首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
比较了天然林和森林采伐区土壤理化性质,评价了森林采伐对土壤的影响。采集了自然林和邻近的采伐林地三个土层(表层、中层和底层)土壤,对其属性进行了调查。森林土壤颗粒大小分布无显著变化。森林表层土和中层土体积密度存在显著差异。林地内表层土和中层土壤pH、表层土有机质和中层土有效磷均显著高于采伐林地的值。两块林地内可交换Na+和阳离子交换能力没有变化。这些结果表明,两块林地内表层和亚表层土壤变化较明显。森林采伐降低土壤理化性质。  相似文献   

2.
Forests have been expanding over typical savanna sites for the past 3000 years in the Neotropics.Such invasion can produce a series of environmental modifications on typical savanna;however,it remains unclear how modifications in soil properties,caused by the encroachment of woody species,facilitate the expansion of forest ecosystems under dystrophic conditions.Here we examined chemical and microbiological changes associated with tree encroachment in oxisols of a Neotropical Savanna at Assis Ecological Station,Southeastern Brazil.We predicted that tree encroachment caused by typical forest species would cause significant changes in the chemical and microbiological properties of savanna soils.Soils were sampled at Assis Ecological Station,from savanna sites differing in tree encroachment(typical,dense and forested savanna) caused by decades of fire exclusion.We analysed vegetation leaf area index and leaf litter volume deposited in the studied plots and chemical(pH,organic matter,P,K,Ca,Mg,Al,NO_3~-,NH_4~+) and microbiological(microbial C biomass and dehydrogenase activity) properties of soils under distinct encroachment conditions.Most soil chemical properties did not change along the tree encroachment gradient;however,total P,soil organic matter,soil microbial C and dehydrogenase activity increased from typical savanna to forested savanna.The changes in soil organic matter and dehydrogenase activity were correlated with the values of leaf area index and litter volume along the encroachment gradient.Our results demonstrate that forest species can increase carbon and phosphorus supplies in tropical savanna soils.  相似文献   

3.
We collected soil samples from two representative sites at Aatmile of Khagarachari hill district in Chittagong Hill Tracts. One of the sites was under shifting cultivation and the other an adjacent 13-year old teak plantation. Both sites were in the same physiographic condition and same aspect with parable soil type, which enabled us to measure the effects of shifting cultivation on soil micro-flora. We studied soil physico-chemical properties and the biochemical and biological properties of soil microbes. Moisture and organic matter content as well as fungi and bacterial populations, both in surface and subsurface soils, were significantly(p ≤0.001) lower in shifting cultivated soils compared to soils not under shifting cultivation, i.e. the teak plantation site. The most abundant bacteria in surface(0-10 cm) and sub-surface(10-20 cm) soils under shifting cultivation were Pseudomonas diminuta and Shigella, respectively, while in corresponding soil layers of teak plantation, predominant microbes were Bacillus firmus(0-10 cm) and Xanthomonas(10-20 cm). The microbial population differences cannot be explained by soil texture differences because of the textural similarity in soils from the two sites but could be related to the significantly lower moisture and organic matter contents in soils under shifting cultivation.  相似文献   

4.
We examined interrelationships among natural vegetation zones, soil redox potential (Eh), and metrics of tree seedling performance (i.e survival, growth, and photosynthesis) for planted Fraxinus pennsylvanica, Acer saccharinum, Quercus palustris, and Quercus bicolor at two created perched wetlands (two years and five years old) in Michigan, USA. Vegetation zones apparently associated with hydrology were fully developed at both sites. Wetland zones always had lower mean Eh than upland zones, indicating mostly anaerobic and aerobic root environments, respectively. Eh values for transition zones were similar to aerobic upland zones at the five-year-old site, and changed from anaerobic to aerobic conditions over the growing season at the two-year-old site. At the five-year-old site, transition zone trees of all species generally had greater height growth, survival, and were less likely browsed by deer than upland trees. They also had much greater survival and endured shorter periods of anoxia stress than wetland trees. Photosynthesis was positively related to survival and Eh, suggesting that unfavorable carbon balance may help explain low survival in the anoxic wetland zone. Management implications include: (1) vegetation zonation is a good indicator of wetland hydrological factors important to planted tree performance; (2) targeting developed transition vegetation zones for tree planting could increase the success and efficiency of efforts to create forested wetlands; and (3) transition zones extended over only a 9.3 cm vertical elevation gradient, indicating the importance of precise grading when creating perched forested wetlands.  相似文献   

5.
Agroforestry systems are widely practiced in tropical forests to recover degraded and deforested areas and also to balance the global carbon budget. However, our understanding of difference in soil respiration rates between agroforestry and natural forest systems is very limited. This study compared the seasonal variations in soil respiration rates in relation to fine root biomass, microbial biomass, and soil organic carbon between a secondary forest and two agroforestry systems dominated by Gmelina arborea and Dipterocarps in the Philippines during the dry and the wet seasons. The secondary forest had significantly higher (p < 0.05) soil respiration rate, fine root biomass and soil organic matter than the agroforestry systems in the dry season. However, in the wet season, soil respiration and soil organic matter in the G. arborea dominated agroforestry system were as high as in the secondary forest. Whereas soil respiration was generally higher in the wet than in the dry season, there were no differences in fine root biomass, microbial biomass and soil organic matter between the two seasons. Soil respiration rate correlated positively and significantly with fine root biomass, microbial biomass, and soil organic C in all three sites. The results of this study indicate, to some degree, that different land use management practices have different effects on fine root biomass, microbial biomass and soil organic C which may affect soil respiration as well. Therefore, when introducing agroforestry system, a proper choice of species and management techniques which are similar to natural forest is recommended.  相似文献   

6.
The effects of the interaction between tree species composition and altitude on soil microbial properties are poorly understood. In this study, soil samples (0–20?cm) were collected in August 2011 from Betula platyphylla and Picea crassifolia forests along two different altitudinal gradients. Soil microbial activity and biomass were measured using Biolog-ECO plates and phospholipid fatty acid analysis. Both of the forest soils were characterized by a significantly lower soil pH (p?p?相似文献   

7.
The objectives of the study were to investigate mineral soil profiles as a living space for microbial decomposers and the relation of microbial properties to soil acidity. We estimated microbial biomass C on concentration (g g–1 DW) as well as on volume basis (g m–2) and the microbial biomass C to soil organic C ratio along a vertical gradient from L horizon to 20 cm in the mineral soil and along a gradient of increasing acidity at five beech forest stands in Germany. Microbial biomass C concentration ranged from 17,000–34,000 g Cmic g–1 DW in the litter layer and decreased dramatically down the profile to 29–264 g Cmic g–1 DW at 15–20 cm depth in the mineral soil. This represents depth gradients of microbial biomass C concentrations ranging from a factor of 65 in slightly acidic and up to 875 in acidic soils. In contrast, microbial biomass C calculated on a volume basis (g Cmic m–2) showed a different pattern since a considerable part of the microbial biomass C was located in the mineral soils. In the soil profile 22–34% of the microbial biomass C was found in the mineral soil at strictly acidic sites and as much as 64–88% in slightly acidic soils. The microbial biomass C to soil organic carbon ratios decreased in general down from the L horizon in the forest floor to 0–5 cm depth in the mineral soils. In strongly acidic mineral soils however, the C to soil organic carbon ratio increased with depth, suggesting a positive relation to increasing pH. We conclude from depth gradients of soil pH and microbial biomass C to soil organic carbon ratio that pH affects this ratio at acidic sites. The inter-site comparison indicates that acidity restricts microbial biomass C in the mineral soils.  相似文献   

8.
Soil thermal and moisture regimes were studied at four sites of contrasting slope positions and aspects within a forested Appalachian watershed (39° 41′N, 79° 45′W, elevation from 567 m to 796 m). The overall mean temperature for the 0–50 cm soil layer was 12.3°C in 1981; mean annual temperatures ranged from 13.3°C at 2 cm depth on a south-facing lower site to 11.0°C at 50 cm depth on a north-facing lower site. During the growing season soil temperatures of the south-facing lower site exceeded those of other sites by 1°C or less for soils less than 20 cm in depth. Maximum temperature differences between sites were reached in November, and the minimum temperature differences between sites were observed in January.The soil moisture content on the north-facing site exceeded that of all other sites. The south-facing lower site was the driest, while the south-facing upper site and the ridge top were intermediate and had similar moisture regimes. It was concluded that the moisture regime of the south-facing lower site was a joined effect of aspect and relatively high stoniness.  相似文献   

9.
ABSTRACT

Soil erosion is a major socioeconomic and environmental problem in Turkey. Almost 86% of the land in Turkey has suffered various degrees of soil erosion. The objective of this study was to determine whether differences in tree species affect soil characteristics and microbial activity in degraded soils. Results from this study showed that organic C (Corg) was highest in the black locust soil at 0–20 cm depth and lowest in the bare land. Microbial biomass C (Cmic) increased in the order black locust > Scotch pine > bare land at two soil depths. One-way ANOVA demonstrated that afforested soils contain significantly higher microbial biomass C than those in the bare land soils. Microbial quotient (Cmic/Corg) of soils are positively influenced by afforestation as the bare land soils exhibited lower microbial quotient than the associated Scotch pine and black locust soils. Microbial communities in black locust soils were energetically more efficient—had a lower metabolic quotient (qCO2)—with a higher Cmic/Corg compared to those in Scotch pine soils. However, the microbial quotient in our study was still below range and cannot reach equilibrium again 15 yr after afforestation. Restoration of degraded lands could be a long-term process from microbial activity in the observed regions.  相似文献   

10.
In forested wetlands, hydrology exerts complex and sometimes compensatory influences on tree growth. This is particularly true in semi-arid ecosystems, where water can be both a limiting resource and a stressor. To better understand these relationships, we studied hydrologic and edaphic controls on the density, growth, tree architecture and overall productivity of forested wetlands dominated by the tree species Alnus glutinosa and Salix atrocinerea in Southern Europe. We sampled 49 plots set within 21 stands in the Atlantic coastal zone of the Iberian Peninsula, and quantified woody composition, size structure (diameter and height), and radial growth using dendrochronology. Plots were grouped into three saturation classes to compare tree growth characteristics (tree density, degree of sprouting, live basal area and productivity) across levels of saturation. We used Principal Component Analysis (PCA) to create integrated explanatory factors of hydrology, soil nutrient status and soil texture for use in linear mixed models to predict stand characteristics. Increased site saturation favoured a shift in species dominance from Alnus to Salix and resulted in a higher degree of multi-stemmed tree architecture (‘shrubbiness’), particularly for Alnus. Radial growth was negatively correlated with long-term soil saturation; however, annual productivity on a per-tree basis varied by species. Alnus growth and tree density were negatively correlated with waterlogging and fine-textured soils, possibly due to anaerobiosis in the rooting zone. In contrast, Salix growth was more influenced by nutrient limitation. Overall site productivity as measured by annual basal area increment decreased with prolonged saturation. In summary, soil saturation appears to act as a chronic stressor for tree species in this ecosystem. However, these species persist and maintain a dominant canopy position in the most permanently flooded patches through increased sprouting, albeit at a reduced rate of overall biomass accumulation relative to well-drained sites. The diversity in functional responses among wetland forest species has important implications for the conservation and management of these ecosystems. The sustainable management of these ecosystems is directly tied to their vulnerability to changing hydrological conditions. Non-equilibrium modifications to the hydrologic regime from land use and climate change, which are particularly severe in semi-arid regions, may further decrease productivity, integrity and resilience in these stress-adapted communities.  相似文献   

11.
《林业研究》2020,31(4)
We evaluated the effects of the number of years of restoration of vegetation on soil microbial community structure and biomass in degraded ecosystems.We investigated the microbial community structure by analyzing their phospholipid fatty acids then examined microbial biomass carbon and nitrogen by chloroform fumigation extraction of restoration soils over several years.The data were compared with those of highly degraded lands and native vegetation sites.The results show that the duration of vegetation on the sites substantially increased microbial biomass and shifted the microbial community structure even after only 4 years.However,microbial communities and biomass did not recover to the status of native vegetation even after 35 years of vegetation cover.A redundancy analysis and Pearson correlation analysis indicated that soil organic carbon,total nitrogen,available potassium,soil water content,silt content and soil hardness explained 98.4% of total variability in the microbial community composition.Soil organic carbon,total nitrogen,available potassium and soil water content were positively correlated with microbial community structure and biomass,whereas,soil hardness and silt content were negatively related to microbial community structure and biomass.This study provides new insights into microbial community structure and biomass that influence organic carbon,nitrogen,phosphorus and potassium accumulation,and clay content in soils at different stages of restoration.  相似文献   

12.
Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

13.
正截止到2014年,全国水土流失面积已高达294.91万km2,占国土总面积的30.72%[1-2]。水土流失造成生态环境脆弱,植被破坏促使水土流失加剧是区域环境恶化的主要原因之一[3]。众多研究表明,植被恢复可有效地减少水土流失,是遏制生态环境恶化、改善脆弱生态系统的有效措施[4-6]。在森林生态系统中,土壤微生物对土地利用的变化、管理措施、耕作和肥力水平等外界条件的变化十分敏感,  相似文献   

14.
The nitrogen status of most Zambian soils is inherently low. Nitrogen-fixing trees such as Faidherbia albida (F. albida) could have the potential to restore soil fertility. We conducted a study to examine the role of mature F. albida trees on the soil microbial communities and overall N fertility status in Zambia. Soil samples were collected under and outside the canopies of F. albida trees in representative fields from two sites namely; Chongwe (loamy sand) and Monze (sandy loam). To assess the long term canopy effects; total N, mineral N and soil organic carbon (Corg) content were directly measured from soils collected under and outside the canopy. Short term litter effects were assessed by subtracting concentrations of biochemical properties of non-amended controls from amended soils with F. albida litter during an 8 week incubation experiment. We also determined N mineralization rates, microbial community structure—Phospholipid fatty acids, microbial biomass carbon, and labile organic carbon (\({\text{C}}_{{{\text{org[K}}_{ 2} {\text{SO}}_{ 4} ]}}\)) during incubation. For the long term canopy effect, average N mineralization rate, Corg, total N and mineral N content of non-amended soils under the canopy were (all significant at p < 0.05) greater than soils outside the canopy on both sites. In the short term, amending soils with litter significantly increased N mineralization rates by an average of 0.52 mg N kg?1 soil day?1 on soil from Monze. Microbial biomass carbon measured after 4 weeks of incubation was on average significantly higher on amended soils by 193 and 334 mg C kg?1 soil compared with non-amended soils in Chongwe and Monze soils, respectively. After 6 weeks of incubation, the concentration of all selected biomarkers for major microbial groups concentrations in non-amended soils were significantly higher (all p < 0.05) under the canopy than outside in Monze soil. Using principal component analysis, we found that the segregation of the samples under and outside the canopy by the first principal component (PC1) could be attributed to a proportional increase in abundances of all microbial groups. Uniform loadings on PC1 indicated that no single microbial group dominated the microbial community. The second principal component separated samples based on incubation time and location. It was mainly loaded with G-positive bacteria, and partly with G-negative bacteria, indicating that microbial composition was dominated by these bacterial groups probably at the beginning of the incubation on Monze soils. Our results show that the improvement of soil fertility status by F. albida could be attributed to a combination of both long term modifications of the soil biological and chemical properties under the canopy as well as short term litter fall addition.  相似文献   

15.
在我国南方,天然次生阔叶林转变为杉木人工林是一种常见的管理措施。为研究森林利用方式转变对土壤微生物量的影响,我们在中国科学院会同森林生态实验站比较了天然次生阔叶林、第一代和第二代杉木人工林土壤理化性质和微生物量。杉木人工林土壤有机碳、全氮、铵态氮和微生物量碳氮含量明显低于天然次生阔叶林。第一代、二代杉木人工林土壤微生物量碳仅为天然次生阔叶林的53%和46%,微生物氮为97%和79%。杉木人工林土壤微生物量碳占有机碳的比例也低于天然次生阔叶林土壤,但微生物量氮则相反,为杉木人工林高于天然次生阔叶林。因此可以得出,天然次生阔叶林转变为杉木人工林以及杉木林连栽引起了土壤生物学特性和土壤质量降低。图2表3参36。  相似文献   

16.
Japanese cypress (Chamaecyparis obtusa Endl.) and Japanese cedar (Cryptomeria japonica D. Don) are common species for plantation forestry in Japan. Cypress is conventionally planted on sites of low fertility whereas for cedar high fertility sites are used. Objectives of this study were to compare the productivities of cypress and cedar plantations grown on adjacent sites where common properties of soils, such as pH values and C and N contents, were similar, and to relate the N cycling at their site with productivities. The stem diameter of trees, aboveground litter production and fine root biomass were measured as indices of forest productivity. Parameters of N cycling included pools of total N and mineral N (ammonium + nitrate), annual N leaching, and potentially mineralizable N. The radial stem increment of the two tree species was similar. However, cedar site had higher total basal area and annual basal increment than cypress site reflecting higher tree density on the cedar site. Aboveground litter, fine root biomass, soil organic matter, and N turnover were higher on the cedar site than on the cypress site. However, litter production and fine root biomass per unit basal area was greater at the cypress site. Phenological pattern of stem growth and periodical litter production were similar for both species during the study period (1992–2000), but showed distinct annual variations caused by the fluctuation in the ambient temperature and precipitation. Mineral N content and the N mineralization potential were greater on the cedar site, indicating greater N availability and higher total tree productivity at the cedar site than those at the cypress site. When provided with more space in the canopy to expand more needles and in the soil to develop more fine roots to exploit sufficient resources, the individual cypress trees have the potential to grow faster. On fertile site and at lower tree density, thicker logs of cypress might be yielded.  相似文献   

17.
Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and the microbial response may ultimately feed back on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil microbial biomass, composition and substrate utilization patterns in pine and hardwood forests at the Harvard Forest Chronic N Amendment Study. Functional and structural genes for important N cycling processes were studied using DNA community profiles. In the O horizon soil of both stands, N additions decreased microbial biomass C as determined by chloroform fumigation-extraction. Utilization of N-containing substrates was lower in N-treated pine soils than in the controls, suggesting that N additions reduced potential microbial activity in the pine stand. Counts of fungi and bacteria as determined by direct microscopy and culture techniques did not show a clear response to N additions. Nitrogen additions, however, strongly influenced microbial community DNA profiles. The ammonia monooxygenase gene (amoA) generally was found in high N-treated soils, but not in control soils. The nifH gene for N2-fixation was generally found in all soils, but was more difficult to amplify in the pine N-treated soil than the controls, suggesting that the population of N2-fixers was altered by N additions. The 16S rDNA gene for Nitrobacter was found in all samples, but distinct differences among DNA profiles were observed in the pine B horizon in the control, low N, and high N-treated plots. Our findings indicate that chronic N additions decreased chloroform microbial carbon and altered microbial community profiles. These changes in microbial community structure may be an important component of the response of terrestrial ecosystems to human-accelerated N supply.  相似文献   

18.
Vegetation recovery is a key measure to improve ecosystems in the Loess Plateau in China. To understand the evolution of soil microorganisms in forest plantations in the hilly areas of the Loess Plateau, the soil microbial biomass, microbial respiration and physical and chemical properties of the soil of Robinia pseudoacacia plantations were studied. In this study, eight forest soils of different age classes were used to study the evolution of soil microbial biomass, while a farmland and a native forest community of Platycladus orientalis L. were chosen as controls. By measuring soil microbial biomass, metabolic quotient, and physical and chemical properties, it can be concluded that soil quality was improved steadily after planting. Soil microbial biomass of C, N and P (SMBC, SMBN and SMBP) increased significantly after 10 to 15 years of afforestation and vegetation recovery. A relatively stable state of soil microbial biomass was maintained in near-mature or mature plantations. There was an increase of soil microbial biomass appearing at the end of the mature stage. After 50 years of afforestation and vegetation recovery, compared with those in farmland, the soil microbial biomass of C, N and P increased by 213%, 201% and 83% respectively, but only accounting for 51%, 55% and 61% of the increase in P. orientalis forest. Microbial soil respiration was enhanced in the early stages, and then weakened in the later stage after restoration, which was different from the change of soil organic carbon. The metabolic quotient (qCO2) was significantly higher in the soils of the P. orientalis forest than that in farmland at the early restoration stage and then decreased rapidly. After 25 years of afforestation and vegetation recovery, qCO2 in soils of the R. pseudoacacia forest was lower than that in the farmland soil, and reached a minimum after 50 years, which was close to that of the P. orientalis forest. A significant relationship was found among soil microbial biomass, qCO2 and physical and chemical properties and restoration duration. Therefore, we conclude that it is possible to artificially improve the ecological environment and soil quality in the hilly area of the Loess Plateau; a long time, even more than 100 years, is needed to reach the climax of the present natural forest. __________ Translated from Acta Ecologica Sinica, 2007, 27(3): 909–917 [译自: 生态学报]  相似文献   

19.
Natural fires and logging are two of the main disturbances affecting upland boreal forest in Alaska. The objectives of this study were to determine whether logged sites differ from burned sites in (1) overall plant species richness, (2) successional trajectories, and (3) species diversity at particular stand structural development stages. We compared plant species diversity on sites burned in natural fires to sites that were logged and not subsequently burned in central Alaska. We sampled 12 logged and 12 burned former upland white spruce (Picea glauca (Moench) Voss) forests in four stand development stages representing stand initiation (stage A), early stem exclusion (stage B), understory reinitiation (stage C), and mature hardwood (stage D) stages. In this study the dates of disturbance varied from 1990 to 1994 in stage A, 1978 to 1983 in stage B, 1957 to 1965 in stage C, and 1900 to 1920 in stage D plots. All sites were similar in slope, aspect, and soil type. Vascular plants were identified to the species level (except for certain willows) and bryophytes and lichens were identified to the level of presumptive (usually unknown) species within family groups. Organic layer thickness was significantly greater on logged sites compared to burned sites overall and at each stage. Burned sites (all stages combined) supported more species (146) than logged sites (111), and more species at each stand development stage. Burned plots in stages A and B supported abundant cover of a few apparent fire specialist species (Ceratodon purpureus (Hedw.) Brid., Marchantia polymorpha L. and Leptobryum pyriforme (Hedw.) Wils.) that were present in only minor amounts on logged sites. Burned plots exhibited higher species turnover from stage to stage and among all stages than logged plots. Species dominant in burned stage A plots were nearly absent in burned stage C and D plots, while logged stage A dominants, which were common mature forest species, increased in each subsequent stage. We compared floristic similarity between our disturbance plots and mature upland white spruce stands in Bonanza Creek Long-Term Ecological Research (LTER) site. Only five species found in the LTER dataset were not also present in this study, which suggests that nearly all species compositional change in our study area occurs during the first century after disturbance. Logged sites appear to begin and continue succession with a greater share of the original mature forest understory plants, while burned sites initiate succession with more distinctive and specialized plant species.  相似文献   

20.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号