganic fertilizers. Total maize yields after six seasons were tripled by the application of Tithonia compared to 0P, and were higher than those of the Calliandra, Senna, Sesbania and Lantana treatments, and similar only to that of the Croton treatment. P recovered in the above-ground biomass and resin P, immediately after the implementation of the treatments, was higher in the Senna, Sesbania, Croton, Lantana and Tithonia (35–77%) treatments than in the inorganic fertilizer treatments (21–27%). The P content of organic residues, and the soluble C:total P ratio, were the main residue parameters predicting soil P availability and maize yield. All organic residues used in this study can replace inorganic fertilizers for the enhancement of P availability and maize production, while an additional benefit could be obtained from the use of Croton, Lantana and Tithonia. Received: 19 January 2000  相似文献   

12.
Pomegranate (Punica granatum L.) symbiosis with arbuscular mycorrhizae fungi (AMF) is a strategy in saline soils. In this study, two AMF (+AMF and –AMF), two phosphorus (P) fertilizer (+ P and –P), and three irrigation salinity (1, 4, and 8 dS m?1) treatments were studied. The highest salinity level decreased the root colonization by hyphae. Plant growth parameters including shoot dry weight, leaf surface area, and plant height were negatively affected by salinity. However, the growth parameters improved in AMF treatments. Salinity decreased the shoot P concentration and increased the shoot chlorine (Cl). The root and shoot sodium (Na) concentrations were the greatest in unfertilized and P-fertilized treatments, respectively. AMF treatment improved the root and shoot P concentration and reduced the negative effect of salinity on shoot Cl concentrations. In conclusion, the effects of AMF symbiosis on growth and tissue elements concentration depend on irrigation water salinity and P fertilization.  相似文献   

13.
Abstract

In general, according to previous studies, pioneer species do not require arbuscular mycorrhizal fungi (AMF) to increase their growth and survival in tropical systems. The aim of this study was to determine the dependence response to AMF of Heliocarpus appendiculatus, a pioneer species, at different phosphorus (P) levels. In a greenhouse experiment, H. appendiculatus seedlings were grown in pots with a sterile vermiculite-sand mixture (1:1). Two sets of pots were set up: One set was inoculated (150 spores per pot) with indigenous AMF from a tropical rain forest at “Los Tuxtlas” (Veracruz, Mexico); the other set was not inoculated. To each set, 0, 0.02, 0.2, and 2 g L?1P was added. All pots were watered with 250 mL of nutrient solution. Mycorrhizal plants showed a higher total dry weight and relative growth rate in 0.02 g L?1P concentration, while nonmycorrhizal plants responded positively at 0.2 g L?1P; a decrease in plant responses at higher P levels was observed in both treatments. H. appendiculatus showed to have higher relative dependence at lower P concentration (≈50%). As levels of P increased, mycorrhizal colonization decreased. Successful growth of pioneer species during succession process may be improved if there is AMF content in soils, prior to disturbance.  相似文献   

14.
Summary The influence of vesicular-arbuscular mycorrhizae on the efficiency of triple superphosphate and rock phosphate fertilizers was compared in two tropical, acid, P-fixing soils (Ivory Coast) in which the available P was labelled with 32PO inf4 sup3- . Both soils were planted with micropropagated oil palms. The growth reponses to the fertilizer applications were low unless accompanied by VAM inoculation, but both fertilizers were equally available to plants. Isotopic-dilution kinetics analyses indicated that the rock phosphate was solubilized in both soils and there was an enrichment of the labile pool of plant-available P, similar to that with superphosphate. The specific activity and the fraction of P derived from either fertilizer was similar in both mycorrhizal and non-mycorrhizal plants, showing that both absorbed P from the same labile pool of P in the fertilized soils. However, VAM inoculation increased the fertilizer utilization coefficient of plants 2.7- to 5.6-fold, depending on the soil and fertilizer. We conclude that VAM inoculation increases fertilizer efficiency, as much of rock phosphate as of superphosphate, for plants growing in acid, P-fixing soils, and the processes involved are not different for the two fertilizers.  相似文献   

15.
Arbuscular mycorrhizal fungi (AMF) can act as an extension of the root system of their host plants. In Desmoncus orthacanthos Martius (Arecaceae), which has thick and unbranched roots (i.e., magnolioid roots) and low densities of root hairs, this association may be essential to reach a maximum growth with minimum fertilizers. This is important because of the potential in the south of Mexico to use D. orthacanthos' shoots as a raw material to build handcrafts. To evaluate the effect of arbuscular mycorrhizae on phosphorus (P) uptake and initial growth of D. orthacanthos seedlings, a 160-day bi-factorial experiment was carried out in which plants were subject to one of two levels of mycorrhizal colonization (with or without) and one of three levels of P substrate addition (4, 12, and 24 ppm). Our results show that total dry weight (DW) and leaf area (LA) responded significantly to P addition but not to mycorrhizal colonization. Phosphorus concentration in plant tissues (Pt) was increased by both factors (mycorrhizae and P addition). Mycorrhizae increased relative growth rate (RGR) at low P level. Our results indicate that AMF play an important role in early growth and P uptake by D. orthacanthos seedlings; therefore, the AMF must be considered in plantations of this potentially economically important palm.  相似文献   

16.
The role of phosphorus (P) application and arbuscular mycorrhizal fungi (AMF) on growth, arsenic (As) and P accumulation in lettuce plants growing in an As-polluted soil (total As 250 mg kg−1), was investigated. In particular, it was tested whether application of a commercial inoculum (CI), with (+P at 90 kg P ha−1) and without (−P at 0 kg P ha−1) P fertilizer, supported greater plant growth and provided more P, enhancing As tolerance, than indigenous fungi alone. The influence of these treatments on As and P availability in the rhizosphere and bulk soils was also investigated. Greenhouse pot experiments were established where plants were grown with and without commercial inoculum (+CI, −CI) in unsterilized conditions. Inoculation with commercial inoculum and P application together considerably increased plant biomass, by enhancing host plant P nutrition and lowering shoot and root As concentrations compared to plants inoculated only with native AMF. In the rhizosphere of +CI+P plants there was P soil depletion compared to −CI+P. The results evidenced that, with P addition, inoculation with commercial inoculum alleviated the toxicity of excessive As by improving P nutrition without increasing As concentrations in the plant, emphasizing the role of beneficial microbes and P fertilizer to improve soil fertility in As-contaminated soil.  相似文献   

17.
Alfalfa (Medicago sativa L.) is cultivated in arid and semi-arid regions where salinity is one of the main limiting factors for its production. Thus, this experiment was conducted to evaluate the efficacy of arbuscular mycorrhizal fungus (AMF), Glomus mosseae, alfalfa rhizobia Sinorhizobium meliloti (R) seed inoculation in the development of salinity tolerance of different alfalfa cultivars (Rehnani, Pioneer and Bami) under a variety of salinity levels. The results revealed that under non-stress condition, root mycorrhizal infection, nodulation (the number and weight of nodules per plant), potassium (K), calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu) and magnesium (Mg) contents of the root and shoot, the value of the K/Na ratio, protein [calculated from the nitrogen (N) content] and proline contents of the shoot and the alfalfa yield were found to be the highest while Na contents of the root and shoot were seen to be the lowest when seeds were double inoculated followed by mycorrhizae, rhizobium and control treatments, respectively. Similarly, under salinity condition, the greatest amounts of mycorrhizal infection, nodulation, root and shoot P contents, the value of K/Na ratio, the shoot proline content and the root Ca content were enhanced with the least amount of leaf Na content related to the cases of seeds which were double inoculated, followed by mycorrhizae, rhizobium and control treatments respectively. The results suggested that inoculation of alfalfa seed with AMF or R, especially double inoculation, causes a considerable increase in alfalfa yield under both saline and non-saline conditions by increasing colonization, nodulation and nutrient uptake.  相似文献   

18.
Although soil-dwelling Collembola can influence plant growth and nutrient cycling, their specific role in soil food webs is poorly understood. Soil-free microcosm studies suggest that Collembola are primarily fungivores where they feed preferentially on saprophytic fungi (SF) over other fungal types. We directly assessed collembolan consumption of arbuscular mycorrhizal fungi (AMF) and SF using plant-soil mesocosms and natural abundance stable carbon isotope techniques. Mycorrhizal Andropogon gerardii (C4 grass) seedlings were placed in pots containing Collembola and soil from a C3 plant dominated site, while mycorrhizal Pascopyrum smithii (C3 grass) seedlings were placed in pots with Collembola and soil collected at a C4 plant dominated site. After 6 weeks, collembolans assimilated carbon derived from C3 and C4 sources in both A. gerardii and P. smithii treatments. Comparing Collembola isotope values in AMF vs. AMF-suppressed treatments, our data show that both AMF and SF were consumed in these experimental soil environments.  相似文献   

19.
ABSTRACT

This work was conducted to study phosphorus (P) efficiency of two maize genotypes (Zea mays, L.) in calcareous soil grown in potted soil with two levels of P in soil by adding 40 and 270 mg P/kg soil. Half of the pots were inoculated with arbuscular mycorrhizal fungi (AMF) (Rhizoglomus irregulare). The maize genotypes were harvested two times at 35 and 50 days after transplanting. The plant dry matter, root length and Plant P uptake of maize genotype Hagen 1 without mycorrhizal fungi (AMF) increased significantly compared with Hagen 9 at a low P level. In contrast, there was no significant difference between two maize genotypes inoculated with AMF under the same P level. The predicted value increased rapidly with increasing P levels from about 70% up to 97% in both maize genotypes with and without mycorrhizal fungi. At a low P level, the mycorrhizae hyphae contributed by about 31.6% and 30.2% of the predicted total P uptake in maize genotype Hagen 1 and Hagen 9, respectively. The results of this study suggested that the P-inefficient genotype Hagen 9 improved with inoculation with mycorrhizal fungi under a low P level at the same conditions of this experiment. Also, root growth system and mycorrhizal hyphae length would be a suitable plant parameter for studying P efficient maize genotypes, especially under limited P supply. The current study clearly pointed out that the mechanistic simulation model (NST 3.0) provides useful tools for studying the role of AMF in P uptake of plant.  相似文献   

20.
A pot experiment was conducted to study the plant growth and fruit yields of cucumber (Cucumis sativus L.) on a greenhouse soil with or without inoculation of arbuscular mycorrhizal fungi (AMFs) and Fusarium oxysporum f. sp. cucumerinum under unsterilized conditions. Two AMF inocula were tested: only one AMF strain Glomus caledonium 90036 and an AMF consortium mainly consisting of Glomus spp. and Acaulospora spp. There were four treatments including no inoculation (control), inoculation with F. oxysporum but without mycorrhizae (FO), inoculation with F. oxysporum and G. caledonium (FO+M1), and inoculation with F. oxysporum and the AMF consortium (FO+M2). Cucumber plants were harvested at weeks 3 and 9 after transplanting. Compared with the control, the FO treatment without AMF inoculation had less biomass both at weeks 3 and 9 (P < 0.05) and had higher incidence of Fusarium wilt and produced no cucumber fruit at week 9. Both FO+M1 and FO+M2 treatments had higher mycorrhizal colonization than the treatments which received no AMF inoculation at week 3 (P < 0.05), but only the FO+M2 treatment elevated plant biomass, decreased the incidence of Fusarium wilt, and improved cucumber yields to the same level as the control at week 9. The results indicated that the AMF consortium could suppress Fusarium wilt of cucumber and, therefore, showed potential as a biological control agent in greenhouse agroecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号