共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil profiles are often many meters deep, but with the majority of studies in soil microbiology focusing exclusively on the soil surface, we know very little about the nature of the microbial communities inhabiting the deeper soil horizons. We used phospholipid fatty acid (PLFA) analysis to examine the vertical distribution of specific microbial groups and to identify the patterns of microbial abundance and community-level diversity within the soil profile. Samples were collected from the soil surface down to 2 m in depth from two unsaturated Mollisol profiles located near Santa Barbara, CA, USA. While the densities of microorganisms were generally one to two orders of magnitude lower in the deeper horizons of both profiles than at the soil surface, approximately 35% of the total quantity of microbial biomass found in the top 2 m of soil is found below a depth of 25 cm. Principal components analysis of the PLFA signatures indicates that the composition of the soil microbial communities changes significantly with soil depth. The differentiation of microbial communities within the two profiles coincides with an overall decline in microbial diversity. The number of individual PLFAs detected in soil samples decreased by about a third from the soil surface down to 2 m. The ratios of cyclopropyl/monoenoic precursors and total saturated/total monounsaturated fatty acids increased with soil depth, suggesting that the microbes inhabiting the deeper soil horizons are more carbon limited than surface-dwelling microbes. Using PLFAs as biomarkers, we show that Gram-positive bacteria and actinomycetes tended to increase in proportional abundance with increasing soil depth, while the abundances of Gram-negative bacteria, fungi, and protozoa were highest at the soil surface and substantially lower in the subsurface. The vertical distribution of these specific microbial groups can largely be attributed to the decline in carbon availability with soil depth. 相似文献
2.
Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches 总被引:4,自引:0,他引:4
Philip W. Ramsey Matthias C. Rillig Kevin P. Feris William E. Holben James E. Gannon 《Pedobiologia》2006,50(3):275-280
Polyphasic studies that used phospholipid fatty acid analysis (PLFA) in conjunction with community level physiological profiling (CLPP) or PCR-based molecular methods were analyzed in order to evaluate the power of each strategy to detect treatment effects on soil microbial community structure (MCS). We found no studies where CLPP or PCR-based methods differentiated treatments that were not also differentiated by PLFA. In 14 of 32 studies (44%), PLFA differentiated treatments that were not resolved by CLPP analysis. In 5 of 25 studies (20%), PLFA differentiated treatments that were not resolved by PCR-based methods. We discuss PLFA, CLPP, and PCR-based methods with respect to power to discriminate change in MCS versus potential for characterization of underlying population level changes. 相似文献
3.
CHEN Qiu-Hui FENG Ying ZHANG Yan-Ping ZHANG Qi-Chun I. H. SHAMSI ZHANG Yong-Song LIN Xian-Yong 《土壤圈》2012,22(2):263-272
Soil drying and wetting impose significant influences on soil nitrogen (N) dynamics and microbial communities. However, effects of drying-wetting cycles, while common in vegetable soils, especially under greenhouse conditions, have not been well studied. In this study, two greenhouse vegetable soils, which were collected from Xinji (XJ) and Hangzhou (HZ), China, were maintained at 30% and 75% water-holding capacity (WHC), or five cycles of 75% WHC followed by a 7-day dry-down to 30% WHC (DW). Soil inorganic N content increased during incubation. Net N mineralization (Nmin), microbial activity, and microbial biomass were significantly higher in the DW treatment than in the 30% and 75% WHC treatments. The higher water content (75% WHC) treatment had higher Nmin, microbial activity, and microbial biomass than the lower water content treatment (30% WHC). Multivariate analyses of community-level physiological profile (CLPP) and phospholipid fatty acid (PLFA) data indicated that soil moisture regime had a significant effect on soil microbial community substrate utilization pattern and microbial community composition. The significant positive correlation between Nmin and microbial substrate utilization or PLFAs suggested that soil N mineralization had a close relationship with microbial community. 相似文献
4.
Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil 总被引:26,自引:0,他引:26
E. Kandeler D. Tscherko K. D. Bruce M. Stemmer P. J. Hobbs R. D. Bardgett W. Amelung 《Biology and Fertility of Soils》2000,32(5):390-400
Particle-size fractionation of a heavy metal polluted soil was performed to study the influence of environmental pollution
on microbial community structure, microbial biomass, microbial residues and enzyme activities in microhabitats of a Calcaric
Phaeocem. In 1987, the soil was experimentally contaminated with four heavy metal loads: (1) uncontaminated controls; (2)
light (300 ppm Zn, 100 ppm Cu, 50 ppm Ni, 50 ppm V and 3 ppm Cd); (3) medium; and (4) heavy pollution (two- and threefold
the light load, respectively). After 10 years of exposure, the highest concentrations of microbial ninhydrin-reactive nitrogen
were found in the clay (2–0.1 μm) and silt fractions (63–2 μm), and the lowest were found in the coarse sand fraction (2,000–250 μm).
The phospholipid fatty acid analyses (PLFA) and denaturing gradient gel electrophoresis (DGGE) separation of 16S rRNA gene
fragments revealed that the microbial biomass within the clay fraction was predominantly due to soil bacteria. In contrast,
a high percentage of fungal-derived PLFA 18 : 2ω6 was found in the coarse sand fraction. Bacterial residues such as muramic
acid accumulated in the finer fractions in relation to fungal residues. The fractions also differed with respect to substrate
utilization: Urease was located mainly in the <2 μm fraction, alkaline phosphatase and arylsulfatase in the 2–63 μm fraction,
and xylanase activity was equally distributed in all fractions. Heavy metal pollution significantly decreased the concentration
of ninhydrin-reactive nitrogen of soil microorganisms in the silt and clay fraction and thus in the bulk soil. Soil enzyme
activity was reduced significantly in all fractions subjected to heavy metal pollution in the order arylsulfatase >phosphatase
>urease >xylanase. Heavy metal pollution did not markedly change the similarity pattern of the DGGE profiles and amino sugar
concentrations. Therefore, microbial biomass and enzyme activities seem to be more sensitive than 16S rRNA gene fragments
and microbial amino-sugar-N to heavy metal treatment.
Received: 21 January 2000 相似文献
5.
Two sandstone-derived soils under pure stands of silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.) were studied to determine if the fine earth (<2 mm material) and two size-classes of porous rock fragments (>2 mm material) supported different microbial communities. Samples from three soil horizons (A, Bw, and BC) were analysed under both optical and scanning electron microscopes. Small stones (2-10 mm in average diameter) appeared more altered than larger ones (40-60 mm) and the effects of weathering became more obvious with shallower depth. In both soils, numerous hyphae and other living forms were observed on the surface of the stones from the A and Bw horizons; this contrasted with the stones from the BC horizon, which showed little or no colonisation. The microbial community of each fraction was characterised using Biolog-Community Level Physiological Profiles (CLPP) and phospholipid fatty acid analyses (PLFA) for samples in the A and B horizons. Significant potential microbial activity (C source utilisation) was associated with rock fragments, from the A horizon and, to a lesser extent, the B, although this was lower than for the equivalent fine earth fraction. The microbial colonisation of the stones appeared inversely related with their size and sampling depth. The PLFA analysis showed not only quantitative differences in the microbial biomass between horizons and size-fractions but also highlighted that the communities differed between soils, horizons (for the sole beech soil) and fractions. These findings demonstrate that by considering rock fragments as a microbiologically inert fraction and discarding them before analysis, as usually is done, can lead to an incomplete picture of both the total amount and, perhaps more importantly, the structure of soil microbial community. 相似文献
6.
Human activities are causing climatic changes and alter the composition and biodiversity of ecosystems. Climate change has been and will be increasing the frequency and severity of extreme climate events and natural disasters like floods in many ecosystems. Therefore, it is important to investigate the effects of disturbances on ecosystems and identify potential stabilizing features of ecological communities. In this study, soil microbial and nematode communities were investigated in a grassland biodiversity experiment after a natural flood to investigate if plant diversity is able to attenuate or reinforce the magnitude of effects of the disturbance on soil food webs. In addition to community analyses of soil microorganisms and nematodes, the stability indices proportional resilience, proportional recovery, and proportional resistance were calculated. Generally, soil microbial biomass decreased significantly due to the flood with the strongest reduction in gram-negative bacteria, while gram-positive bacteria were less affected by flooding. Fungal biomass increased significantly three months after the flood compared to few days before the flood, reflecting elevated availability of dead plant biomass in response to the flood. Similar to the soil microbial community, nematode community structure changed considerably due to the flood by favoring colonizers (in the broadest sense r-strategists; c–p 1, 2 nematodes), particularly so at high plant diversity. None of the soil microbial community stability indices and few of the nematode stability indices were significantly affected by plant diversity, indicating limited potential of plant diversity to buffer soil food webs against flooding disturbance. However, plant diversity destabilized colonizer populations, while persister populations (in the broadest sense K-strategists; c–p 4 nematodes) were stabilized, suggesting that plant diversity can stabilize and destabilize populations depending on the ecology of the focal taxa. The present study shows that changes in plant diversity and subsequent alterations in resource availability may significantly modify the compositional shifts of soil food webs in response to disturbances. 相似文献
7.
磷脂脂肪酸(PLFA)是微生物细胞膜的重要组成成分,不同微生物群落可通过不同生化途径合成不同的PLFA,因此可选择某些PLFA作为微生物群落结构变化的生物标志物。PLFA与稳定性同位素~(13)C标记(~(13)C-PLFA)技术结合,不仅能够确定原位土壤环境中微生物群落组成,而且能够定向发掘土壤生态系统中参与碳源代谢过程的微生物群落,提供复杂群落中土壤微生物相互作用的信息,具有广阔的应用前景。其基本原理为:将富集~(13)C稳定同位素的基质加入土壤中,土壤中的某些微生物群落利用基质~(13)C合成PLFA,提取并纯化土壤微生物的PLFA,利用气相色谱-燃烧-同位素比例质谱(GC-C-IRMS)测定其~(13)C丰度,通过对比分析,从而获取微生物群落组成与其功能的直接信息。本文在介绍了~(13)C-PLFA原理的基础上,综述了该技术在光合同化碳的根际微生物利用、土壤有机质分解的激发效应、甲烷氧化、有机污染物降解、外源简单碳源和外源复杂碳源的微生物利用等方面的应用,对此项技术的优缺点进行了分析并展望了其未来应用。 相似文献
8.
Oil spills are one of the most common types of soil pollution. Bioremediation has become an attractive alternative to physicochemical methods of remediation, where feasible. Earthworms have been shown to stimulate the degradation of petroleum hydrocarbons in soil, and it was hypothesized that the role of earthworms in remediation lies in the enhancement of an oil degrading microbial community. The aim of this study was to characterize microbial activity and community dynamics in oil-contaminated soil incubated with or without earthworms. Three earthworm species (Eisenia fetida, Allolobophora chlorotica and Lumbricus terrestris) were incubated in crude oil polluted soil (ca. 10,000 mg/kg total petroleum hydrocarbons (TPH)) and a reference soil for 28 d. Control treatments with manual mixing and/or cattle dung amendment were also included. In the oil-contaminated soil, respiration and concentration of microbial biomass was significantly enhanced by earthworm amendment, and TPH concentrations decreased significantly. These effects were less evident in treatments with A. chlorotica, possibly due to a difference in behavior, since individuals of this endogeic species were found in a state of inactivity (aestivation). Microbial community dynamics were described by phospholipid fatty acid (PLFA) analyses. After 28 d, similar shifts in the soil PLFA composition were observed in the oil-contaminated soil irrespective of worm species. Fungal:bacterial ratios were increased in the presence of worms, but also by addition of dung as a food source, indicating a non-specific effect of metabolizable substrates. In contrast, the fatty acids 17:1ω8 (=Δ9-heptadecenoic acid) and 20:4ω6c (arachidonic acid) were specifically stimulated by the presence of earthworms in the oil-contaminated soil. The results showed that earthworms can contribute positively to bioremediation of oil-contaminated soil, but that the effect may be species-dependent. 相似文献
9.
Catabolic responses to specific substrates can be used to differentiate soil microbial communities. We hypothesized that the catabolic respiration responses of microbial communities from pastures would differ from those of forest soils, and that the differences would be consistent at a landscape scale, due to inherent differences in litter quality and management regimes. We analysed respiration responses to 25 different substrates of 20 pasture soils (dominated by rye grass and white clover) and 20 forest soils (indigenous forest species or the plantation species Pinus radiata) over a wide geographical range in New Zealand.Within each pasture or forest category, the catabolic responses showed a similar pattern, suggesting similarities in functional catabolic capability and microbial community Indigenous forests and pine forests microbial communities did not differ in their responses. Pasture soil communities had significantly higher relative responses to carbohydrate and amino-acid substrates and significantly lower relative response to carboxylic acid substrates, than microbial communities from forest soils. Forest soils had relatively greater responses to carboxylic acids as a group, as well as citric acid, α-ketobutyric acid, α-ketoglutaric acid, and α-ketovaleric acid, than did the pasture soils. A subset of 6 substrates was equally as effective at differentiating the microbial catabolic response of pasture soils from forest soils as the entire set of 25 substrates. The results demonstrated distinct differences in the respiration responses of the soil microbial communities of pastures and forests, but showed strong similarities within each vegetation class, despite the wide geographical spread, different soils and plant species. 相似文献
10.
Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis 总被引:3,自引:0,他引:3
Yuping Wu Bin Ma Ling Zhou Haizhen Wang Jianming Xu Sarah Kemmitt Philip C. Brookes 《Applied soil ecology》2009,43(2-3):234-240
Phospholipid fatty acid (PLFA) profiles were measured in soils from 14 sites in eastern China representing typical geographic zones of varying latitude from north (47.4°N) to south (21.4°N). Amounts of soil microbial biomass, measured as total amounts of PLFAs, showed no regular trend with latitude, but were positively correlated with soil organic carbon content, the concentration of humic acid and amorphous iron oxide. Soil microbial community structure showed some biogeographical distribution trends and was separated into three groups in a cluster analysis and principal coordinate analysis of log transformed PLFA concentrations (mol%). Soils in the first group came from northern China with medium mean annual temperature (1.2–15.7 °C) and rainfall (550–1021 mm). Soils in the second group originated from southern China with a relatively higher mean annual temperature (15.7–21.2 °C) and rainfall (1021–1690 mm). Soils clustered in the third group originated from the most southerly region. The northern soils contained relatively more bacteria and Gram-negative PLFAs, while the southern soils had more fungi and pressure indexed PLFAs. These differences in soil microbial community structure were largely explained by soil pH, while other site and soil characteristics were less important. 相似文献
11.
Structure and function of the soil microbial community in a long-term fertilizer experiment 总被引:1,自引:0,他引:1
The effect of organic and inorganic fertiliser amendments is often studied shortly after addition of a single dose to the soil but less is known about the long-term effects of amendments. We conducted a study to determine the effects of long-term addition of organic and inorganic fertiliser amendments at low rates on soil chemical and biological properties. Surface soil samples were taken from an experimental field site near Cologne, Germany in summer 2000. At this site, five different treatments were established in 1969: mineral fertiliser (NPK), crop residues removed (mineral only); mineral fertiliser with crop residues; manure 5.2 t ha−1 yr−1; sewage sludge 7.6 t ha−1 yr−1 or straw 4.0 t ha−1 yr−1 with 10 kg N as CaCN2 t straw−1. The organic amendments increased the Corg content of the soil but had no significant effect on the dissolved organic C (DOC) content. The C/N ratio was highest in the straw treatment and lowest in the mineral only treatment. Of the enzymes studied, only protease activity was affected by the different amendments. It was highest after sewage amendment and lowest in the mineral only treatment. The ratios of Gram+ to Gram− bacteria and of bacteria to fungi, as determined by signature phospholipid fatty acids, were higher in the organic treatments than in the inorganic treatments. The community structure of bacteria and eukaryotic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) and redundancy discriminate analyses of the DGGE banding patterns. While the bacterial community structure was affected by the treatments this was not the case for the eukaryotes. Bacterial and eukaryotic community structures were significantly affected by Corg content and C/N ratio. 相似文献
12.
This study investigated the possible effects of tree species diversity and identity on the soil microbial community in a species-rich temperate broad-leaved forest. For the first time, we separated the effects of tree identity and tree species diversity on the link between above and belowground communities in a near-natural forest. We established 100 tree clusters consisting of each three tree individuals represented by beech (Fagus sylvatica L.), ash (Fraxinus excelsior L.), hornbeam (Carpinus betulus L.), maple (Acer pseudoplatanus L.), or lime (Tilia spec.) at two different sites in the Hainich National Park (Thuringia, Germany). The tree clusters included one, two or three species forming a diversity gradient. We investigated the microbial community structure, using phospholipid fatty acid (PLFA) profiles, in mineral soil samples (0–10 cm) collected in the centre of each cluster.The lowest total PLFA amounts were found in the pure beech clusters (79.0 ± 23.5 nmol g−1 soil dw), the highest PLFA amounts existed in the pure ash clusters (287.3 ± 211.3 nmol g−1 soil dw). Using principle components analyses (PCA) and redundancy analyses (RDA), we found only for the variables ‘relative proportion of beech trees’ and ‘living lime fine root tips associated with ectomycorrhiza’ a significant effect on the PLFA composition. The microbial community structure was mainly determined by abiotic environmental parameters such as soil pH or clay content. The different species richness levels in the clusters did not significantly differ in their total PLFA amounts and their PLFA composition. We observed a tendency that the PLFA profiles of the microbial communities in more tree species-rich clusters were less influenced by individual PLFAs (more homogenous) than those from species-poor clusters.We concluded that tree species identity and site conditions were more important factors determining the soil microbial community structure than tree species diversity per se. 相似文献
13.
A range of agricultural practices influence soil microbial communities, such as tillage and organic C inputs, however such effects are largely unknown at the initial stage of soil formation. Using an eight-year field experiment established on exposed parent material (PM) of a Mollisol, our objectives were to: (1) to determine the effects of field management and soil depth on soil microbial community structure; (2) to elucidate shifts in microbial community structure in relation to PM, compared to an arable Mollisol (MO) without organic amendment; and (3) to identify the controlling factors of such changes in microbial community structure. The treatments included two no-tilled soils supporting perennial crops, and four tilled soils under the same cropping system, with or without chemical fertilization and crop residue amendment. Principal component (PC) analysis of phospholipid fatty acid (PLFA) profiles demonstrated that microbial community structures were affected by tillage and/or organic and inorganic inputs via PC1 and by land use and/or soil depth via PC2. All the field treatments were separated by PM into two groups via PC1, the tilled and the no-tilled soils, with the tilled soils more developed towards MO. The tilled soils were separated with respect to MO via PC1 associated with the differences in mineral fertilization and the quality of organic amendments, with the soils without organic amendment being more similar to MO. The separations via PC1 were principally driven by bacteria and associated with soil pH and soil C, N and P. The separations via PC2 were driven by fungi, actinomycetes and Gram (−) bacteria, and associated with soil bulk density. The separations via both PC1 and PC2 were associated with soil aggregate stability and exchangeable K, indicating the effects of weathering and soil aggregation. The results suggest that in spite of the importance of mineral fertilization and organic amendments, tillage and land-use type play a significant role in determining the nature of the development of associated soil microbial community structures at the initial stages of soil formation. 相似文献
14.
Biochar amendment in soil has been proposed as a carbon sequestration strategy which may also enhance soil physical and chemical properties such as nutrient and water holding capacity as well as soil fertility and plant productivity. However, biochar may also stimulate microbial activity which may lead to increased soil CO2 respiration and accelerated soil organic matter (OM) degradation which could partially negate these intended benefits. To investigate short-term soil microbial responses to biochar addition, we conducted a 24 week laboratory incubation study. Biochar produced from the pyrolysis of sugar maple wood at 500 °C was amended at concentrations of 5, 10 and 20 t/ha in a phosphorus-limited forest soil which is under investigation as a site for biochar amendment. The cumulative soil CO2 respired was higher for biochar-amended samples relative to controls. At 10 and 20 t/ha biochar application rates, the concentration of phospholipid fatty acids (PLFAs) specific to Gram-positive and Gram-negative bacteria as well as actinomycetes were lower than controls for the first 16 weeks, then increased between weeks 16–24, suggesting a gradual microbial adaptation to altered soil conditions. Increases in the ratio of bacteria/fungi and lower ratios of Gram-negative/Gram-positive bacteria suggest a microbial community shift in favour of Gram-positive bacteria. In addition, decreasing ratios of cy17:0/16:1ω7 PLFAs, a proxy used to examine bacterial substrate limitation, suggest that bacteria adapted to the new conditions in biochar-amended soil over time. Concentrations of water-extractable organic matter (WEOM) increased in all samples after 24 weeks and were higher than controls for two of the biochar application rates. Solution-state 1H NMR analysis of WEOM revealed an increase in microbial-derived short-chain carboxylic acids, lower concentrations of labile carbohydrate and peptide components of soil OM and potential accumulation of more recalcitrant polymethylene carbon during the incubation. Our results collectively suggest that biochar amendment increases the activity of specific microorganisms in soil, leading to increased CO2 fluxes and degradation of labile soil OM constituents. 相似文献
15.
土壤微生物群落结构对凋落物组成变化的响应 总被引:9,自引:0,他引:9
凋落物分解是陆地生态系统养分循环的关键过程,明确凋落物多样性如何影响土壤微生物群落构成和多度,继而潜在地改变凋落物分解的微生物学机制有助于认识生物多样性和森林生态系统功能的关系。通过小盆模拟试验,应用磷脂脂肪酸谱图的方法研究了我国南方红壤丘陵区典型物种马尾松和湿地松的凋落物分别与白栎和青冈的凋落物混合,与单一针叶凋落物分解时相比,针阔混合凋落物分解过程中土壤微生物群落结构的变化,结果显示:(1)针阔混合凋落物分解时土壤微生物群落磷脂脂肪酸(Phospholipidfatty acids,PLFA)总量低于单一针叶处理,细菌和放线菌的相对多度高于单一针叶处理,真菌则相反,群落真菌/细菌低于单一针叶处理,土壤微生物生物量的差异主要来自于真菌;(2)主成分分析表明:针阔混合凋落物分解与单一针叶凋落物分解的土壤微生物群落结构差异显著,两个时期(分解9个月和18个月)主成分一分别可以解释65.74%和89.63%的变异,第一主成分主要包括18∶2ω6,9、18∶1ω9c、17∶0和10Me18∶0等磷脂脂肪酸;(3)土壤微生物群落结构受凋落物初始C/N和木质素/N调控,土壤微生物群落细菌的相对多度与凋落物初始C/N和木质素/N显著负相关,真菌则与凋落物初始C/N和木质素/N显著正相关,群落真菌/细菌与凋落物初始C/N和木质素/N显著正相关。针阔凋落物混合分解通过改变凋落物C/N和木质素/N,提供了对分解者更为有利的微环境。 相似文献
16.
转Bt基因棉叶对土壤微生物多样性的影响 总被引:3,自引:0,他引:3
应用Biolog方法研究了转Bt基因棉粉碎叶腐解对土壤微生物群落结构功能多样性的影响。取腐解10d、25d、40d、55d、70d土样分析土壤微生物群落多样性指数及土壤微生物对聚合物、胺类、氨基酸、糖、羧酸和其他类碳源利用情况。结果表明:在腐解过程中,转Bt基因棉粉碎叶土壤微生物群落丰富度下降,群落多样性显著降低,而群落优势集中性明显提高;转Bt基因棉粉碎叶影响了土壤微生物群落对碳源的利用程度,表现为可显著增加对糖类、胺类和氨基酸类碳源的利用,初期显著降低对羧酸类碳源的利用,对聚合物类和其他类碳源的利用率无显著影响;主成分分析表明转Bt基因棉粉碎叶对土壤微生物群落原有结构功能影响具有持续性。 相似文献
17.
Intra-species variation in response to defoliation and soil amendment has been largely neglected in terms of the soil microbial community (SMC). The influence of defoliation and soil fertiliser amendment on the structure of the SMC was assessed with two Lolium perenne cultivars contrasting in ability to accumulate storage reserves. Plant response to defoliation was cultivar specific and depended on the nutrient amendment of the soil. Results suggested a greater ability to alter plant biomass allocation in the low carbohydrate accumulating cultivar (S23) compared to the high carbohydrate cultivar (AberDove) when grown in improved (IMP), but not in unimproved (UNI), soil. Although differences in plant growth parameters were evident, no treatment effects were detected in the size of the active microbial biomass (total phospholipid fatty acid (PLFA) 313.8 nmol g−1 soil±33.9) or proportions of PLFA signature groups. A lower average well colour development (AWCD) of Biolog sole carbon source utilisation profiles (SCSUPs) in defoliated (D) compared to non-defoliated (ND) treatments may be indicative of lower root exudation 1 week following defoliation, as a consequence of lower root non-structural carbohydrate (NSC) concentrations. Within the bacterial community the lower cyclopropyl-to-precursor ratio of PLFAs, and the trans/cis ratio of 16:1w7, in UNI relative to IMP soil treatments indicates lower physiological stress in UNI soils regardless of L. perenne cultivar. Discrimination of broad scale SMC structure, measured by PLFA analysis, revealed that soil treatment interacted strongly with cultivar and defoliation. In IMP soils the SMCs discriminated between cultivars while defoliation had little effect. Conversely, in UNI soils defoliation caused a common shift in the SMC associated with both cultivars, causing convergence of overall community structure. Separation of SMC structure along the primary canonical axis correlated most strongly (P<0.001) with root:shoot ratio (47.6%), confirming that differences in cultivar C-partitioning between treatments were influential in defining the rhizosphere microbial community. 相似文献
18.
不同培肥方式对土壤有机碳与微生物群落结构的影响 总被引:3,自引:1,他引:3
为揭示旱作区耕地土壤有机碳累积规律及其与土壤微生物群落间的相互作用机制,试验采用磷脂脂肪酸(PLFA)指纹图谱及土壤腐殖质形态分组的方法,通过田间定位试验,研究了马铃薯-马铃薯-油用向日葵-马铃薯-油用向日葵轮作模式下,有机、无机肥配施(不施肥、单施化肥、化肥配施牛粪、化肥配施羊粪、化肥配施生物有机肥、化肥配施黄腐酸钾)对土壤有机碳累积、土壤腐殖质形态的影响及其与土壤微生物群落结构间的相互关系。结果表明:在连续培肥5年间,随培肥时间延长,土壤有机碳呈波动性上升趋势。与对照相比,化肥配施牛粪、化肥配施羊粪处理土壤有机碳以年6.61%和8.97%的增长率累积增加,不同处理外源有机碳含量及有机肥种类的差异影响了土壤有机碳的累积速率。化肥配施高量有机肥(化肥+羊粪、化肥+牛粪)处理显著提高了土壤稳结态、松结态腐殖质含量及松结态/紧结态腐殖质的比例,且以PLFA表征的土壤细菌、真菌、放线菌、原生动物、土壤微生物群落总生物量与对照处理间均有显著性差异(P0.05)。与对照相比,各施肥处理的革兰氏阳性菌/革兰氏阴性菌(G+/G-)值均呈降低趋势;但不同有机无机相结合的土壤培肥方式对土壤G+/G-的比例没有显著差异。多元分析表明,基于土壤微生物主要类群磷脂脂肪酸含量的排序轴与基于土壤有机碳、腐殖质形态的排序轴之间相关性(P1=0.568,P2=0.611)较好,累积变量在98.69%上揭示不同有机无机培肥措施影响下的土壤微生物群落生物量与环境因子间的相互关系。土壤松结态腐殖质含量与土壤G+/G-比值正相关。外源有机碳的施入促进了土壤紧结态腐殖碳向稳结态、松结态腐殖质转化;较高量外源有机碳施入有助于提升土壤细菌、真菌的生物量。总体而言,土壤微生物群落结构的变化是受有机无机培肥措施所引起的土壤有机碳含量、腐殖质形态变化驱动;化肥配施牛粪和化肥配施羊粪有利于土壤有机碳积累和松结态腐殖质的形成,促进土壤中微生物生物量提高。研究结果可为宁夏中部干旱区土壤合理培肥提供科学依据。 相似文献
19.
A better understanding of soil microbial processes is required to improve the synchrony between nutrient release from plant residues and crop demand. Phospholipid fatty acid analysis was used to investigate the effect of two crop rotations (continuous maize and maize-crotalaria rotation) and P fertilization (0 and 50 kg P ha−1 yr−1, applied as triple superphosphate) on microbial community composition in a highly weathered soil from western Kenya. Microbial substrate use in soils from the field experiment was compared in incubation experiments. Higher levels of soil organic matter and microbial biomass in the maize-crotalaria rotation were connected with higher total amounts of phospholipid fatty acids and an increase in the relative abundances of indicators for fungi and gram-negative bacteria. P fertilization changed the community profile only within the continuous maize treatment. The decomposition of glucose, cellulose and three plant residues (all added at 2.5 g C kg−1 soil) proceeded faster in soil from the maize-crotalaria rotation, but differences were mostly transient. Microbial P and N uptake within one week increased with the water-soluble carbon content of added plant residues. More P and N were taken up by the greater microbial biomass in soil from the maize-crotalaria rotation than from continuous maize. Re-mineralization of nutrients during the decline of the microbial biomass increased also with the initial biological activity of the soil, but occurred only for a high quality plant residue within the half year incubation period. Compared to the effect of crop rotation, P fertilization had a minor effect on microbial community composition and substrate use. 相似文献
20.
Lori A. Phillips 《Soil biology & biochemistry》2006,38(9):2823-2833
Phytoremediation is a novel treatment option for weathered, hydrocarbon contaminated, flare-pit soil in prairie ecosystems. The remediation potential of six different naturalized prairie plants was assessed by examining their impact on the degradation potential of indigenous bacterial communities. Culture-based and culture-independent microbiological methods were used to determine if mixed plant treatments stimulate different microbial communities and catabolic genotypes in comparison to individual plant species that comprise the mix. DGGE analysis of PCR-amplified 16S rRNA genes revealed that alfalfa (Medicago sativa) had a dominant effect on the structure of rhizosphere microbial communities in mixed plant treatments, stimulating relative increases in specific Bacteroidetes and Proteobacteria populations. Alfalfa and mixes containing alfalfa, while supporting 100 times more culturable PAH degraders than other treatments, exhibited only 10% TPH reduction, less than all planted treatments except perennial rye grass (Lolium perenne). Total petroleum hydrocarbon (TPH) reduction was greatest in single-species grass treatments, with creeping red fescue (Festuca rubra) reducing the TPH concentration by 50% after 4.5 months. Overall TPH reduction throughout the study was positively correlated (p<0.001) to culturable n-hexadecane degraders. 相似文献