共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of clear-cutting on the ammonia-oxidising bacterial community were studied in the soil of limed and non-limed spruce forest plots located in the central part of southern Sweden. The communities were studied using denaturing gradient gel electrophoresis (DGGE) profiling after polymerase chain reaction (PCR) amplification from total DNA with primers reported to be specific for -subgroup ammonia-oxidising bacteria. The bands on the DGGE were sequenced and each unique sequence was interpreted as representing one ammonia-oxidising population. The relative abundance of each population was determined by measuring the fluorescence of the respective DGGE bands. In both limed and non-limed soil, the same two Nitrosospira populations were found, one belonging to cluster 2 (NScl2) and one to cluster 4 (NScl4). However, while NScl4 first appeared a year after the clear-cutting in the non-limed plot, it was present both before and after the cutting in the limed plot. Irrespective of previous liming, clear-cutting caused a shift in the ammonia-oxidiser community, from dominance by the NScl2 population to a community with approximately equal relative abundance of NScl2 and NScl4. In both plots the total size of the community increased after clear-cutting (based on increased DGGE band intensity), most likely due to increased NH4+ availability, but the growth response was faster in the limed plot. Hence, the prior liming increased the responsiveness of the ammonia-oxidisers to the changes caused by cutting. This is the first study to report the effects of clear-cutting on the ammonia-oxidising community, and the results show a clear correlation between increased potential nitrification and a shift in the ammonia-oxidiser community. 相似文献
2.
Bioactivity in limed soil of a spruce forest 总被引:1,自引:0,他引:1
Summary The stimulative effect of lime on the bioactivity of various soil horizons was demonstrated by the ATP test, and respiration and microcalorimetric measurements, but not by FDA hydrolysis or the iron reduction test. The latter showed clear inhibition. When the natural structure of layers was saved while sampling, a smaller stimulation of bioactivity was observed than in the case of mixing natural layers. No stimulation was recorded when the lime layer was removed. 相似文献
3.
Nancy I. LópezAmy T. Austin Osvaldo E. SalaBeatriz S. Méndez 《Soil biology & biochemistry》2003,35(12):1609-1613
We studied controls on nitrification in an undisturbed water-limited ecosystem by inhibiting autotrophic nitrifying bacteria in soils with varying levels of vegetative cover. The activity of nitrifying bacteria was disrupted using nitrapyrin, 2-chloro-6-(trichloromethyl)-pyridine, under field conditions in three microenvironments (underneath shrubs, next to grasses and in bare soil). Ammonia-oxidising bacteria were detected by PCR analysis of DNA in soils. The inhibition of nitrification changed the concentrations of NO3− and NH4+ in the soil, while the microenvironment was most important in determining the response of bacteria to the inhibitor. Nitrapyrin application resulted in a significant (p<0.05) reduction in soil NO3− concentration (39%) and a significant increase (p<0.001) in soil NH4+ concentration (41%). Untreated bare-soil microenvironments had the lowest concentrations of NH4+ (1.57 μg/g of dry soil) and NO3− (0.49 μg/g of dry soil) when compared to the other microenvironments, and showed the highest impacts of nitrification inhibition. For example, NH4+ concentrations increased 288% and NO3− concentrations decreased 60% in inhibited bare-soil microenvironments. In contrast, untreated microenvironments underneath shrubs had the highest levels of NH4+ (10.01 μg/g of dry soil) and NO3− (0.69 μg/g of dry soil), but showed no significant effects of inhibition of nitrification on soil nitrogen concentrations. 相似文献
4.
Stuart S. Bamforth 《Pedobiologia》2010,53(6):361-367
Decomposition occurs in the surface litter and soil to support temperate rainforests, but little is known about the protozoa that stimulate bacterial activity and turnover. I examined surface litter and top soils, fallen logs, and epiphytes within 2 m from the soil surface in Olympic National Park, USA, of the Pacific Northwest Temperate Coniferous Rain Forest. Ciliates in surface litter numbered 180-580 g−1 dry weight, but were reduced by 20-60% in the underlying soils. Testate amoebae numbered 18,000-77,000 g−1 dry weight in both litter and soil although they were often more abundant in underlying soils. Rotting logs, essential for tree regeneration, supported similar numbers of ciliates, but twice the numbers of testate amoebae. In three epiphytic soils, ciliates numbered 350-550, and testate amoebae 35,000-195,000 g−1 dry weight of soil. In these soils, 26 species of gymnamoebae, 64 species of ciliates, and 113 species of testate amoebae were found. About 65% of the individuals in ciliate and 45% in testate amoebae populations were small, r-selected taxa. Rain forest soil protozoa have distinct testate amoebae populations, and are characterized by enormous biodiversity, the dominance of acrostome species, the proliferation of Euglypha and Nebela species, and the appearance of aquatic taxa. Ecological succession of ciliates and testate amoebae follows an additive (non-replacement) pattern according to a neutral model. The large numbers of persistent r-selected species respond to ecosystem disturbances by mobilizing quickly to resume the bacterivory necessary to help restore the recovering above-ground plant community. 相似文献
5.
This study investigated the influence of liming and P/K fertilization on the feeding activities of soil fauna and leaf litter
decomposition rates in deciduous forest soils. The parameters examined were correlated to soil chemical characteristics. In
1994, we established a field experiment with six plots in an oak-beech forest and added different amounts of dolomite, partly
combined with P/K fertilization. Two years thereafter a bait-lamina test was used to examine the feeding activity of soil
fauna and a minicontainer test to study beech-leaf decomposition. In 1996, the feeding activity in the Ah horizon was lower
in the plots left untreated in 1994 than in the plots which had been fertilized in 1994. The highest feeding activity was
found in the treatment with 6 t dolomite ha–1 plus P/K. In all plots, the feeding activity decreased with increasing soil depth. The decomposition rates varied from 0.49%
to 0.78% week–1 in the period April–October 1996. In 1996, the plots treated with 6 t dolomite ha–1 had the highest decomposition rates and differed significantly from those treated with 9 t or 15 t dolomite ha–1. No significant differences were found between the untreated plots and those treated with 9 t or 15 t dolomite ha–1. These results were confirmed by those obtained in 1997. The C/N ratio of litter also decreased, mostly in the treatment
with 6 t dolomite ha–1. Feeding activities in the Ah horizon correlated positively with pH and concentrations of mobile Ca, Mg, K, and negatively
with concentrations of mobile Al and heavy metals. We concluded that an increased supply of mobile nutrients and a decrease
in mobile Al and heavy metals in these forest soils, as well as a balanced ratio between macro- and micronutrients, led to
increased biological activity.
Received: 26 June 1998 相似文献
6.
Steffen Kolb Antonio Carbrera Claudia Kammann Peter Kämpfer Ralf Conrad Udo Jäckel 《Biology and Fertility of Soils》2005,41(5):337-342
In the Giessen free-air CO2 enrichment (GiFACE) experiment, 5 years of CO2 enrichment led to decreased CH4 uptake rates of the investigated meadow soil. In soils, CH4 is mainly oxidised by methanotrophic bacteria. In the present study, abundances of methanotrophic bacteria and total bacteria in soil samples from the GiFACE experiment were quantified by applying pmoA- and 16S rRNA gene-targeted real-time PCR and fluorescence in situ hybridisation (FISH). Methanotrophic bacteria of the Methylosinus group (Alphaproteobacteria) and the Methylobacter/Methylosarcina group (Gammaproteobacteria) were detectable by real-time PCR as well as by FISH. Both quantitative analytical approaches revealed that abundances of either bacteria or methanotrophic bacteria in soil samples from sites under CO2-enriched atmosphere were decreased. Compared to ambient site, only 46 and 30.5% of methanotrophic bacteria and 38 and 63.2% of total bacterial cell numbers could be detected under CO2-enriched atmosphere by FISH and real-time PCR, respectively. These results suggest that significantly decreased abundances of methanotrophic bacteria could explain reduced CH4 uptake rates. 相似文献
7.
Establishing soil quality changes following clear‐felling is important for guiding the sustainable management of forests. In this study we identified changes after 4, 5, 10 and 17 yr in soil physical and chemical properties from clear‐felling in the eastern Tibetan Plateau. These properties were also compared with those of soil from an adjacent primary forest. The results show that: (i) bulk density at 0–20 and 20–40 cm soil layer continuously increased; (ii) soil C and total N in the 0–20 cm soil layer continuously declined following clear‐felling; and (iii) available soil nutrients and exchangeable cations were significantly influenced by clear‐felling. Almost all soil properties showed deteriorating trends within a short time from clear‐felling and subsequent seasonal grazing by cattle. Therefore, improved management is imperative for sustaining soil quality and maintaining the long‐term nutrient balance in clear‐cut stands. The cessation of anthropogenic activities such as grazing should be the main strategy for soil restoration in clear‐felled areas. 相似文献
8.
Summary The effects of the endogeic earthworm, Aporrectodea caliginosa tuberculata (Eisen) on decomposition processes in moist coniferous forest soil were studied in the laboratory. The pH preference of this species and its effects on microbial activity, N and P mineralization, and the growth of birch seedlings were determined in separate pot experiments. Homogenized humus from a spruce stand was shown to be too acid for A. c. tuberculata. After liming, the earthworms thrived in the humus and their biomass increased (at pH above 4.8). In later experiments in which the humus was limed, the earthworms positively influenced the biological activity in humus and also increased the rate of N mineralization. A. c. tuberculata increased the growth of birch seedlings, with increases observed in stems, leaves, and roots. Neither NH
4
+
-N fertilizer nor mechanical mixing with artificial worms affected seedling growth. No plant-growth-affecting compounds (e.g., hormone-like compounds) due to the earthworms were present in the humus. The shoot: root ratio in the birch seedlings was not affected by either the earthworms or the fertilizer. The experiments revealed the impact of earthworm activity on soil processes and plant growth. 相似文献
9.
Canopy-held organic matter develops into a distinct soil system separate from the forest floor in wet temperate coniferous forests, creating a natural microcosm. We distinguished between fungal and bacterial components of the decomposer community in one site with Maple (Acer macrophyllum) and one site with Alder (Alnus rubra) by using direct measurements of growth; acetate incorporation into ergosterol, and leucine incorporation for fungi and bacteria, respectively. The higher organic matter content of the canopy soils correlated with higher fungal growth. The relative importance of fungi, indicated by fungal:bacterial growth ratio, was higher in the canopy soil of the Maple site, while there was no difference in the Alder site. The high C:N ratio of the Maple canopy soil likely contributed to this difference. These results demonstrate a divergence between canopy and forest floor that should be explored to gain insights in decomposer ecology using the natural microcosms that the canopy soils provide. 相似文献
10.
辽西低山丘陵区针叶林与阔叶林枯落物持水性对比 总被引:1,自引:0,他引:1
为对比分析辽西低山丘陵区针叶林与阔叶林枯落物的持水性差异,为辽西森林植被恢复提供科学依据和技术支撑,选取3个针叶林(红松林、油松林、兴安落叶松林)和3个阔叶林(榆树林、山杨林、紫椴林)下的枯落物作为研究对象,采用野外现场采样与室内浸水相结合的方法对枯落物的持水特性进行测定.结果表明:针叶林平均蓄积量大于阔叶林,其中针叶林蓄积量在14.65 ~ 17.75 t/hm2,阔叶林在8.44 ~ 16.92 t/hm2;针叶林枯落物平均厚度(2.79 cm)大于阔叶林(2.44 cm);针叶林最大持水率在148.88% ~ 173.19%,阔叶林在145.42% ~156.91%;针叶林有效拦蓄水量为19.47~25.59 t/hm2,阔叶林有效拦蓄水量为10.56~ 22.04 t/hm2,表现为针叶林下枯落物的拦蓄能力更强;针叶林半分解层拦蓄水量显著大于未分解层,阔叶林未分解层拦蓄水量大于半分解层;阔叶林未分解层吸水速率大于针叶林. 相似文献
11.
Summary Nematodes were sampled in untreated, acidified, and limed plots in a Norway spruce (Fexboda) and a Scots pine (Norrliden) stand. At Fexboda, the total number of nematodes was significantly reduced after the acidification. This reduction was probably due to a shock effect, because the samples were taken only 5 months after an application of 200 kg H2SO4 ha-1 to the forest floor. However, the root/fungal-feeding Aphelenchoides was not reduced, probably because it is more tolerant of high acid concentrations than most other nematodes. At Norrliden, where the samples were taken 7 years after the last application of H2SO4, no significant differences were found between the acidified and untreated plots. If the treatment with H2SO4 caused similar effects as at Fexboda, the results indicate a recovery of the nematode populations. Decreased predation from lumbricids rather than a recovery of microfloral populations probably allowed this recovery. No marked effect of lime, spread 2 (Fexboda) and 12 years (Norrliden) before the sampling on the numbers of any of the nematode feeding groups was found. This correlated with almost no change in bacterial biomass after liming, while the active fraction of fungal hyphae was unaffected by liming at Fexboda and reduced by liming at Norrliden. A tendency for decreasing numbers of all nematode feeding groups in the limed plots at Norrliden coincided with increasing numbers of lumbricids. 相似文献
12.
Recent studies have suggested that the organic matter contents of undisturbed soils (under natural vegetation) are in equilibrium with biological and biochemical properties. Accordingly, we hypothesised that such equilibria should be disrupted when soils are subjected to disturbance or stress, and that measurement of this disruption can be expressed mathematically and used as a soil quality index. In this study, we evaluated these hypotheses in soils from the H.J. Andrews Experimental Forest in Oregon. Both O and A horizons were sampled from nine sites in Spring 2005 and Fall 2006. Soil samples were analyzed for enzyme activities (phosphatase, β-glucosidase, laccase, N-acetyl-glucosaminidase, protease and urease), and other biological and chemical properties including N-mineralization, respiration, microbial biomass C (MBC), soil organic carbon (SOC) and total nitrogen content. In addition, soil samples from one old-growth site were manipulated in the laboratory to either simulate chemical stresses (Cu addition or pH alteration) or physical disturbances (wet-dry or freeze-thaw cycles). The results showed variation in biological and biochemical soil properties that were closely correlated with SOC. Multiple regression analysis of SOC levels against all soil properties showed that a model containing only MBC and phosphatase activity could account for 97% of the SOC variation among the sites. The model fit was independent of spatial and temporal variations because covariates such as site, stand age, sampling date, and soil horizon were found to be not statistically significant. Although the application of stress/disturbance treatments inconsistently affected most of the individual biochemical properties, in contrast, the ratio of soil C predicted by the model (Cp), and soil C measured (Cm) was consistently reduced in soils submitted to at least one level of stress and disturbance treatments. In addition, Cp/Cm was more affected in soils submitted to wet-dry cycles and Cu contamination than to freeze-thaw cycles or shifts in soil pH. Our results confirm previous evidence of a biochemical balance in high quality undisturbed soils, and that this balance is disrupted when the soil is submitted to disturbances or placed under stress conditions. The Cp/Cm ratio provides a simple reference value against which the degrading effects of pollutants or management practices on soil quality can be assessed. 相似文献
13.
David E. Rothstein 《Soil biology & biochemistry》2010,42(10):1743-1750
Free amino acids (FAAs) in soil solution are increasingly recognized as a potentially important source of nitrogen (N) for plants, yet we are just beginning to understand the behavior of FAAs in soil. I investigated the effects of amino-acid chemistry and soil properties on mineralization, microbial assimilation and sorption of amino-acid N in soils from three ecosystems representing the two endpoints and mid point of a temperate forest fertility gradient ranging from low mineral N availability/high FAA oak forests to high mineral N availability/low FAA maple-basswood forests. Soils were amended with six 15N-labeled amino-acid substrates that ranged widely in chemical properties, including molecular weight, C:N ratio, average net charge, hydrophobicity, and polarity: Arginine (Arg), Glutamine (Gln), Glutamate (Glu), Serine (Ser), Glycine (Gly) and Leucine (Leu). Mineralization of amino-acid N accounted for 7-45% (18% avg.) of the added label and was most strongly affected by soil characteristics, with mineralization increasing with increasing soil fertility. Mineralization of amino-acid N was unrelated to amino-acid C:N ratio, rather, I observed greater N mineralization from polar FAAs compared to non-polar ones. Assimilation of amino-acid N into microbial biomass accounted for 6-48% (29% avg.) of the added label, and was poorly predicted by either intrinsic amino-acid properties or soil properties, but instead appeared to be explicable in terms of compound-specific demand by soil micoorganisms. Sorption of amino-acid N to soil solids accounted for 4-15% (7% avg.) of the added label and was largely controlled by charge characteristics of individual amino acids. The fact that both positively- and negatively-charged amino acids were more strongly sorbed than neutral ones suggests that cation and anion exchange sites are an important factor controlling sorption of FAAs in these acid forest soils. Together, the findings from this study suggest that there may be important differences in the behavior of free amino acids in sandy, acidic forest soils compared to generalizations drawn from finer-textured grassland soils, which, in turn, might affect the availability of some FAAs in soil solution. 相似文献
14.
15.
Effects of fungivorous and predatory soil arthropods on free-living nematodes and tardigrades were studied in a factorial microcosm experiment. A stepwise increase in faunal complexity was obtained by adding soil arthropods to defaunated humus samples from an irrigated+fertilized and an untreated stand of Scots pine. The effects were assessed after 103 and 201 days at 15°C and a soil moisture content of 50% water-holding capacity. The study showed that a diverse community of fungivorous arthropods (collembola and oribatid mites), present in numbers similar to those in the field, reduced the abundance of nematodes. A complete community of fungivorous and predatory arthropods (e.g., gamasides, spiders, and cantharid larvae) further strengthened this repressive effect. Certain nematode genera were more affected than others. Tardigrades seemed to be efficient predators on nematodes, but their numbers were, in turn, strongly reduced by predatory arthropods. Because predatory arthropods fed on both nematodes and their tardigrade predators, the impact of arthropod predators on nematode regulation was greater than it appeared to be on the basis of nematode numbers. Humus type also interacted with the other factors. Nematode numbers were initially higher in the untreated humus than in the irrigated+fertilized humus. However, because tardigrade populations increased only in the untreated humus, nematode numbers decreased more in this humus than in the irrigated+fertilized humus. The study demonstrates that nematode abundance can be regulated by a number of types of interacting predators. 相似文献
16.
Although often neglected, variability in cell lysis efficiency and DNA extraction yield represents the major hurdles of any polymerase chain reaction (PCR)-based quantification protocol in soil and other natural environments. In this study we developed a technique that minimizes the effects of these constraints, providing at the same time a reliable internal control to distinguish between PCR-inhibition and negative results. We used Pseudomonas fluorescens Pf153, a root-colonizing bacterium that shows biocontrol activity against tobacco and cucumber black root rot, as the target organism for PCR quantification. Prior to DNA extraction, the genetically engineered, cognate reference strain P. fluorescens CHA0/c2 was inoculated in a reference soil. CHA0/c2 in the reference soil and Pf153 in the soil sample were lysed in parallel and afterward the lysates were mixed in known proportions. CHA0/c2 carries the plasmid pME6031-cmp2 that contains an allelic variant (competitor) of the Pf153 specific sequence Pf153_2. In a quantitative competitive PCR (QC-PCR) assay the competitor allows the quantification of the target strain down to 0.66 Pf153 CFU/mg soil. Processing the reference strain in the same way as Pf153 enables the exact quantification of the target strain in biocontrol assays performed in natural soil, overcoming differences in DNA extraction efficiency and PCR amplification from different soil environments. This technique is easily adaptable to other Pseudomonas strains simply by replacing the competitor used here with one derived from a SCAR-marker which is specific for the strain of choice. 相似文献
17.
Effects of soil invertebrates on the survival of some genetically engineered bacteria in leaf litter and soil 总被引:1,自引:0,他引:1
B. A. Byzov E. B. Tretyakova D. G. Zvyagintsev H. Claus Z. Filip 《Biology and Fertility of Soils》1996,23(3):221-228
Seven bacterial strains, most of them bearing natural or recombinant plasmids, were introduced in oak leaf litter or soddy-podzolic soil. In these substrata, which contained litter-dwelling diplopods and isopods, or endogenic earthworms, bacteria survival was followed. In the absence of the animals, the numbers of introduced strains gradually decreased. In the presence of the animals, plasmid-bearing strains of Pseudomonas putida survived at 105–107 CFUs g-1 up to 1.5 months in both leaves and soil. The total numbers of bacteria found in excrements from the soil macrofauna were 5–15 times higher than in the food. The numbers of P. putida in the excrements were equal to or higher than in the food. The numbers of Pseudomonas stutzeri JM302 (pLV1013) and Azospirillum brasiliense ATCC29710 (pFACII) in the excrements were always 2–10 times lower than in the food. The digestive fluid taken from the middle part of the gut of the diplopod Pachyiulus flavipes showed a strong antibacterial activity. Those bacteria with lower survival in the gut appeared to be more sensitive to digestion by the midgut fluid. In contrast, the hindgut fluid did not suppress the viability of P. stutzeri JM302 (pLV1013). We postulate that the introduced bacteria partially survive the midgut passage and then multiply with a high growth rate in the hindgut of the animals. The environmental consequences of the interactions between soil invertebrates and the released bacteria are discussed.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday 相似文献
18.
The prevalence of antibiotic production loci in soil is a key issue of current research aimed to unravel the mechanisms underlying the suppressiveness of soil to plant pathogens. Pyrrolnitrin (PRN) is a key antibiotic involved in the suppression of a range of phytopathogenic fungi. Therefore, field soils from different agricultural regimes, including permanent grassland, arable land under common agricultural rotation and arable land under maize monoculture, were investigated in respect of the prevalence of pyrrolnitrin biosynthetic loci. Primers for detection of the prnD gene were used for initial PCR/hybridisation-based assessments. By this method, evidence was obtained for the contention that PRN production loci were most prevalent in grasslands, however, robust quantitative data were not achieved.To quantify the prevalence of PRN biosynthetic loci, we designed a TaqMan PCR system based on the prnD gene for the real-time quantitative detection of this production locus in soil. The system was found to be specific for prnD sequences from Pseudomonas, Serratia and Burkholderia species. Using pure culture DNA, the prnD gene was detectable down to a level of 60 fg, or approximately 10 gene copies, per amplification reaction. Application of the system to soil DNA spiked with different levels of the target DNA indicated that, in a soil DNA background, specific amplification could be obtained to about the same level of sensitivity.Field soil samples obtained from the different agricultural regimes were then screened for the prevalence of prnD with the real-time PCR system. The quantitative data obtained suggested a strongly enhanced presence of prnD genes in grassland or grassland-derived plots, as compared to the prevalence of this biosynthetic locus in the arable land plots. The implications of these findings are placed in the context of the suppressiveness of soil to phytopathogens, notably Rhizoctonia solani AG3. 相似文献
19.
The bacterium Wautersia [Ralstonia] basilensis has been shown to enhance the mycorrhizal symbiosis between Suillus granulatus and Pinus thunbergii (Japanese black pine). However, no information is available about this bacterium under field conditions. The objectives of this study were to detect W. basilensis in bulk and mycorhizosphere soils in a Japanese pine plantation in the Tottori Sand Dunes, determine the density of W. basilensis in soil, and determine the optimal cell density of W. basilensis for mycorrhizal formation in pine seedlings. We designed and validated 16S rRNA gene-targeted specific primers for detection and quantification of W. basilensis. SYBR Green I real-time PCR assay was used. A standard curve relating cultured W. basilensis cell density (103-108 cells ml−1) to amplification of DNA showed a strong linear relationship (R = 0.9968). The specificity of the reaction was confirmed by analyzing DNA melting curves and sequencing of the amplicon. The average cell density of W. basilensis was >4.8 × 107 cells g−1 of soil in the mycorrhizosphere and 7.0 × 106 cells g−1 in the bulk soil. We evaluated the W. basilensis cell density required for mycorrhizal formation using an in vitro microcosm with various inoculum densities ranging from 102 to 107 cells g−1 soil (104-109 cells ml−1). Cell densities of W. basilensis of >106 cells g−1 of soil were required to stimulate mycorrhizal formation. In vivo and in vitro experiments showed that W. basilensis was sufficiently abundant to enhance mycorrhizal formation in the mycorrhizosphere of Japanese black pine sampled from the Tottori Sand Dunes. 相似文献
20.
红壤侵蚀区马尾松林下植被特征与土壤侵蚀的关系 总被引:4,自引:0,他引:4
针对南方花岗岩发育的红壤侵蚀区,在赣县大田乡选择5个低丘马尾松林,利用植物样方调查方法对样地的地形、土壤、植被、侵蚀沟进行调查和测量,基于获取的数据,利用统计学方法分析植被特征与土壤侵蚀的关系.结果表明:1)马尾松人工林郁闭度低,林木生长状况差,林地阳坡半阳坡植被总盖度仅为36.9%;2)林下灌草生物量低,物种丰富度、多样性、均匀度差,物种较为单一;3)林下植被以草本为主,草本以芒萁为主,其生物量占草本总生物量的75%以上;4)马尾松林下细沟、浅沟发育,土壤侵蚀严重,仅细沟、浅沟流失的土壤厚度达71.2 mm;5)不同坡位的侵蚀沟发育相关性显著,侵蚀沟与坡面的微环境差异明显,尤其是土壤密度和土壤水分差异显著;6)马尾松林下土壤侵蚀量对植被恢复具有抑制作用,但沟壑密度的发育能够提高灌草物种丰富度、多样性,以及促进灌草均匀性分布. 相似文献