首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
我国红壤丘陵区水土流失较严重。本文研究人工林对土壤(0~20和20~40 cm)酶活性和微生物学性质的短期(13~14年)影响。土壤转化酶、脲酶、多酚氧化酶活性在次生天然林和湿地松樟树混交林中高于其他林分。次生天然林和湿地松樟树混交林土壤微生物生物量和土壤呼吸值较大、有机碳活性较强、土壤微生物基质利用效率较高。因此,短期影响下,湿地松樟树混交林较之针叶纯林和针叶混交林可改善土壤生化强度和微生物活性。  相似文献   

2.
Meadowfoam (Limnanthes alba Hartw. ex Benth) seed meal (MSM), a by-product of meadowfoam oil extraction, has a secondary metabolite known as glucosinolate glucolimnanthin. MSM applied as a soil amendment has been reported to have herbicidal and fertilizer properties. Experiments were conducted over 28 days to evaluate short-term effects of a MSM application on soil microbial communities. MSM was applied to soil as either a full or a split application. In addition to MSM and untreated control treatments, urea was used as a N source to account for the fertilizer effect of the seed meal. Urea was applied either as a full or a split rate on the same schedule as MSM. Soil microbial activities were not different between the full and the split rate applications of MSM. After day 7 following MSM application, carbon-source utilization of microbial communities of MSM was different from the urea and control treatments. Microbial communities in MSM treatments utilized complex carbon sources to a relatively greater degree than microbial communities in urea or control treatments. The C and N inputs from MSM increased the gross metabolic activity of the mixed microbial population. Basal respiration was stimulated and microbes reallocated carbon input to biomass and enzyme production. Within 7 and 14 days after MSM application, the reallocation occurred quickly and microbial biomass increased by at least 80% for C and 95% for N compared to the untreated control. In the short-term, MSM treatments affected nutrient dynamics, and the soil microbial structure and function. The effects of MSM application on the composition of bacterial and fungal communities warrant additional study.  相似文献   

3.
不同植被类型对滨海盐碱土壤有机碳库的影响   总被引:4,自引:0,他引:4  
康健  孟宪法  许妍妍  栾婧  隆小华  刘兆普 《土壤》2012,44(2):260-266
对江苏滨海盐碱地5种不同植被类型土壤(0 ~ 40 cm)有机碳(SOC)含量、密度和表层(0 ~ 20 cm)土壤微生物量碳(SMBC)、可溶性有机碳(DOC)含量及其占总有机碳(TOC)的比例进行了分析。结果显示,随土层深度的增加,SOC含量降低,表层SOC密度占整个剖面的54.6% ~ 75.8%。表层SOC含量和密度分别介于2.02 ~ 9.61 g/kg和5.87 ~ 21.54 t/hm2,平均值分别为4.77 g/kg和12.56 t/hm2。随着原生植被群落的演替(光滩→盐蒿→茅草),SOC、SMBC和DOC含量均依次增加。茅草荒地围垦后,稻-油轮作地和菊芋地表层SOC密度分别比茅草地的增加了55%(5.77 t/hm2)和107%(11.15 t/hm2);稻-油轮作地的SMBC含量及SMBC/TOC比值下降,而菊芋地的上升;围垦后土壤DOC含量及DOC/TOC比值都明显下降。结果表明,滨海盐碱地SOC主要分布在表层,原生植被群落的顺行演替使SOC库容增加且活性增强,在盐荒地围垦初期(3年),SOC库容增加但活性有所减弱。经估算,滨海盐碱非耕地具有较大的固碳潜力,但需要合理的耕作管理措施来保证农业生产的可持续发展并实现增汇减排的目标。  相似文献   

4.
本试验通过两室分根装置种植玉米,利用网袋法研究接种Glomus mosseae和Glomus etunicatum两种AM真菌对玉米秸秆降解的影响。试验分别在玉米移栽后第20 d、30 d、40 d、50 d和60 d时取样,通过测定接种AM真菌后玉米秸秆中碳、氮释放,土壤中3种常见酶活性、微生物量碳、微生物量氮及土壤呼吸的动态变化,探讨AM真菌降解玉米秸秆可能的作用机制。研究结果表明:经60 d的培养后,与未接种根室相比,接种G.mosseae和G.etunicatum真菌的菌根室玉米秸秆降解量提高了20.75%和20.97%;另外,接种G.mosseae和G.etunicatum加快了玉米秸秆碳素释放,降低了氮素释放,致使碳氮比降低25.45%和26.17%,有利于秸秆进一步降解。在本试验条件下,接种AF真菌的菌根室中土壤酸性磷素酶、蛋白酶和过氧化氢酶活性均有显著提高,并增加了微生物量碳、氮和土壤呼吸作用,形成了明显有别于根际的微生物区系。这一系列影响都反映出AM真菌能够直接或间接作用于玉米秸秆的降解过程,是导致玉米秸秆降解加快的重要原因。  相似文献   

5.
The effect of tropical forest conversion on soil microbial biomass   总被引:3,自引:0,他引:3  
We investigated the effects of converting forest to savanna and plough land on the microbial biomass in tropical soils of India. Conversion of the forest led to a significant reduction in soil organic C (40–46%), total N (47–53%), and microbial biomass C (52–58%) in the savanna and the plough land. Among forest, savanna, and plough land, basal soil respiration was maximum in the forest, but the microbial metabolic quotient (qCO2 was estimated to be at a minimum in the forest and at a maximum in the plough land.  相似文献   

6.
Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolved organic carbon solubility. To further investigate the relationship between deposition chemistry and dissolved organic carbon export in peatlands, a field experiment was conducted to compare the pore water chemistry and peat microbial enzyme activity of mesocosms receiving sulfate amendments to mesocosms receiving no additions. To consider how peatlands respond during recovery from increased inputs of sulfate, samples were also analyzed from an area of the same peatland that was previously amended with sulfate. Current additions of sulfate decreased dissolved organic carbon concentration and increased dissolved organic carbon aromaticity. Total dissolved phosphorus decreased in response to current sulfate amendments but was elevated in the area of the peatland recovering from sulfate amendment. The total dissolved phosphorus increase, which was reflected in microbial enzyme activity, may have shifted the system from P limitation to N limitation. This shift could have important consequences for ecosystem processes related to plant and microbial communities. It also suggests that the recovery from previous sulfate amendments may take longer than may be expected.  相似文献   

7.
Changes in above-ground litterfall can influence below-ground biogeochemical processes in forests. In order to examine how above-ground litter inputs affect soil carbon (C), nitrogen (N) and phosphorus (P) in a temperate deciduous forest, we studied a 14-year-old small-scale litter manipulation experiment that included control, litter exclusion, and doubled litter addition at a mature Fagus sylvatica L. site. Total organic C (TOC), total N (TN) and total P (TP), total organic P (TOP), bioavailable inorganic P (Pi), microbial C, N and P, soil respiration and fine root biomass were analyzed in the A and in two B horizons. Our results showed that litter manipulation had no significant effect on TOC in the mineral soil. Litter addition increased the bioavailable Pi in the A horizon but had no significant effect on N in the mineral soil. Litter exclusion decreased TN and TP in the B horizon to a depth of 10 cm. In the A horizon of the litter exclusion treatment, TP, TOP and bioavailable Pi were increased, which is most likely due to the higher root biomass in this treatment. The high fine root biomass seems to have counteracted the effects of the excluded aboveground litter. In conclusion, our study indicates that aboveground litter is not an important source for C in the mineral soil and that P recycling from root litter might be more important than from above-ground litter.  相似文献   

8.
Changes in plant community structure, including the loss of plant diversity may affect soil microbial communities. To test this hypothesis, plant diversity and composition were experimentally varied in grassland plots cultivated with monocultures or mixtures of 2, 3 or 4 species. We tested the effects of monocultures versus mixtures and of plant species composition on culturable soil bacterial activity, number of substrates used and catabolic diversity, microbial biomass N, microbial respiration, and root biomass. These properties were all measured 10 months after seeding the experiment. Soil bacterial activity, number of substrates used and catabolic diversity were measured in the different plant communities using BIOLOG GN and GP microplates, which are redox-based tests measuring capacity of soil culturable bacteria to use a variety of organic substrates. Microbial biomass N, microbial respiration, and root biomass were insensitive to plant diversity. Culturable soil microbial activity, substrates used and diversity declined with declining plant diversity. Their activity, number of substrates used and diversity were significantly higher in plots with 3 and 4 plant species than in monocultures and in plots with 2 species. There was also an effect of plant species composition. Culturable soil microbial activity and diversity was higher in the four-species plant community than in any of the plant monocultures suggesting that the effect of plant diversity could not be explained by the presence of a particular plant species. Our results showed that changes in plant diversity and composition in grassland ecosystems lead to a rapid response of bacterial activity and diversity.  相似文献   

9.
ABSTRACT

The aim of the study was to assess the effects of different forest stands (Silver fir (Abies alba) and sycamore maple (Acer pseudoplatanus) with common hornbeam (Carpinus betulus)) on the enzymes activities and microbial biomass. The objective was to explore how changes in the detritus inputs affect soil organic matter (SOM) composition. The content of SOM fraction has been compared with soil enzyme activities. The investigation was carried out in the ?wi?tokrzyskie Mountains of central Poland. Twenty investigation plots were selected, including fir stands (10 plots) and maple with hornbeam stands (10 plots). Contents of organic C, N and base cations, pH, hydrolytic acidity, and soil texture were investigated. The content of C and N in the physically separated SOM fractions was distinguished. The study indicated only small changes in soil properties and stabilization of organic matter as a result of different detritus inputs. The maple-hornbeam and fir stands have a similar influence on microbiological processes and the SOM. Acidity of soil is a major factor affecting microbial activity and therefore pH affects enzyme dynamics. Differences in soil pH confirmed the stronger acidifying effects of fir stands compared to maple-hornbeam stands. Additionally, fir stands stimulate β-glucosidase activity, probably through a simultaneous interaction of mycorrhizal fungi in the roots of fir stands.  相似文献   

10.
不同耕作方式对土壤有机碳、微生物量及酶活性的影响   总被引:12,自引:2,他引:10  
【目的】依托8年长期(2005~2012)固定道定位试验,研究不同耕作方式对土壤有机碳、土壤微生物量、土壤酶活性在0—90 cm土层的分布特征,为优化中国西北干旱区的耕作方式提供理论依据。【方法】试验包括固定道垄作(PRB)、固定道平作(PFT)与传统耕作(CT)三种耕作模式下的土壤有机碳土壤总有机碳(TOC)、颗粒有机碳(POC)、土壤微生物量碳(MBC)、土壤微生物量氮(MBN)、土壤微生物量磷(MBP)、蔗糖酶、过氧化氢酶、脲酶及小麦产量进行了测定和分析。【结果】在0—90 cm土层,不同耕作方式下的TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性均随着土层的增加呈下降趋势,过氧化氢酶活性呈先下降后增大的分布特征;在0—60 cm,固定道保护性耕作能够显著增加心土层作物生长带土壤有机碳储量,有机碳储量大小为PRBPFTCT;PRB、PFT较CT可以显著增加0—10 cm作物生长带TOC、POC、MBC、MBN、MBP含量、蔗糖酶、脲酶活性,其大小为PRBPFTCT;耕作方式对过氧化氢酶活性影响不显著;TOC、POC、MBC、MBN、MBP、蔗糖酶活性、脲酶活性、过氧化氢酶活性之间均达到了显著或极显著相关。【结论】PRB较PFT、CT能够提高耕作层(0—10 cm)土壤有机碳含量、土壤微生物量、土壤酶活性, 增加作物产量, 增大0—60 cm土层有机碳储量,耕作方式(PRB、PFT及CT)对10 cm以下土层土壤环境改善作用不明显。  相似文献   

11.
生物碳对灰漠土有机碳及其组分的影响   总被引:15,自引:1,他引:15  
土壤有机碳是影响土壤肥力和作物产量高低的决定性因子。以棉花秸秆为原料,在高温厌氧条件下热解制备生物碳,通过盆栽试验探讨了生物碳对新疆灰漠土有机碳及其组分的影响。试验设置3种生物碳:棉花秸秆分别在450℃、600℃和750℃下热解制备(以BC450、BC600和BC750表示);每种生物碳的施用量分别为5 g·kg-1、10 g·kg-1和20 g·kg-1(占土壤重量的比例);同时,以空白土壤为对照(CK)。结果表明:施用生物碳可促进小麦生长,两茬小麦的地上部干物质重均显著高于对照。施用生物碳可显著提高土壤总有机碳,且生物碳热解温度越高,施用量越大,提高作用越明显。各生物碳处理土壤易氧化碳含量均显著高于对照;生物碳低、中施用量处理(5 g·kg-1、10 g·kg-1)土壤水溶性有机碳含量显著高于对照,但高施用量处理(20 g·kg-1)与对照无显著差异;除BC750低施用量处理(5 g·kg1)外,其余各生物碳处理土壤微生物量碳含量也均显著高于对照。生物碳不同热解温度对土壤易氧化碳和微生物量碳含量的影响表现为BC450>BC600>BC750;但对土壤水溶性有机碳含量无显著影响。生物碳不同施用量对土壤易氧化碳的影响表现为10 g·kg-1≈20 g·kg-1>5 g·kg-1,水溶性有机碳含量为5 g·kg1≈10 g·kg-1>20 g·kg-1。生物碳对土壤微生物商的影响总体表现为:生物碳的热解温度越高,施用量越大,土壤微生物商越低。因此,合理的施用棉花秸秆生物碳可显著增加灰漠土有机碳储量,改变土壤有机碳组分,提高土壤生产力。  相似文献   

12.
Salinity and sodicity effects on respiration and microbial biomass of soil   总被引:2,自引:2,他引:2  
An understanding of the effects of salinity and sodicity on soil carbon (C) stocks and fluxes is critical in environmental management, as the areal extents of salinity and sodicity are predicted to increase. The effects of salinity and sodicity on the soil microbial biomass (SMB) and soil respiration were assessed over 12weeks under controlled conditions by subjecting disturbed soil samples from a vegetated soil profile to leaching with one of six salt solutions; a combination of low-salinity (0.5dSm−1), mid-salinity (10dSm−1), or high-salinity (30dSm−1), with either low-sodicity (sodium adsorption ratio, SAR, 1), or high-sodicity (SAR 30) to give six treatments: control (low-salinity low-sodicity); low-salinity high-sodicity; mid-salinity low-sodicity; mid-salinity high-sodicity; high-salinity low-sodicity; and high-salinity high-sodicity. Soil respiration rate was highest (56–80mg CO2-C kg−1 soil) in the low-salinity treatments and lowest (1–5mg CO2-C kg−1 soil) in the mid-salinity treatments, while the SMB was highest in the high-salinity treatments (459–565mg kg−1 soil) and lowest in the low-salinity treatments (158–172mg kg−1 soil). This was attributed to increased substrate availability with high salt concentrations through either increased dispersion of soil aggregates or dissolution or hydrolysis of soil organic matter, which may offset some of the stresses placed on the microbial population from high salt concentrations. The apparent disparity in trends in respiration and the SMB may be due to an induced shift in the microbial population, from one dominated by more active microorganisms to one dominated by less active microorganisms.  相似文献   

13.
不同施肥管理措施对土壤碳含量及基础呼吸的影响   总被引:12,自引:0,他引:12       下载免费PDF全文
连续7年试验研究了施用15t/hm2和7.5t/hm2有机肥(包括EM堆肥、EM鸡粪肥和传统堆肥)、化肥和对照处理对土壤碳含量与基础呼吸的影响,结果表明:随有机肥施用量的提高,土壤可溶性碳、总有机碳、微生物生物量碳和土壤的基础呼吸随之增加。施用化肥可一定程度提高土壤可溶性碳、总有机碳、微生物生物量碳和土壤的基础呼吸。不同施肥措施对土壤有机碳、微生物生物量碳和土壤基础呼吸的影响趋势为EM堆肥处理>传统堆肥处理>化肥处理>对照,施肥对土壤微生物代谢商的影响趋势为EM堆肥处理<传统堆肥处理<化肥处理<对照。土壤微生物生物量碳与可溶性碳、总有机碳及土壤基础呼吸之间呈极显著正相关。土壤微生物代谢商与土壤可溶性碳、总有机碳、微生物生物量碳及基础呼吸之间呈极显著负相关。  相似文献   

14.
Soil is a potential C sink and could offset rising atmospheric CO2. The capacity of soils to store and sequester C will depend on the rate of C inputs from plant productivity relative to C exports controlled by microbial decomposition. Management practices, such as no-tillage and high intensity cropping sequences, have the potential to enhance C and N sequestration in agricultural soils. An investigation was carried out to study the influence of long-term applications of fertilizers and manures on different organic C fractions in a Typic Haplustept under intensive sequence of cropping with maize–wheat–cowpea in a semi-arid sub-tropic of India. In 0–15 cm, the bulk density was lowest (1.52 Mg m−3) in plots treated with 100% NPK + FYM, while the control treatment showed the highest value (1.67 Mg m−3). Balanced application of NPK (100% NPK) showed significantly lower bulk density (1.56 Mg m−3) over either 100% N (1.67 Mg m−3) or 100% NP (1.61 Mg m−3) in surface soils. The application of super-optimal dose of NPK (150% NPK) showed higher total organic C (TOC) (12.9 g C kg−1) over either 50% NPK (9.3 g C kg−1) or 100% NPK (10.0 g C kg−1) in 0–15 cm soil layer. There was an improvement in TOC in 100% NPK or 100% NP (9.3 g C kg−1) over 100% N (8.7 g C kg−1) in the same depth. The application of FYM with 100% NPK showed 15.2, 9.9 and 5.2 g C kg−1 in 0–15, 15–30 and 30–45 cm, respectively. Application of graded doses of NPK from 50 to 150% of recommendation NPK significantly enhanced other organic C fractions like, microbial biomass C (MBC), particulate organic C (POC) and KMnO4 oxidizable C (KMnO4–C) in all the three soil depths. The TOC in 0–45 cm soil depth in 150% NPK (63.5 Mg C ha−1) was increased by 39% over that in 50% NPK treatment (51.5 Mg C ha−1) and 29% over that in 100% NPK treatment (54.1 Mg C ha−1). Integrated use of farmyard manure with 100% NPK (100% NPK + FYM) emerged as the most efficient management system in accumulating largest amount of organic C (72.1 Mg C ha−1) in soil. Nevertheless, this treatment also sequestered highest amount of organic C (731 kg C ha−1 year−1). Particulate organic carbon, a physically protected carbon pool in soil, could well be protected in sub-surface soil layers than in surface soil layer as a means of carbon aggradations. Microbial metabolic quotient (qCO2) was significantly lower in 100% NPK + FYM over other treatments to indicate this to be the most efficient manuring practice to preserve organic carbon in soil where it facilitates aggradations of more recalcitrant organic C in soil. As compared to POC, total TOC proved to be a better predictor of MBC as it strongly correlated with total carbon mineralized from soil.  相似文献   

15.
16.
川西北高寒草原特殊的地理环境、气候条件以及过度人为放牧导致草地沙化问题突出。为了探讨不同生物质改良剂对高寒草地沙化土壤有机碳特征的影响,采用随机区组试验设计方法,设置3种生物质改良剂[秸秆类(JG)、菌渣类(JZ)、生物炭类(SWT)], 2个施用水平(6 t·hm?2和18 t·hm?2),以空白处理(CK)为对照,研究高寒草地沙化土壤总有机碳、活性有机碳和呼吸特征的变化。结果表明:1)施用生物质改良剂显著提高了土壤有机碳(TOC)、微生物量碳(MBC)和易氧化有机碳(EOC)含量,且提高效果随改良剂施用量的增加而增强。与CK相比,JG、JZ、SWT处理0~10 cm TOC含量分别平均提高60.66%、39.22%、34.99%,且JG处理显著高于JZ和SWT处理; MBC含量在0~10 cm则表现为JZJGSWTCK,且处理间差异达显著水平; EOC含量表现为JG处理最高,在0~10 cm、10~20 cm土层处分别比对照提高108.82%、79.26%。2)不同生物质改良剂处理中, EOC/TOC表现为JGJZSWTCK,MBC/TOC表现为JZJGSWTCK,且不同处理间差异显著。3)施用不同改良剂均显著提高了土壤呼吸速率,且随改良剂施用量的增加,土壤呼吸速率显著增加。与CK相比,施用6 t·hm?2的JG、JZ、SWT的土壤呼吸速率平均提高103.42%、86.31%、18.83%, JZ和JG处理的土壤呼吸速率显著高于SWT和CK处理。相关性分析表明,土壤水分与土壤呼吸速率呈显著正相关关系, TOC、MBC以及EOC与土壤呼吸速率呈极显著正相关关系。4)施入不同改良剂均显著提高了土壤呼吸总量、土壤微生物呼吸总量和净生态系统生产力(NEP值),均表现出较强的碳汇潜力, JG处理的NEP值较JZ和SWT处理分别显著提高56.45%和122.12%,且各处理间差异显著,说明秸秆改良剂具有较高的碳汇强度。该研究可为川西北藏区补充完善高寒草地沙化土壤制定科学有效的土壤碳调控管理措施提供依据。  相似文献   

17.
采用室内恒温通气培养法,以北京大棚蔬菜地土壤为研究对象,以未使用熏蒸剂土壤为对照,研究4种熏蒸剂[氯化苦(Pic)、1,3-二氯丙烯(1,3-D)、二甲基二硫(DMDS)和威百亩(MS)]对土壤可溶性氮素和微生物量碳、氮的影响。结果表明,4种熏蒸剂处理均能增加土壤中可溶性有机氮的含量,熏蒸处理后敞气0 d时,Pic、MS、DMDS和1,3-D处理的土壤可溶性有机氮累积量分别为47.55 mg·kg-1、42.15 mg·kg-1、40.34 mg·kg-1和32.02 mg·kg-1,较对照(29.97 mg·kg-1)分别增加58.67%、40.65%、34.61%和6.87%。敞气后14~84 d,Pic、DMDS和MS处理DON含量仍持续上升,1,3-D和对照变化不大,各处理之间DON含量差异显著。4种熏蒸剂处理后短时间内,土壤中可溶性氨基酸(DAA)与对照相比大幅上升,在熏蒸后7 d达到最大值,其中Pic处理的上升幅度最大,为12.87 mg·kg-1,对照DAA含量最低,为5.74 mg·kg-1。4种熏蒸剂处理之后,土壤中微生物量碳和氮均呈现急剧下降的趋势,其中Pic处理对微生物的杀灭作用最强,敞气后0 d,Pic处理的微生物量碳和微生物量氮含量分别比对照下降69.39%和70.95%,MS和DMDS次之,1,3-D的杀灭作用最弱。  相似文献   

18.
To clarify how litter decomposition processes affect soil dissolved organic carbon (DOC) and soil dissolved nitrogen (DN) dynamics, we conducted a field experiment on leaf litter and collected DOC and DN from the underlying soil in a tropical rainforest in Xishuangbanna, southwest China. Principal components analysis (PCA) showed the first PCA axis (corresponding to degraded litter quantity and quality) explained 61.3% and 71.2% of variation in DOC and DN concentrations, respectively. Stepwise linear regression analysis indicated that litter carbon mass controlled DOC and hemicellulose mass controlled DN concentrations. Litter decomposition was the predominant factor controlling surface-soil DOC and DN dynamics in this tropical rainforest.  相似文献   

19.
Short- and long-term field experiments are necessary to provide important information about how soil carbon sequestration is affected by soil tillage system; such systems can also be useful for developing sustainable crop production systems. In this study, we evaluated the short- and long-term effects of conservation tillage (CT) on soil organic carbon fractions and biological properties in a sandy clay loam soil. Both trials consisted of rainfed crop rotation systems (cereal–sunflower–legumes) located in semi-arid SW Spain. In both trials, results were compared to those obtained using traditional tillage (TT). Soil samples were taken in flowering and after harvesting of a pea crop and collected at three depths (0–5, 5–10 and 10–20 cm). The soil organic carbon fractions were measured by the determination of total organic carbon (TOC), active carbon (AC) and water soluble carbon (WSC). Biological status was evaluated by the measurement of soil microbial biomass carbon (MBC) and enzymatic activities [dehydrogenase activity (DHA), o-diphenol oxidase activity (DphOx), and β-glucosidase activity (β-glu)].The contents of AC and MBC in the long-term trial and contents of AC in the short-term trial were higher for CT than TT at 0–5 cm depth for both sampling periods. Furthermore, DHA and β-glucosidase values in the July sampling were higher in the topsoil under conservation management in both trials (short- and long-term). The parameters studied tended to decrease as depth increased for both tillage system (TT and CT) and in both trials with the exception of the DphOx values, which tended to be higher at deeper layers.Values of DHA and β-glu presented high correlation coefficients (r from 0.338 to 0.751, p ≤ 0.01) with AC, WSC and TOC values in the long-term trial. However, there was no correlation between either TOC or MBC and the other parameters in the short-term trial. In general, only stratification ratios of AC were higher in CT than in TT in both trials. The results of this study showed that AC content was the most sensitive and reliable indicator for assessing the impact of different soil management on soil quality in the two experiments (short- and long-term).Conservation management in dryland farming systems improved the quality of soil under our conditions, especially at the surface layers, by enhancing its storage of organic matter and its biological properties, mainly to long-term.  相似文献   

20.
匡崇婷  江春玉  李忠佩  胡锋 《土壤》2012,44(4):570-575
通过室内培育试验,研究了添加生物质炭对江西红壤水稻土有机碳矿化和微生物生物量碳、氮含量的影响。结果表明:红壤有机碳矿化速率在培育第2天达最大值后迅速降低,培养7天后下降缓慢并趋于平稳;添加生物质炭降低了土壤有机碳的矿化速率和累积矿化量,培养结束时,不加生物质炭的对照处理中有机碳的累积矿化量分别比添加0.5%和1.0%生物质炭的处理高10.0%和10.8%。此外,生物质炭的加入显著提高了土壤微生物生物量,添加0.5%生物质炭处理的土壤微生物生物量碳、氮含量分别比对照高111.5%~250.6%和11.6%~97.6%,添加1.0%生物质炭处理的土壤微生物生物量碳、氮含量分别比对照高58.9%~243.6%和55.9%~110.4%。相同处理中,干旱的水分条件下(40%田间持水量)微生物生物量要高于湿润的水分条件(70%田间持水量)。同时,添加0.5%和1.0%的生物质炭使土壤代谢熵分别降低2.4%和26.8%,微生物商减少了43.7%和31.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号