首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
在非生物胁迫条件下,海藻糖可以提高植物的抗逆性,减少逆境胁迫对植物组织的伤害,维持植物的相对正常生长。为了解其具体的作用机制,以小麦为材料,通过检测高温胁迫及室温恢复过程中丙二醛(MDA)含量、过氧化氢(H2O2)含量、超氧自由基(O·-2)含量、抗氧化物质[抗坏血酸(AsA)、还原型谷胱甘肽(GSH)]含量、抗氧化酶[超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)]活性及其基因转录的表达调控,以探究外源海藻糖对小麦幼苗抗氧化系统的影响。结果表明,在高温胁迫下外源海藻糖处理主要提高了AsA含量,增强了CAT和APX活性,同时上调了Mn-SOD、Cu/ZnSOD、CAT、POD和APX的相对表达量,从而降低了MDA及H2O2的产生。而随后的室温恢复过程基本与高温胁迫的结果一致,也提高了这些酶的基因转录水平以及AsA含量,主要差别是对抗氧化酶活性的影响,即室温恢复阶段外源海藻糖主要提高了POD和APX活性。综合来看,外源海藻糖在小麦幼苗的高温胁迫及室温恢复过程中,通过促进抗氧化酶基因的上调表达,提高抗氧化酶活性和抗氧化物质含量,以酶促和非酶促两种机制共同清除高温胁迫产生的活性氧,减少氧化胁迫的损伤,维持小麦幼苗的生长。  相似文献   

2.
Germin like proteins (GLPs) are a large group of related and ubiquitous plant proteins which are considered to be involved in different processes important for plant development and defense. Multiple functional copies of this gene family have been reported in a number of species (wheat, barley, rice, soybean mosses and liverwort), and their role is being evaluated by gene regulation studies and transgenic approaches. To analyze the role of a rice (Oryza sativa) root expressed germin like protein1 OsRGLP1, for its antifungal activity, transgenic potato plants were developed. These transgenic potato plants were molecularly characterized and biologically assessed after inoculation with Fusarium oxysporum f. sp. tuberosi. Functional analysis showed high accumulation of H2O2, increased Superoxide Dismutase (SOD) activity and no oxalate oxidase activity (OxO) in transgenics in comparison to nontransformed control. This increased SOD activity, resistance to heat and sensitivity to H2O2 suggest it is a Fe-like SOD. OsRGLP1 expression in potato plants exhibited enhanced resistance in comparison to nontransformed wild type plants suggesting its role in providing protection against Fusarium oxysporum f. sp. tuberosi through elevated SOD level. Overall, results suggest that OsRGLP1 is a candidate for the engineering of potato plants with increased fungal tolerance however, the greater height and tuber number was observed. This phenotype associated with the resistance needs to be evaluated to determine if this is a positive or negative feature.  相似文献   

3.
Field-grown potato plants were sprayed twice weekly, from 21 to 90 days after planting, with 5 or 50 mM hydrogen peroxide (H2O2) solutions. Relative to water-sprayed controls, the H2O2 treatments significantly enhanced tuber starch accumulation by between 6.7% and 30%, as determined by specific gravity or the anthrone spectrophotometric method. Pronounced effects of similar H2O2 treatments on aerial stem anatomy and starch content were also found in glasshouse experiments. H2O2 treated stems were up to 27% thicker than controls, mainly due to enlarged medullar parenchyma cells. Histochemical observations indicated that there were more starch grains in cortex and pith tissue of H2O2-treated stems. H2O2 also increased the number and size of xylem tracheary elements in the vascular bundles and the number of interfascicular fibers. Quantification using image analysis confirmed that stems of H2O2 treated plants contained up to 3.4-fold more starch and 62% more lignin. This new chemical treatment to promote starch accumulation has potential utility in potato crop production and research.  相似文献   

4.

Elicitation is a biotechnological approach to improve phenolic compounds content and antioxidant properties of ready-to-eat functional foods. This study aimed to evaluate the chemical elicitation effects using salicylic acid (SA) and hydrogen peroxide (H2O2) in optimized-germination conditions on seedling vigor, phenolic content, and their antioxidant capacities in vitro and serum and urine of Wistar obese rats. Optimized-germination conditions of 26.5 °C and 178 h produced a 64% of germination and a sprout length of 56 mm. Only, the elicitation with H2O2 (20 mM) enhanced the germination (75%) and H2O2 (10 and 20 mM) the sprout length (69 and 59 mm, respectively). In contrast, both elicitors enhanced phenolic contents, being more significant total phenolic compounds content for SA (1 and 2 mM), up to 65.5–73.5%. SA and H2O2 improved total flavonoids content (36.5–64.1%), ABTS (19.3–61.1%), and DPPH capacities (51–86%), depending on SA and H2O2 concentration, compared with non-elicited chia sprouts. The QUENCHER antioxidant capacities of elicited chia sprouts increased up to three times more than extracts capacities, principally Q-ABTS, which could be attributed to phenolic bounds to dietary fiber. Rats fed with a high-fat and fructose diet (HFFD) and supplemented with chia sprouts, especially 1-mM SA, improve the obesity-related oxidative stress through an increase of antioxidant capacities, using DPPH and ABTS test, on serum (70–118%) and urine samples (80–116%). These results suggest that chia sprouts elicited with 1-mM SA are a source of antioxidant compounds that can be used to decrease obesity related oxidative stress.

  相似文献   

5.
玉米耐盐基因ZmHKT1;5在烟草中的功能验证   总被引:1,自引:0,他引:1  
HKT类基因是与植物耐盐性密切相关的一类基因。在作物中HKT蛋白可通过排出Na+来维持植物体内的Na~+/K~+平衡,从而影响植物耐盐性。通过在烟草中过表达玉米ZmHKT1;5基因,验证该基因具有提高植物耐盐性的作用。结果表明,过表达ZmHKT1;5基因的T0代材料即显示出叶片耐盐能力的明显提高;T2代转基因株系种子在含盐培养基上的发芽能力明显强于野生型材料,T2代转基因株系幼苗阶段的耐盐能力也得到了明显的提高。通过比较在盐胁迫后2月龄的转基因材料和野生型材料的生理指标,发现野生型材料中MDA和H_2O_2的含量相较转基因材料发生了更为明显的上升,说明转基因材料中过表达ZmHKT1;5基因有效降低了盐胁迫引起的过氧化物积累。综合转基因验证的结果,证明ZmHKT1;5基因具有提高植物耐盐性的作用。  相似文献   

6.
Mixed cropping is a cultivation method widely practiced in tropical regions. The newly developed close mixed planting technique mitigates the flood stress of drought-adapted upland cereal species by co-growing rice (Oryza sativa) plants under field flood conditions. We tested the hypothesis that O2 was transferred from rice to upland crops using the model system of hydroponic culture. To confirm the hypothesis, the phenomena of O2 absorption and release by plants were evaluated in a water culture condition without soil. Experiments were conducted in a climate chamber to estimate the amount of O2 released from the roots of rice and pearl millet (Pennisetum glaucum) under both O2-rich (20.0 ± .0% conc. in phase I) and O2-free dark (.8 ± .0% conc. in phase II) conditions. The total O2 change (between the two phases) in a single planting of rice and pearl millet was significantly higher than that of the mixed planting of rice and pearl millet, which indicated that O2 was transferred from rice to pearl millet under a water culture condition. The result indicated that approximately 7 μM O2 g fresh root weight?1 h?1 was transferred between the two plant species. O2 transfer was confirmed between the two plant species in a mix cultured in water, implying its contribution to the phenomenon that improved the physiological status of drought-adapted upland crops under field flood conditions.  相似文献   

7.
 0.5、2.0 mmol/L 的水杨酸(SA)处理水稻幼苗后第3 天用稻白叶枯菌(Xanthomonas oryzae pv. oryzae)对未处理叶(第3叶,进行SA处理时用塑料袋套住)挑战接种,2周后调查病情,发现病斑长比对照分别下降了10.2%和18.2%,说明SA能诱导水稻幼苗对白叶枯病的系统抗性。酶活性测定表明,两种浓度的SA能明显降低水稻幼苗未处理叶中过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)的活性,而对过氧化物酶(POD)活性无明显影响。两种浓度的SA对未处理叶中超氧化物歧化酶(SOD)活性的影响不同,其中0.5 mmol/L 的SA处理下,SOD无明显变化,但20 mmol/L 的SA对SOD活性有较明显的促进作用。SA处理后1~4 d,未处理叶H2O2含量比对照上升了23.6%~72.8%(0.5 mmol/L)和31.2%~122.6%(2.0 mmol/L)。H2O2水平的显著提高可能是H2O2产生加快和降解减慢的共同结果(2.0 mmol/L的SA下),或单纯的降解减慢所致(0.5 mmol/L的SA下)。同时,SA对未处理叶PAL活性有促进作用。提示在水稻中,SA对水稻抗白叶枯病的系统诱导作用可能与H2O2积累和PAL活性的升高有关。  相似文献   

8.
利用NaHSO3处理玉米幼苗模拟水相SO2胁迫,比较分析了BT-1(抗)、N6(感)自交系经NaHSO3胁迫后细胞膜脂过氧化和几种抗氧化酶活性的动态变化。结果表明:随着水相SO2胁迫时间的延长,高感系N6叶片中丙二醛(MDA)含量和H2O2积累量比高抗系BT-1显著增加;抗、感系中抗氧化酶超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶(APX)活性都有明显的增强,而过氧化氢酶(CAT)的活性呈显著下降趋势。说明H2O2的积累导致玉米叶片膜脂过氧化加剧,SOD和APX在玉米遭受SO2胁迫中起着重要的保护作用。  相似文献   

9.
The present study showed that pretreatment of triadimefon (TDM), a triazole compound, could improve tolerance of soybean seedlings to subsequent water stress. TDM pretreatment resulted in early and late rise in superoxide dismutase (SOD) and catalase (CAT) activities, and upregulation of ascorbate (AsA) content in non-stressed and water-stressed seedlings, leading to late increase in net photosynthetic rate (Pn), late decrease in hydrogen peroxide (H2O2) and electrolyte leakage in stressed ones. These TDM-induced changes were blocked by application of abscisic acid (ABA) biosynthesis inhibitor tungstate, which inhibited early rise of ABA and H2O2 contents in non-stressed and stressed seedlings. However, ABA pretreatment overcomed the effects of this inhibitor. Application of NADPH oxidase inhibitor diphenyleneiodonium (DPI), polyamine oxidase (PAO) inhibitor 2-hydroxyethylhydrazine (2-HEH) and H2O2 scavenger dimethylthiourea (DMTU) prevented early TDM-induced rise of H2O2 content. DPI, 2-HEH and DMTU also decreased SOD, CAT and AsA levels, but did not affect ABA content during early and late phases in both seedlings pretreated with TDM. In addition, these chemicals decreased Pn, and increased H2O2 content and electrolyte leakage during late phase in TDM-pretreated stressed seedlings. Overall, these results indicated that TDM pretreatment alleviated adverse effects of water stress on soybean seedlings, which was at least in part, due to increase of antioxidant capacity and decrease of oxidative damage induced by early ABA-dependent H2O2 generation.  相似文献   

10.
采用溶液培养方法,研究茉莉酸对玉米幼苗叶片抗镉性的影响。结果表明,镉胁迫显著提高玉米叶片丙二醛(MDA)、H_2O_2含量和超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽转移酶(GST)、谷胱甘肽过氧化物酶(GPX)活性,降低过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,降低叶绿素a、叶绿素b和类胡萝卜素含量及生物量。与单独镉胁迫相比,外源茉莉酸处理可显著提高镉胁迫下叶片CAT、POD、APX和GR活性,显著提高叶绿素a、叶绿素b和类胡萝卜素含量及生物量,显著降低镉胁迫下叶片MDA和H_2O_2含量,从而缓解其造成的伤害。结果表明,外源茉莉酸可明显提高玉米幼苗叶片的抗氧化能力和光合色素含量,从而增加生物量的积累,缓解镉胁迫造成的伤害。  相似文献   

11.
Potato is grown worldwide, in some cases in very acid soils. Aluminum (Al) is a major limiting factor for crop productivity in acid soils. Al toxicity was studied mainly on plant roots, while less attention was given to its effects on leaves. Al tolerance observed in solution cultures has rarely been correlated with Al tolerance in acid soils. Al tolerance was assessed in 12 potato cultivars grown in nutrient solutions containing 0, 25, and 50 μmol Al L?1 by its relative root elongation (RRE). The effect of acid soil with high level of exchangeable Al on leaf mineral content, chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, water use efficiency (WUE), and light use efficiency (LUE) was studied on cultivars, with the greatest differences in RRE (cv. Tresor, 63.1 and 42.5% and cv. Canberra, 23.3 and 19.2%, for the 25 and 50 μmol Al L?1 treatments, respectively), grown for 49 days after planting (DAP) in acid and limed soil. Growth in acid soil significantly reduced concentrations of nitrogen (?18.51%) and magnesium (?27.17%) in the leaves in cv. Canberra and concentrations of potassium and copper in both cultivars. Canberra grown in acid soil showed a significant decrease in chlorophyll content and photosynthetic rate, from 28 to 49 DAP, and in transpiration rate and LUE when averaged across all measurements, while cv. Tresor was not affected. Physiological disorders observed on leaves of plants grown in acid soil can be correlated with the differences in Al tolerance observed in nutrient solutions.  相似文献   

12.
The perennial herb Chlorophytum nepalense (Lindley) Baker, widely distributed throughout the northern parts of Tripura State of India, is used traditionally by Tripuri farmers as a root extract to control dark viral necrotic lesions of sprouted potato tubers and plants. The root extracts strongly reduced infection of potato plants and sprouted tubers by Potato virus X under glasshouse conditions. The root extract was found to contain the three plant-viricidal compounds chlorogenic acid, kaempferol-3-O-(3′,6′di-O-E-p-coumaroyl)-β-d-glucopyranoside, and luteolin and suggests that the isolated compounds may have the potential to be used as natural plant-viricidal compounds.  相似文献   

13.
Stevia rebaudiana Bertoni is a perennial medicinal herb indigenous to tropical regions of South America. The present study evaluated some physiological changes of the plant under cold in the absence and the presence of polyamine conditions. The results showed photosynthetic pigments and photochemical efficiency of PSII reduced in cold treatment conditions than control, significantly. However, a considerable increase in the parameters was observed in all of polyamine treated goups. Leaf compatible solutes such as proline and glycine betaine that were not shown significantly increasing at cold treatment groups, elevated in the 2 days cold-polyamine-treated group. The similar results were seen for free amino acid and total protein contents of the treated plants. It was also revealed that specific activity of some antioxidant enzymes such as catalase and ascorbate peroxidase increased in cold-treated or cold + polyamine-treated groups than related controls. It caused a significant decrease in H2O2 and malondialdehyde contents of the treated plants. The results indicated an increasing in saturated long chain fatty acids after 4 days of cold at 4 °C. It was concluded that the polyamine supplement can induced a considerable tolerance in stevia plants at cold condition.  相似文献   

14.
Drought stress which often occurs during early growth stage is one constraint in sugarcane production. In this study, the response of sugarcane to drought and nitrogen application for physiological and agronomical characteristics was investigated. Two water regimes (well-watered and drought stress from 60 to 120 day after transplanting) and four nitrogen levels (0, 4.4, 8.8 and 13.2 g pot?1 equivalent to 0, 90, 180 and 270 kg ha?1, respectively) were assigned in a Split-plot design with three replications. The results showed that photosynthetic responses to light intensity and intercellular CO2 concentrations of sugarcane were different between fertilized and non-fertilized treatments. Photosynthetic rates of 180 and 270 N treatments, normally, were significantly higher than that of 90 N, but not significant at drought conditions. Photosynthetic rates of 0 N treatment were the lowest under both conditions. Higher nitrogen application supported higher photosynthetic rate, stomatal conductance, and chlorophyll content because of higher nitrogen concentration accumulated into the leaf. Drought significantly reduced the potential photosynthetic rate, stomatal conductance, SPAD, leaf area, and biomass production. Higher nitrogen applications with larger root system could support higher photosynthetic activities to accumulate more dry mass. Strong positive coefficient between photosynthetic and biomass nitrogen use efficiency and drought tolerance index may suggest that higher nitrogen use efficiency could help plants have higher ability to tolerate drought stress.  相似文献   

15.
Henna (Lawsonia inermis L.) is naturally cultivated from north-east Africa to India as a medicinal-industrial plant. The objective of this study was to evaluate the possible role of salicylic acid (SA) for mitigating the salinity stress. For this purpose, we evaluated the effect of three concentrations of SA (0, 40 and 80 μM) and salinity (0, ?3 and ?6 bar) on photosynthetic pigments, protein content, catalase (CAT, EC 1.11.1.6) activity, electrolyte leakage and leaf relative water content (RWC). The experiment was carried out with a factorial arrangement based on complete randomized design in triplicates at University of Kerman, Iran. The results revealed that salinity caused a significant decrease in photosynthetic pigments, protein content, RWC and quantum yield of henna. By increase in salinity levels from 0 to ?6 bar, the mean values of mentioned traits were reduced. CAT activity, electrolyte leakage, F0 and Fm were elevated significantly with increasing the salinity concentration. Application of SA under salinity stress increased the photosynthetic pigments, protein content, CAT activity, leaf RWCs and quantum yield, while it decreased electrolyte leakage, F0 and Fm. It can be concluded that SA alleviated the stress generated by NaCl possibly through the ameliorated antioxidant defense system.  相似文献   

16.
为了筛选冬小麦抗寒性鉴定的低温处理方式和鉴定指标,以冬小麦强抗寒品种东农冬麦1号、弱抗寒品种济麦22和不抗寒品种中国春为试验材料,设室内快速低温、室内缓慢低温和田间种植三种处理,测定和分析了不同处理下小麦叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性及抗坏血酸(ASA)、谷胱甘肽(GSH)、丙二醛(MDA)、过氧化氢(H2O2)含量.结果表明,与室内缓慢低温处理相比,室内快速低温处理下小麦各项指标较接近田间种植处理,且与田间种植处理相关性较显著.低温下抗寒品种的H2O2及MDA含量显著低于弱抗寒品种和不抗寒品种,SOD活性和ASA含量与H2O2含量呈极显著负相关.因此,室内快速低温处理结合SOD活性及ASA、H2O2和MDA含量分析可以进行小麦品种抗寒性鉴定.  相似文献   

17.
Application time of nitrogen (N) fertilizer can significantly influence the yield and quality of potato tubers. The objective of this experiment was to assess the effects of N application time on dry matter accumulation in foliage and tubers, as well as on marketable tuber ratio, dry matter concentration, and specific gravity of the Chinese cultivar KX 13. The four treatments were as follows: all the 150 kg?N?ha?1 applied at planting (T1); 100 kg N ha?1 applied at planting and 50 kg N ha?1 applied 1 week before tuber initiation (20 days after emergence, DAE) (T2); 100 kg N ha?1 applied at planting and 50 kg N ha?1 applied 1 week before tuber bulking stage (35 DAE) (T3); and 100 kg?N?ha?1 applied at emergence and 50 kg N ha?1 applied 1 week before tuber bulking stage (35 DAE) (T4). For all treatments, 90 kg P2O5 ha?1 ((NH4)2HPO4) and 150 kg K2O ha?1 (K2SO4) were applied at planting. Thirty tons per hectare of marketable tuber yield was achieved with T3, while 23 t ha?1 marketable yield was achieved by applying all 150 kg N ha?1 at planting (T1). Relative to treatment T1, T3 also significantly increased harvest index (HI) from 0.76 to 0.86 and marketable tuber ratio from 64.8% to 79.2%. Applying N at planting in conjunction with dressing at 20 DAE (T2) gave a high marketable tuber ratio (74%) and HI (0.86), but the lower total tuber yield led to a lower marketable tuber yield. Without N application at planting (T4), N dressing did not increase the yield and HI. Treatments with N dressing had no significant effect on specific gravity or dry matter concentration of tubers.  相似文献   

18.
Potato yellow vein virus (PYVV) causes vein yellowing in leaves and reduces potato yield by 50 %. In Andigena potato varieties, PYVV infections result in both symptomatic (S) and symptomless (NS) plants. The present study tracked PYVD symptoms over two field generations (G1 and G2) derived from mother plants (G0) of the Solanum phureja cultivar “Criolla Colombia.” PYVV was detected in the leaves of G0 plants by RT-PCR. The experiment began with tubers of 39 S plants from a commercial crop and 94 certified NS plants (PLRV, PVY, PVX, PVS free), yielding a total of 3561 plants analyzed over the two generations. The greenhouse whitefly vector Trialeurodes vaporarioum was controlled chemically. S plants produced large proportions of NS plants, 62 % and 84 % in G1 and G2, respectively. NS plants, whether RT-PCR positive or negative, generated greater than 96 % NS plants, but in some cases, produced a proportion of S plants ranging between 0.2 % and 3.4 %. The presence of PYVV was evaluated by RT-PCR and qPCR with Taqman probes in sprouts of the tubers of S and NS plants. One to 6 sprouts were analyzed per tuber. In 113 sprouts of the tubers of S RT-PCR positive/ negative plants and 36 of NS RT-PCR positive/negative plants, the viral RNA copies ranged between 3.42?×?102 to 6.01?×?108 copies/mg of plant extract. These results show that PYVV is present not only in symptomatic plants but also in some symptomless plants. PYVV is passed from symptomless mother plants to some of its tubers along with unknown putative silencing or latency mechanisms that prevent the virus from expressing in most of the infected progeny. Late vector transmission, heterogeneous viral concentration in tubers and virus latency are also discussed.  相似文献   

19.
In order to increase the efficacy of water and control the losses of fertilizer, it is necessary to assess the influence of level of fertilization on crop responses, movement and balance of water and solutes from fertilizers in the root zone. With this goal, the reported study was undertaken to determine the effect of fertilization on crop responses and fertilizer solute transport in rice crop field in a sub-humid and sub-tropical region. Field experiment was conducted on rice crop (cultivar IR 36) during the years 2003, 2004, and 2005. The experiment included four fertilizer treatments comprising different levels of fertilizer application. The fertilizer treatments during the experiment were: F1 = control with N:P2O5:K2O as 0:0:0 kg ha?1; F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha?1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha?1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha?1. The results of the investigation revealed that the magnitudes of crop parameters such as grain yield, straw yield, and maximum leaf area index increased with increase in fertilizer application rate. The levels of fertilization had very little effect on water loss via deep percolation and water use by the crop. The levels of fertilization had considerable effect on N leaching loss and uptake of N whereas it had no significant impact on leaching loss of water-soluble phosphorus. This indicated that PO4-P leaching loss was very low in the soil solution as compared to nitrogen due to fixation of phosphorus in soils. The results also revealed that increase in level of fertilization increased water use efficiency considerably by increased crop yield. From the observed data of nutrient use efficiency, crop yield and environmental pollution, the fertilization rate of N:P2O5:K2O as 80:40:40 kg ha?1 (F2) was the most suitable fertilizer treatment for rice crop among studied treatments.  相似文献   

20.
The rate of oxidation of tyrosine, p-cresol and catechol by potato enzyme diminished as H2O2 concentration increased. By contrast, the rate of oxidation of chlorogenic acid in the presence of H2O2 increased. Bovine catalase destroyed H2O2 and thus effectively prevented either H2O2-induced inhibition or acceleration of oxidation of the four substrates by potato enzyme. Horseradish peroxidase in the presence of H2O2 did not oxidize either monophenol, but oxidized both polyphenols. Possible association of H2O2, peroxidase and catalase with blackspot susceptibility is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号