首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined net greenhouse gas exchange at the soil surface in deciduous forests on soils with high organic contents. Fluxes of CO2, CH4 and N2O were measured using dark static chambers for two consecutive years in three different forest types; (i) a drained and medium productivity site dominated by birch, (ii) a drained and highly productive site dominated by alder and (iii) an undrained and highly productive site dominated by alder. Although the drained sites had shallow mean groundwater tables (15 and 18 cm, respectively) their average annual rates of forest floor CO2 release were almost twice as high compared to the undrained site (1.9±0.4 and 1.7±0.3, compared to 1.0±0.2 kg CO2 m−2 yr−1). The average annual CH4 emission was almost 10 times larger at the undrained site (7.6±3.1 compared to 0.9±0.5 g CH4 m−2 yr−1 for the two drained sites). The average annual N2O emissions at the undrained site (0.1±0.05 g N2O m−2 yr−1) were lower than at the drained sites, and the emissions were almost five times higher at the drained alder site than at the drained birch site (0.9±0.35 compared to 0.2±0.11 g N2O m−2 yr−1). The temporal variation in forest floor CO2 release could be explained to a large extent by differences in groundwater table and air temperature, but little of the variation in the CH4 and N2O fluxes could be explained by these variables. The measured soil variables were only significant to explain for the within-site spatial variation in CH4 and N2O fluxes at the undrained swamp, and dark forest floor CO2 release was not explained by these variables at any site. The between-site spatial variation was attributed to variations in drainage, groundwater level position, productivity and tree species for all three gases. The results indicate that N2O emissions are of greater importance for the net greenhouse gas exchange at deciduous drained forest sites than at coniferous drained forest sites.  相似文献   

2.
We studied the effects of soil management and changes of land use on soils of three adjacent plots of cropland, pasture and oak (Quercus robur) forest. The pasture and the forest were established in part of the cropland, respectively, 20 and 40 yr before the study began. Soil organic matter (SOM) dynamics, water-filled pore space (WFPS), soil temperature, inorganic N and microbial C, as well as fluxes of CO2, CH4 and N2O were measured in the plots over 25 months. The transformation of the cropland to mowed pasture slightly increased the soil organic and microbial C contents, whereas afforestation significantly increased these variables. The cropland and pasture soils showed low CH4 uptake rates (<1 kg C ha−1 yr−1) and, coinciding with WFPS values >70%, episodes of CH4 emission, which could be favoured by soil compaction. In the forest site, possibly because of the changes in soil structure and microbial activity, the soil always acted as a sink for CH4 (4.7 kg C ha−1 yr−1). The N2O releases at the cropland and pasture sites (2.7 and 4.8 kg N2O-N ha−1 yr−1) were, respectively, 3 and 6 times higher than at the forest site (0.8 kg N2O-N ha−1 yr−1). The highest N2O emissions in the cultivated soils were related to fertilisation and slurry application, and always occurred when the WFPS >60%. These results show that the changes in soil properties as a consequence of the transformation of cropfield to intensive grassland do not imply substantial changes in SOM or in the dynamics of CH4 and N2O. On the contrary, afforestation resulted in increases in SOM content and CH4 uptake, as well as decreases in N2O emissions.  相似文献   

3.
Tropical savanna ecosystems are a major contributor to global CO2, CH4 and N2O greenhouse gas exchange. Savanna fire events represent large, discrete C emissions but the importance of ongoing soil-atmosphere gas exchange is less well understood. Seasonal rainfall and fire events are likely to impact upon savanna soil microbial processes involved in N2O and CH4 exchange. We measured soil CO2, CH4 and N2O fluxes in savanna woodland (Eucalyptus tetrodonta/Eucalyptus miniata trees above sorghum grass) at Howard Springs, Australia over a 16 month period from October 2007 to January 2009 using manual chambers and a field-based gas chromatograph connected to automated chambers. The effect of fire on soil gas exchange was investigated through two controlled burns and protected unburnt areas. Fire is a frequent natural and management action in these savanna (every 1-2 years). There was no seasonal change and no fire effect upon soil N2O exchange. Soil N2O fluxes were very low, generally between −1.0 and 1.0 μg N m−2 h−1, and often below the minimum detection limit. There was an increase in soil NH4+ in the months after the 2008 fire event, but no change in soil NO3. There was considerable nitrification in the early wet season but minimal nitrification at all other times.Savanna soil was generally a net CH4 sink that equated to between −2.0 and −1.6 kg CH4 ha−1 y−1 with no clear seasonal pattern in response to changing soil moisture conditions. Irrigation in the dry season significantly reduced soil gas diffusion and as a consequence soil CH4 uptake. There were short periods of soil CH4 emission, up to 20 μg C m−2 h−1, likely to have been caused by termite activity in, or beneath, automated chambers. Soil CO2 fluxes showed a strong bimodal seasonal pattern, increasing fivefold from the dry into the wet season. Soil moisture showed a weak relationship with soil CH4 fluxes, but a much stronger relationship with soil CO2 fluxes, explaining up to 70% of the variation in unburnt treatments. Australian savanna soils are a small N2O source, and possibly even a sink. Annual soil CH4 flux measurements suggest that the 1.9 million km2 of Australian savanna soils may provide a C sink of between −7.7 and −9.4 Tg CO2-e per year. This sink estimate would offset potentially 10% of Australian transport related CO2-e emissions. This CH4 sink estimate does not include concurrent CH4 emissions from termite mounds or ephemeral wetlands in Australian savannas.  相似文献   

4.
Nitrous oxide (N2O) is a greenhouse gas produced during microbial transformation of soil N that has been implicated in global climate warming. Nitrous oxide efflux from N fertilized soils has been modeled using NO3 content with a limited success, but predicting N2O production in non-fertilized soils has proven to be much more complex. The present study investigates the contribution of soil amino acid (AA) mineralization to N2O flux from semi-arid soils. In laboratory incubations (−34 kPa moisture potential), soil mineralization of eleven AAs (100 μg AA-N g−1 soil) promoted a wide range in the production of N2O (156.0±79.3 ng N2O-N g−1 soil) during 12 d incubations. Comparison of the δ13C content (‰) of the individual AAs and the δ13C signature of the respired AA-CO2-C determined that, with the exception of TYR, all of the AAs were completely mineralized during incubations, allowing for the calculation of a N2O-N conversion rate from each AA. Next, soils from three different semi-arid vegetation ecosystems with a wide range in total N content were incubated and monitored for CO2 and N2O efflux. A model utilizing CO2 respired from the three soils as a measure of organic matter C mineralization, a preincubation soil AA composition of each soil, and the N2O-N conversion rate from the AA incubations effectively predicted the range of N2O production by all three soils. Nitrous oxide flux did not correspond to factors shown to influence anaerobic denitrification, including soil NO3 contents, soil moisture, oxygen consumption, and CO2 respiration, suggesting that nitrification and aerobic nitrifier denitrification could be contributing to N2O production in these soils. Results indicate that quantification of AA mineralization may be useful for predicting N2O production in soils.  相似文献   

5.
Nitrogen (N) fertilizer application and grazing are known to induce nitrous oxide (N2O) emissions from grassland soils. In a field study, general information on rates of N2O emission, the effect of cattle grazing and the type (mineral fertilizer, cattle slurry) and amount of N supply on the flux of N2O from a sandy soil were investigated. N2O emissions from permanent grassland managed as a mixed system (two cuts followed by two grazing cycles) were monitored over 11 months during 2001-2002 in northern Germany using the closed chamber method. The field experiment consisted of four regionally relevant fertilizer combinations, i.e. two mineral N application rates (0 and 100 kg N ha−1 yr−1) and two slurry levels (0 and 74 kg N ha−1 yr−1).Mean cumulative N2O-N loss was 3.0 kg ha−1 yr−1, and the cumulative 15N-labelled N2O emissions varied from 0.03% to 0.19% of the 15N applied. 15N labelling indicated that more N2O was emitted from mineral N than from slurry treated plots, and in all treatments the soil N pool was always clearly the major source of N2O. Regarding the total cumulative N2O losses, differences among treatments were not significant, which was caused by: (i) a high variance in emissions during and after cattle grazing due to the random distribution of excrements and by (ii) high N2 fixation of white clover in the 0 kg N ha−1 treatments, which resulted in similar N status of all treatments. However before grazing started, treatments showed significant differences. After cattle grazing in summer, N2O emission rates were higher than around the time of spring fertilizer application, or in winter. Grazing resulted in N2O flux rates up to 489 μg N2O-N m−2 h−1 and the grazing period contributed 31-57% to the cumulative N2O emission. During freeze-thaw cycles in winter (December-February) N2O emission rates of up to 147 μg N2O-N m−2 h−1 were measured, which contributed up to 26% to the annual N2O flux. The results suggest that N fertilizer application and grazing caused only short-term increases of N2O flux rates whereas the major share of annual N2O emission emitted from the soil N pool. The significantly increased N2O fluxes during freeze-thaw cycles show the importance of emission events in winter which need to be covered by measurements for obtaining reliable estimates of annual N2O emissions.  相似文献   

6.
In temperate regions, a majority of N2O is emitted during spring soil thawing. We examined the influence of two winter field covers, snow and winter rye, on soil temperature and subsequent spring N2O emissions from a New York corn field over two years. The first season (2006-07) was a cold winter (2309 h below 0 °C at 8 cm soil depth), historically typical for the region. The snow removal treatment resulted in colder soils and higher N2O fluxes (73.3 vs. 57.9 ng N2O-N cm−2 h−1). The rye cover had no effect on N2O emissions. The second season (2007-08) was a much milder winter (1271 h below freezing at 8 cm soil depth), with lower N2O fluxes overall. The winter rye cover resulted in lower N2O fluxes (5.9 vs. 33.7 ng N2O-N cm−2 h−1), but snow removal had no effect. Climate scenarios predict warmer temperature and less snow cover in the region. Under these conditions, spring N2O emissions can be expected to decrease and could be further reduced by winter rye crops.  相似文献   

7.
The study was carried out at the experimental station of the Japan International Research Center for Agricultural Sciences to investigate gas fluxes from a Japanese Andisol under different N fertilizer managements: CD, a deep application (8 cm) of the controlled release urea; UD, a deep application (8 cm) of the conventional urea; US, a surface application of the conventional urea; and a control, without any N application. NO, N2O, CH4 and CO2 fluxes were measured simultaneously in a winter barley field under the maize/barley rotation. The fluxes of NO and N2O from the control were very low, and N fertilization increased the emissions of NO and N2O. NO and N2O from N fertilization treatments showed different emission patterns: significant NO emissions but low N2O emissions in the winter season, and low NO emissions but significant N2O emissions during the short period of barley growth in the spring season. The controlled release of the N fertilizer decreased the total NO emissions, while a deep application increased the total N2O emissions. Fertilizer-derived NO-N and N2O-N from the treatments CD, UD and US accounted for 0.20±0.07%, 0.71±0.15%, 0.62±0.04%, and 0.52±0.04%, 0.50±0.09%, 0.35±0.03%, of the applied N, respectively, during the barley season. CH4 fluxes from the control were negative on most sampling dates, and its net soil uptake was 33±7.1 mg m−2 during the barley season. The application of the N fertilizer decreased the uptake of atmospheric CH4 and resulted in positive emissions from the soil. CO2 fluxes were very low in the early period of crop growth while higher emissions were observed in the spring season. The N fertilization generally increased the direct CO2 emissions from the soil. N2O, CH4 and CO2 fluxes were positively correlated (P<0.01) with each other, whereas NO and CO2 fluxes were negatively correlated (P<0.05). The N fertilization increased soil-derived global warming potential (GWP) significantly in the barley season. The net GWP was calculated by subtracting the plant-fixed atmospheric CO2 stored in its aboveground parts from the soil-derived GWP in CO2 equivalent. The net GWP from the CD, UD, US and the control were all negative at −243±30.7, −257±28.4, −227±6.6 and −143±9.7 g C m−2 in CO2 equivalent, respectively, in the barley season.  相似文献   

8.
To assess the impacts of yak excreta patches on greenhouse gas (GHG) fluxes in the alpine meadow of the Qinghai-Tibetan plateau, methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) fluxes were measured for the first time from experimental excreta patches placed on the meadow during the summer grazing seasons in 2005 and 2006. Dung patches were CH4 sources (average 586 μg m−2 h−1 in 2005 and 199 μg m−2 h−1 in 2006) during the investigation period of two years, while urine patches (average −31 μg m−2 h−1 in 2005 and −33 μg m−2 h−1 in 2006) and control plots (average −28 μg m−2 h−1 in 2005 and −30 μg m−2 h−1 in 2006) consumed CH4. The cumulative CO2 emission for dung patches was about 36-50% higher than control plots during the experimental period in 2005 and 2006. The cumulative N2O emissions for both urine and dung patches were 2.1-3.7 and 1.8-3.5 times greater than control plots in 2005 and 2006, respectively. Soil water-filled pore space (WFPS) explained 35% and 36% of CH4 flux variation for urine patches and control plots, respectively. Soil temperature explained 40-75% of temporal variation of CO2 emissions for all treatments. Temporal N2O flux variation in urine patches (34%), dung patches (48%), and control (56%) plots was mainly driven by the simultaneous effect of soil temperature and WFPS. Although yak excreta patches significantly affected GHG fluxes, their contributions to the whole grazing alpine meadow in terms of CO2 equivalents are limited under the moderate grazing intensity (1.45 yak ha−1). However, the contributions of excreta patches to N2O emissions are not negligible when estimating N2O emissions in the grazing meadow. In this study, the N2O emission factor of yak excreta patches varied with year (about 0.9-1.0%, and 0.1-0.2% in 2005 and 2006, respectively), which was lower than IPCC default value of 2%.  相似文献   

9.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil.  相似文献   

10.
Afforestation and reforestation of pastures are key land-use changes in New Zealand that help sequester carbon (C) to offset its carbon dioxide (CO2) emissions under the Kyoto Protocol. However, relatively little attention has been given so far to associated changes in trace gas fluxes. Here, we measure methane (CH4) fluxes and CO2 production, as well as microbial C, nitrogen (N) and mineral-N, in intact, gradually dried (ca. 2 months at 20 °C) cores of a volcanic soil and a heavier textured, non-volcanic soil collected within plantations of Pinus radiata D. Don (pine) and adjacent permanent pastures. CH4 fluxes and CO2 production were also measured in cores of another volcanic soil under reverting shrubland (mainly Kunzea var. ericoides (A. Rich) J. Thompson) and an adjacent pasture. CH4 uptake in the pine and shrubland cores of the volcanic soils at field capacity averaged about 35 and 14 μg CH4-C m−2 h−1, respectively, and was significantly higher than in the pasture cores (about 21 and 6 μg CH4-C m−2 h−1, respectively). In the non-volcanic soil, however, CH4-C uptake was similar in most cores of the pine and pasture soils, averaging about 7-9 μg m−2 h−1, except in very wet samples. In contrast, rates of CO2 production and microbial C and N concentrations were significantly lower under pine than under pasture. In the air-dry cores, microbial C and N had declined in the volcanic soil, but not in the non-volcanic soil; ammonium-N, and especially nitrate-N, had increased significantly in all samples. CH4 uptake was, with few exceptions, not significantly influenced by initial concentrations of ammonium-N or nitrate-N, nor by their changes on air-drying. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of only the pine and pasture soils showed that different methanotrophic communities were probably active in soils under the different vegetations. The C18 PLFAs (type II methanotrophs) predominated under pine and C16 PLFAs (type I methanotrophs) predominated under pasture. Overall, vegetation, soil texture, and water-filled pore space influenced CH4-C uptake more than did soil mineral-N concentrations.  相似文献   

11.
We examined the effects of forest clearfelling on the fluxes of soil CO2, CH4, and N2O in a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation on an organic-rich peaty gley soil, in Northern England. Soil CO2, CH4, N2O as well as environmental factors such as soil temperature, soil water content, and depth to the water table were recorded in two mature stands for one growing season, at the end of which one of the two stands was felled and one was left as control. Monitoring of the same parameters continued thereafter for a second growing season. For the first 10 months after clearfelling, there was a significant decrease in soil CO2 efflux, with an average efflux rate of 4.0 g m−2 d−1 in the mature stand (40-year) and 2.7 g m−2 d−1 in clearfelled site (CF). Clearfelling turned the soil from a sink (−0.37 mg m−2 d−1) for CH4 to a net source (2.01 mg m−2 d−1). For the same period, soil N2O fluxes averaged 0.57 mg m−2 d−1 in the CF and 0.23 mg m−2 d−1 in the 40-year stand. Clearfelling affected environmental factors and lead to higher daily soil temperatures during the summer period, while it caused an increase in the soil water content and a rise in the water table depth. Despite clearfelling, CO2 remained the dominant greenhouse gas in terms of its greenhouse warming potential.  相似文献   

12.
We evaluated the spatial structures of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia, in drier (August) and wetter (March) seasons. A 60 × 100-m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, lower plateau, upper slope and foot slope. The plot was divided into 10 × 10-m grids and gas fluxes and soil properties were measured at 77 grid points at 10-m intervals within the plot. Spatial structures of the gas fluxes and soil properties were identified using geostatistical analyses. Averaged N2O and CO2 fluxes in the wetter season (1.85 mg N m−2 d−1 and 4.29 g C m−2 d−1, respectively) were significantly higher than those in the drier season (0.55 mg N m−2 d−1 and 2.73 g C m−2 d−1, respectively) and averaged CH4 uptake rates in the drier season (−0.62 mg C m−2 d−1) were higher than those in the wetter season (−0.24 mg C m−2 d−1). These values of N2O fluxes in A. mangium soils were higher than those reported for natural forest soils in Sumatra, while CO2 and CH4 fluxes were in the range of fluxes reported for natural forest soils. Seasonal differences in these gas fluxes appears to be controlled by soil water content and substrate availability due to differing precipitation and mineralization of litter between seasons. N2O fluxes had strong spatial dependence with a range of about 18 m in both the drier and wetter seasons. Topography was associated with the N2O fluxes in the wetter season with higher and lower fluxes on the foot slope and on the upper plateau, respectively, via controlling the anaerobic-aerobic conditions in the soils. In the drier season, however, we could not find obvious topographic influences on the spatial patterns of N2O fluxes and they may have depended on litter amount distribution. CO2 fluxes had no spatial dependence in both seasons, but the topographic influence was significant in the drier season with lowest fluxes on the foot slope, while there was no significant difference between topographic positions in the wetter season. The distributions of litter amount and soil organic matter were possibly associated with CO2 fluxes through their effects on microbial activities and fine root distribution in this A. mangium plantation.  相似文献   

13.
Global warming potential (GWP) of sandy paddy soils may be reduced by trade-offs between N2O, CH4 and CO2 emissions. Laboratory experiments using either rice straw (1% or 0.5%) or together with urea-N (25 or 50 mg N kg−1 soil) at various levels of soil water were carried out for 30 days each, to test this assumption. Waterlogging combined with urea-N increased total N2O emissions, with greater release upon rewaterlogging (7.4 mg N kg−1 soil) than experienced by removing waterlogging only. Rice straw±urea-N either emitted small amounts of N2O or resulted in negative values at all water levels, including saturated and aerobic. Total CH4 fluxes declined with the decreased water levels and amount of rice straw (<193 mg C kg−1 soil), and also for CO2 with the latter (<1340 mg C kg−1 soil), and rewaterlogging had little influence on both. N2O under rewaterlogged and waterlogged±urea-N, CH4 under waterlogged with rice straw, and CO2 for the remainder were the major contributors to GWP. Results show that waterlogging following aerobic decomposition of rice straw (1%) with urea-N, applied either at the beginning or at the end of the aerobic conditions, could decrease GWP by 56-64% and 32-42% over the sole addition of rice straw (1% and 0.5%) under waterlogged and saturated conditions, respectively.  相似文献   

14.
Nitrous oxide emissions were studied with a static chamber technique during 2 years from a drained organic soil in eastern Finland. After drainage, the soil was forested with birch (Betula pendula Roth) and 22 years later, part of the forest was felled and then used for cultivation of barley (Hordeum vulgare L.) and grass. The annual N2O emissions from the cultivated soil (from 8.3 to 11.0 kg N2O-N ha−1 year−1) were ca. twice the annual emission from the adjacent forest site (4.2 kg N2O-N ha−1 year−1). The N2O emissions from the soils without plants (kept bare by regular cutting or tilling) were also lower (from 6.5 to 7.1 kg N2O-N ha−1 year−1) than those from the cultivated soil. There was a high seasonal variation in the fluxes with a maximum in spring and early summer. The N2O fluxes during the winter period accounted for 15-60% of the total annual emissions. N2O fluxes during the snow-free periods were related to the water table (WT) level, water-filled pore space, carbon mineralisation and the soil temperature. A linear regression model with CO2 production, WT and soil temperature at the depth of 5 cm as independent variables explained 54% of the variation in the weekly mean N2O fluxes during the snow-free periods. N2O fluxes were associated with in situ net nitrification, which alone explained 58% of the variation in the mean N2O fluxes during the snow-free period. The N2O-N emissions were from 1.5 to 5% of net nitrification. The acetylene blockage technique indicated that most of the N2O emitted in the snow-free period originated from denitrification.  相似文献   

15.
It has been suggested that soil-thawing and snow-melting are critical triggers for vigorous emissions of nitrous oxide (N2O) from soils in cold regions. However, because soil freezing is affected by air temperature and snow cover, accurate predictions that estimate subsequent emissions of this important greenhouse gas are difficult to make. In this study, we measured in situ soil gas N2O and oxygen (O2) concentrations at two experimental sites in northern Japan over the period of a year, from November 2008 to October 2009, to clarify the factors stimulating N2O production in soil at low temperatures. The sites were N-fertilized bare arable lands with different soil frost depths and snowmelt rates, according to the snow cover management imposed. Winter-to-spring net N2O fluxes, ranging from −0.10 to 1.95 kg N2O-N ha−1, were positively correlated with the annual maximum soil frost depth (ranging from 0.03 to 0.41 m; r = 0.951***). In the plots with deeper maximum soil frost, winter-to-spring N2O fluxes represented 58% to 85% of the annual values. Soil N2O production was stimulated when the soil frost depth was greater than 0.15 m or the daily mean soil temperature at 0.05-m depth was below −2.0 °C. In the soil with the greatest frost depth, soil gas N2O concentrations at the depth of 0.10 m peaked at 46 ppm when soil gas O2 concentrations fell down to 0.12 m3 m−3 under soil temperature below 0.0 °C. Snowmelt acceleration had no stimulating effect on N2O production in the soil during the winter-to-spring period.  相似文献   

16.
We quantified spatial and temporal variations of the fluxes of nitrous oxide (N2O) and methane (CH4) and associated abiotic sediment parameters across a subtropical river estuary sediment dominated by grey mangrove (Avicennia marina). N2O and CH4 fluxes from sediment were measured adjacent to the river (“fringe”) and in the mangrove forest (“forest”) at 3-h intervals throughout the day during autumn, winter and summer. N2O fluxes from sediment ranged from an average of −4 μg to 65 μg N2O m−2 h−1 representing N2O sink and emission. CH4 emissions varied by several orders of magnitude from 3 μg to 17.4 mg CH4 m−2 h−1. Fluxes of N2O and CH4 differed significantly between sampling seasons, as well as between fringe and forest positions. In addition, N2O flux differed significantly between time of day of sampling. Higher bulk density and total carbon content in sediment were significant contributors towards decreasing N2O emission; rates of N2O emission increased with less negative sediment redox potential (Eh). Porewater profiles of nitrate plus nitrite (NOx) suggest that denitrification was the major process of nitrogen transformation in the sediment and possible contributor to N2O production. A significant decrease in CH4 emission was observed with increasing Eh, but higher sediment temperature was the most significant variable contributing to CH4 emission. From April 2004 to July 2005, sediment levels of dissolved ammonium, nitrate, and total carbon content declined, most likely from decreased input of diffuse nutrient and carbon sources upstream from the study site; concomitantly average CH4 emissions decreased significantly. On the basis of their global warming potentials, N2O and CH4 fluxes, expressed as CO2-equivalent (CO2-e) emissions, showed that CH4 emissions dominated in summer and autumn seasons (82-98% CO2-e emissions), whereas N2O emissions dominated in winter (67-95% of CO2-e emissions) when overall CO2-e emissions were low. Our study highlights the importance of seasonal N2O contributions, particularly when conditions driving CH4 emissions may be less favourable. For the accurate upscaling of N2O and CH4 flux to annual rates, we need to assess relative contributions of individual trace gases to net CO2-e emissions, and the influence of elevated nutrient inputs and mitigation options across a number of mangrove sites or across regional scales. This requires a careful sampling design at site-level that captures the potentially considerable temporal and spatial variation of N2O and CH4 emissions.  相似文献   

17.
Nitrous oxide, carbon dioxide and methane are the main biogenic greenhouse gases (GHGs) contributing to net greenhouse gas balance of agro-ecosystems. Evaluating the impact of agriculture on climate thus requires capacity to predict the net exchanges of these gases in a systemic approach, as related to environmental conditions and crop management. Here, we used experimental data sets from intensively monitored cropping systems in France and Germany to calibrate and evaluate the ability of the biophysical crop model CERES-EGC to simulate GHG exchanges at the plot-scale. The experiments involved major crop types (maize-wheat-barley-rapeseed) on loam and rendzina soils. The model was subsequently extrapolated to predict CO2 and N2O fluxes over entire crop rotations. Indirect emissions (IE) arising from the production of agricultural inputs and from use of farm machinery were also added to the final greenhouse gas balance. One experimental site (involving a maize-wheat-barley-mustard rotation on a loamy soil) was a net source of GHG with a net GHG balance of 670 kg CO2-C eq ha−1 yr−1, of which half were due to IE and half to direct N2O emissions. The other site (involving a rapeseed-wheat-barley rotation on a rendzina) was a net sink of GHG for −650 kg CO2-C eq ha−1 yr−1, mainly due to high C returns to soil from crop residues. A selection of mitigation options were tested at one experimental site, of which straw return to soils emerged as the most efficient to reduce the net GHG balance of the crop rotation, with a 35% abatement. Halving the rate of N inputs only allowed a 27% reduction in net GHG balance. Removing the organic fertilizer application led to a substantial loss of C for the entire crop rotation that was not compensated by a significant decrease of N2O emissions due to a lower N supply in the system. Agro-ecosystem modeling and scenario analysis may therefore contribute to design productive cropping systems with low GHG emissions.  相似文献   

18.
Peatlands play an important role in emissions of the greenhouse gases CO2, CH4 and N2O, which are produced during mineralization of the peat organic matter. To examine the influence of soil type (fen, bog soil) and environmental factors (temperature, groundwater level), emission of CO2, CH4 and N2O and soil temperature and groundwater level were measured weekly or biweekly in loco over a one-year period at four sites located in Ljubljana Marsh, Slovenia using the static chamber technique. The study involved two fen and two bog soils differing in organic carbon and nitrogen content, pH, bulk density, water holding capacity and groundwater level. The lowest CO2 fluxes occurred during the winter, fluxes of N2O were highest during summer and early spring (February, March) and fluxes of CH4 were highest during autumn. The temporal variation in CO2 fluxes could be explained by seasonal temperature variations, whereas CH4 and N2O fluxes could be correlated to groundwater level and soil carbon content. The experimental sites were net sources of measured greenhouse gases except for the drained bog site, which was a net sink of CH4. The mean fluxes of CO2 ranged between 139 mg m−2 h−1 in the undrained bog and 206 mg m−2 h−1 in the drained fen; mean fluxes of CH4 were between −0.04 mg m−2 h−1 in the drained bog and 0.05 mg m−2 h−1 in the drained fen; and mean fluxes of N2O were between 0.43 mg m−2 h−1 in the drained fen and 1.03 mg m−2 h−1 in the drained bog. These results indicate that the examined peatlands emit similar amounts of CO2 and CH4 to peatlands in Central and Northern Europe and significantly higher amounts of N2O.  相似文献   

19.
Soil compaction and soil moisture are important factors influencing denitrification and N2O emission from fertilized soils. We analyzed the combined effects of these factors on the emission of N2O, N2 and CO2 from undisturbed soil cores fertilized with (150 kg N ha−1) in a laboratory experiment. The soil cores were collected from differently compacted areas in a potato field, i.e. the ridges (ρD=1.03 g cm−3), the interrow area (ρD=1.24 g cm−3), and the tractor compacted interrow area (ρD=1.64 g cm−3), and adjusted to constant soil moisture levels between 40 and 98% water-filled pore space (WFPS).High N2O emissions were a result of denitrification and occurred at a WFPS≥70% in all compaction treatments. N2 production occurred only at the highest soil moisture level (≥90% WFPS) but it was considerably smaller than the N2O-N emission in most cases. There was no soil moisture effect on CO2 emission from the differently compacted soils with the exception of the highest soil moisture level (98% WFPS) of the tractor-compacted soil in which soil respiration was significantly reduced. The maximum N2O emission rates from all treatments occurred after rewetting of dry soil. This rewetting effect increased with the amount of water added. The results show the importance of increased carbon availability and associated respiratory O2 consumption induced by soil drying and rewetting for the emissions of N2O.  相似文献   

20.
A long-term field experiment was established to determine the influence of mineral fertilizer (NPK) or organic manure (composed of wheat straw, oil cake and cottonseed cake) on soil fertility. A tract of calcareous fluvo-aquic soil (aquic inceptisol) in the Fengqiu State Key Experimental Station for Ecological Agriculture (Fengqiu county, Henan province, China) was fertilized beginning in September 1989 and N2O emissions were examined during the maize and wheat growth seasons of 2002-2003. The study involved seven treatments: organic manure (OM), half-organic manure plus half-fertilizer N (1/2 OMN), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer PK (PK) and control (CK). Manured soils had higher organic C and N contents, but lower pH and bulk densities than soils receiving the various mineralized fertilizers especially those lacking P, indicating that long-term application of manures could efficiently prevent the leaching of applied N from and increase N content in the plowed layer. The application of manures and fertilizers at a rate of 300 kg N ha−1 year−1 significantly increased N2O emissions from 150 g N2O-N ha−1 year−1 in the CK treatment soil to 856 g N2O-N ha−1 year−1 in the OM treatment soil; however, there was no significant difference between the effect of fertilizer and manure on N2O emission. More N2O was released during the 102-day maize growth season than during the 236-day wheat growth season in the N-fertilized soils but not in N-unfertilized soils. N2O emission was significantly affected by soil moisture during the maize growth season and by soil temperature during the wheat growth season. In sum, this study showed that manure added to a soil tested did not result in greater N2O emission than treatment with a N-containing fertilizer, but did confer greater benefits for soil fertility and the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号