共查询到20条相似文献,搜索用时 0 毫秒
1.
Ilya Yevdokimov Andreas Gattinger Franz Buegger Jean Charles Munch Michael Schloter 《Biology and Fertility of Soils》2008,44(8):1103-1106
The changes in size, activity and structure of soil microbial community caused by N fertilization were studied in a laboratory
incubation experiment. The rates of N fertiliser applied (KNO3) were 0 (control), 100 and 2,000 μg N g−1 soil. Despite no extra C sources added, a high percentage of N was immobilized. Whereas no significant increase of microbial
C was revealed during incubation period, microbial growth kinetics as determined by the substrate-induced growth-response
method demonstrated a significant decrease in the specific growth rate of microbial community in soil treated with 2,000 μg
N g−1 soil. Additionally, a shift in microbial community structure resulting in an increase in fungal biomarkers, mainly in the
treatment with 2,000 μg N g−1 soil was visible. 相似文献
2.
Chao Liang Xudong Zhang Kennedy F. RubertIV Teri C. Balser 《Biology and Fertility of Soils》2007,43(6):631-639
Amino sugars, being predominantly of microbial origin, can help elucidate the role of microbes in carbon and nitrogen cycling
in soils. However, little is known about the microbial degradation and synthesis of soil amino sugars as affected by plant-derived
organic materials. We conducted a 30-week microcosm study using three soils amended with soybean leaf or maize stalk to investigate
changes in the amounts and patterns of amino sugars over time. The total soil amino sugar content initially increased during
the incubation, but later decreased. Amino sugar content of soil amended with maize stalk peaked at an earlier time than it
did for soybean leaf, suggesting nutrient quantity and substrate composition influence microbial transformation. Temporal
dynamics of the proportion of total soil amino sugar to organic matter after plant material addition conformed to parabolic
models (r > 0.8; p < 0.01), which tended to converge over time. The models predicted that the proportions would ultimately approach the initial
values as determined before amendment. These findings suggest that soil organic matter has the ability to maintain a baseline
steady-state level of amino sugars, and support the interpretation of soil amino sugar reservoir as two components: the Stable
Pool (SP) and the Transition Pool (TP). 相似文献
3.
B. S. Griffiths P. D. Hallett H. L. Kuan A. S. Gregory C. W. Watts A. P. Whitmore 《Biology and Fertility of Soils》2008,44(5):745-754
The effects of soil structure and microbial community composition on microbial resistance and resilience to stress were found
to be interrelated in a series of experiments. The initial ability of Pseudomonas fluorescens to decompose added plant residues immediately after a copper or heat stress (resistance) depended significantly on which
of 26 sterile soils it was inoculated into. Subsequent studies showed that both the resistance and subsequent recovery in
the ability of P. fluorescens to decompose added plant residues over 28 days after stress (resilience) varied significantly between a sandy and a clay-loam
soil. Sterile, sandy and clay-loam soil was then inoculated with a complex microbial community extracted from either of the
soils. The resulting microbial community structure depended on soil type rather than the source of inoculum, whilst the resistance
and resilience of decomposition was similarly governed by the soil and not the inoculum source. Resilience of the clay-loam
soil to heat stress did not depend on the water content of the soil at the time of stress, although the physical condition
of the soil when decomposition was measured did affect the outcome. We propose that soil functional resilience is governed
by the physico-chemical structure of the soil through its effect on microbial community composition and microbial physiology. 相似文献
4.
本文采用饲料类芽孢杆菌(Paenibacillus pabuli,P)、深红紫链霉菌(Streptomyces violaceorubidus,S)和黄绿木霉(Trichoderma aureoviride,T),组合构建了3种单菌剂(P、S和T)、3种两菌种复合菌剂(PT、PS和ST)及1种3菌种复合菌剂(PST),并将之添加到红壤中,监测各菌剂添加后土壤总磷脂脂肪酸(PLFAs)量、特征微生物PLFAs百分含量、土壤呼吸速率及总代谢熵的变化,旨在探明外源腐解微生物的物种组合对土壤微生物群落结构和代谢活性的影响,进而为优化有机物分解菌剂种群配置提供参考。结果显示,添加单菌剂的P、S和T处理及添加两菌种复合菌剂的PT和PS处理,土壤微生物生物量显著增加,增幅17.2%~121.6%(P0.05)。添加外源腐解微生物后,各处理的土壤微生物群落的细菌百分含量基本稳定在79.6%~83.1%,真菌百分含量显著增加8.8%~50.6%;而放线菌百分含量除P和ST处理外,其他处理显著降低9.4%~69.8%。PLFAs数据的主成分分析表明,各外源菌剂处理与CK处理间的群落结构变异由小到大依次为:接种单菌剂的P、S和T处理,接种两菌种复合菌剂的PT、PS和ST处理,接种3菌种复合菌剂的PST处理。添加单菌剂的P、T处理以及添加两菌种复合菌剂的ST处理,在短期内影响了土壤微生物的对数生长,使土壤呼吸速率的峰值分别提高48.7%、53.7%和78.7%;且外源腐解微生物组合的物种数量越多,土壤微生物进入潜伏期所需的时间越长。从外源腐解微生物对土壤肥力的长期影响来看,两菌种复合菌剂ST的添加使土壤微生物代谢活性提高28.9%,因此该处理的土壤碳矿化量增加11.1%;添加单菌剂的S处理使土壤微生物代谢活性显著降低32.4%,因此该处理的土壤碳矿化量仅降低7.3%;而添加两菌种复合菌剂的PS处理和3菌种复合菌剂的PST处理,在保持代谢活性不变的情况下,其土壤碳矿化量也降低5.8%~8.7%,其原因有待进一步研究。综上所述,外源腐解微生物的添加会改变土壤微生物的群落结构及其生长轨迹,且随外源腐解微生物组合的物种数量增多这一干扰程度越大,而土壤微生物代谢活性与外源腐解微生物组合的物种数量无显著相关性。 相似文献
5.
Schindlbacher A Rodler A Kuffner M Kitzler B Sessitsch A Zechmeister-Boltenstern S 《Soil biology & biochemistry》2011,43(7):1417-1425
Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO2 (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was warmed by 4 °C during snow-free seasons since 2004. Repeated soil sampling from control and warmed plots took place from 2008 until 2010. We monitored microbial biomass C and nitrogen (N). Microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) and by quantitative real time polymerase chain reaction (qPCR) of ribosomal RNA genes. Microbial metabolic activity was estimated by soil respiration to biomass ratios and RNA to DNA ratios. Soil warming did not affect microbial biomass, nor did warming affect the abundances of most microbial groups. Warming significantly enhanced microbial metabolic activity in terms of soil respiration per amount of microbial biomass C. Microbial stress biomarkers were elevated in warmed plots. In summary, the 4 °C increase in soil temperature during the snow-free season had no influence on microbial community composition and biomass but strongly increased microbial metabolic activity and hence reduced carbon use efficiency. 相似文献
6.
Vanesa Gonzalez-Quiñones Natasha C. Banning Daniel V. Murphy 《Soil biology & biochemistry》2009,41(7):1574-1576
Following collection of soil, storage prior to analyses is often required where the microbial community is unlikely to remain stable. We assessed the change in microbial community level physiological profiles (CLPP) during cold storage at 4 °C between 3 and 101 days. We hypothesized that the microbial community in soils containing less carbon would be affected more rapidly by storage. In particular we wanted to ascertain whether variability in CLPP through time masked inherent differences between soils derived from different ecosystems. Results illustrated that whilst total CO2 evolution did vary with incubation time, significant differences in microbial community structure were detected between ecosystems for all times. Thus storage time did not mask intrinsic differences in microbial community structure between ecosystems. 相似文献
7.
喀斯特生态系统中乔木和灌木林根际土壤微生物生物量及其多样性的比较 总被引:6,自引:0,他引:6
我国喀斯特区域面积分布较广,而喀斯特生态系统的退化已成为当前西南地区面临的严重的生态问题。本研究选取贵州中部两种不同植被类型的生态系统—乔木林和灌木林,以乔木林中的白栎、园果化香和灌木林中的火棘、竹叶椒等主要优势树种为对象,研究不同的植物树种对根际土壤微生物生物量及其细菌群落结构的影响。结果显示:乔木林系统中根际土壤微生物生物量碳、氮显著性高于灌木林,植物的根际效应在乔木林中表现更为显著;同时乔木林中的优势树种通过根系分泌物的作用显著提高根际土壤细菌多样性指数,而灌木林中优势树种的根际土壤微生物量及多样性均未表现出明显的根际效应。因此,植被的演替通过改变土壤微生物的特性影响植物-微生物-土壤之间的物质和能量循环,进一步影响喀斯特生态系统的稳定和健康功能。 相似文献
8.
Astrid Appuhn 《Soil biology & biochemistry》2006,38(9):2557-2564
Perennial rye grass (Lolium perenne) was grown in a greenhouse pot experiment on seven soils to answer the question whether the microbial colonisation of roots is related to existing differences in soil microbial indices. The soils were similar in texture, but differed considerably in soil organic matter, microbial biomass, and microbial community structure. Ergosterol and fungal glucosamine were significantly interrelated in the root material. This ergosterol was also significantly correlated with the average ergosterol content of bulk and rhizosphere soil. In addition, the sum of fungal C and bacterial C in the root material revealed a significant linear relationship with microbial biomass C in soil. The colonisation of roots with microorganisms increased apparently with an increase in soil microbial biomass. In the root material, microbial tissue consisted of 77% fungi and 23% bacteria. In soil, the fungal dominance was slightly, but significantly lower, with 70% fungi and 30% bacteria. Fungal glucosamine in the root material was significantly correlated with that in soil (r=0.65). This indicates a close relationship between the composition of dead microbial remains in soil and the living fraction in soil and root material for unknown reasons. 相似文献
9.
Lisbet Holm Bach John-Arvid Grytnes Mikael Ohlson 《Soil biology & biochemistry》2010,42(11):1934-1943
Biological communities differ over time and in space, and in the forest these communities often vary according to trees and tree gaps, mediated by mechanisms that are likely to change over time and as a tree are removed. In this paper we ask the questions: What is the influence of individual trees on soil microbial community structure? Does the soil microbial community change in the short-term when a tree is removed, and does this change depend on the initial influence of the tree? We use phospholipid fatty acid (PLFA) analysis and a geostatistical approach to study effects of trees and tree removal (thinning) on soil microbial community structure in a young boreal Norway spruce (Picea abies) forest. An experiment was setup where half (four) of the included trees were cut and soil was collected prior to (t0) and one month after (t1) tree felling. The samples were collected along two perpendicular transects originating from each of the eight study trees. A tree influence index was calculated for each sample point from the distances to neighbouring trees, weighted by tree diameter. We found that individual trees are important in structuring the soil microbial community as microbial community structure responded to the gradient in tree influence. Also strong spatial structure was found corresponding to the patch structure induced by trees. Changes in microbial community structure before and after tree felling (t0 and t1) was found to differ significantly between felled and non-felled trees: samples from felled trees came to resemble samples with a low value of tree influence and samples from below non-felled trees came to resemble samples with a high value for tree influence. We thus found that soil microbial community structure in a boreal forest is spatially structured by the distribution of single trees, and that soil microbial community structure varies seasonally and is affected by tree removal, in an intricate manner that reflects the initial influence of trees. 相似文献
10.
As an important component of organic fertilizers, animal faeces require methods for determining diet effects on their microbial quality to improve nutrient use efficiency in soil and to decrease gaseous greenhouse emissions to the environment. The objectives of the present study were (i) to apply the chloroform fumigation extraction (CFE) method for determining microbial biomass in cattle faeces, (ii) to determine the fungal cell-membrane component ergosterol, and (iii) to measure the cell-wall components fungal glucosamine and bacterial muramic acid as indices for the microbial community structure. Additionally, ergosterol and amino sugar data provide independent control values for the reliability of the microbial biomass range obtained by the CFE method. A variety of extractant solutions were tested for the CFE method to obtain stable extracts and reproducible microbial biomass C and N values, leading to the replacement of the original 0.5 M K2SO4 extractant for 0.05 M CuSO4. The plausibility of the data was assessed in a 28-day incubation study at 25 °C with cattle faeces of one heifer, where microbial biomass C and N were repeatedly measured together with ergosterol. Here, the microbial biomass indices showed dynamic characteristics and possible shifts in the microbial community. In faeces of five different heifers, the mean microbial biomass C/N ratio was 5.6, the mean microbial biomass to organic C ratio was 2.2%, and the mean ergosterol to microbial biomass C ratio was 1.1‰. Ergosterol and amino sugar analysis revealed a significant contribution of fungi, with a percentage of more than 40% to the microbial community. All three methods are expected to be suitable tools for analysing the quality of cattle faeces. 相似文献
11.
Soil profiles are often many meters deep, but with the majority of studies in soil microbiology focusing exclusively on the soil surface, we know very little about the nature of the microbial communities inhabiting the deeper soil horizons. We used phospholipid fatty acid (PLFA) analysis to examine the vertical distribution of specific microbial groups and to identify the patterns of microbial abundance and community-level diversity within the soil profile. Samples were collected from the soil surface down to 2 m in depth from two unsaturated Mollisol profiles located near Santa Barbara, CA, USA. While the densities of microorganisms were generally one to two orders of magnitude lower in the deeper horizons of both profiles than at the soil surface, approximately 35% of the total quantity of microbial biomass found in the top 2 m of soil is found below a depth of 25 cm. Principal components analysis of the PLFA signatures indicates that the composition of the soil microbial communities changes significantly with soil depth. The differentiation of microbial communities within the two profiles coincides with an overall decline in microbial diversity. The number of individual PLFAs detected in soil samples decreased by about a third from the soil surface down to 2 m. The ratios of cyclopropyl/monoenoic precursors and total saturated/total monounsaturated fatty acids increased with soil depth, suggesting that the microbes inhabiting the deeper soil horizons are more carbon limited than surface-dwelling microbes. Using PLFAs as biomarkers, we show that Gram-positive bacteria and actinomycetes tended to increase in proportional abundance with increasing soil depth, while the abundances of Gram-negative bacteria, fungi, and protozoa were highest at the soil surface and substantially lower in the subsurface. The vertical distribution of these specific microbial groups can largely be attributed to the decline in carbon availability with soil depth. 相似文献
12.
Shifting microbial community structure across a marine terrace grassland chronosequence, Santa Cruz, California 总被引:1,自引:0,他引:1
Changes in the biomass and structure of soil microbial communities have the potential to impact ecosystems via interactions with plants and weathering minerals. Previous studies of forested long-term (1000s - 100,000s of years) chronosequences suggest that surface microbial communities change with soil age. However, significant gaps remain in our understanding of long-term soil microbial community dynamics, especially for non-forested ecosystems and in subsurface soil horizons. We investigated soil chemistry, aboveground plant productivity, and soil microbial communities across a grassland chronosequence (65,000-226,000 yrs old) located near Santa Cruz, CA. Aboveground net primary productivity (ANPP) initially increased to a maximum and then decreased for the older soils. We used polar lipid fatty acids (PLFA) to investigate microbial communities including both surface (<0.1 m) and subsurface (≥0.2 m) soil horizons. PLFAs characteristic of Gram-positive bacteria and actinobacteria increased as a fraction of the microbial community with depth while the fungal fraction decreased relative to the surface. Differences among microbial communities from each chronosequence soil were found primarily in the subsurface where older subsurface soils had smaller microbial community biomass, a higher proportion of fungi, and a different community structure than the younger subsurface soil. Subsurface microbial community shifts in biomass and community structure correlated with, and were likely driven by, decreasing soil P availability and Ca concentrations, respectively. Trends in soil chemistry as a function of soil age led to the separation of the biological (≤1 m depth) and geochemical (>1 m) cycles in the old, slowly eroding landscape we investigated, indicating that this separation, commonly observed in tropical and subtropical ecosystems, can also occur in temperate climates. This study is the first to investigate subsurface microbial communities in a long-term chronosequence. Our results highlight connections between soil chemistry and both the aboveground and belowground parts of an ecosystem. 相似文献
13.
Newton Z. Lupwayi Stewart A. Brandt John T. O’Donovan T. Kelly Turkington 《Soil biology & biochemistry》2010,42(11):1997-2004
The combination of high input costs and low commodity prices is forcing some farmers to consider reducing crop inputs like seed, fertilizer and herbicides. In a field trial in which different canola (Brassica napus L.) and barley (Hordeum vulgare L.) inputs were subtracted from a full package, or added to an empty package, we studied the effects of full or reduced fertilizer and herbicide inputs on soil microbiological characteristics at two sites from 2005 to 2008. The full package consisted of a high-yielding crop variety seeded at an optimum rate, with fertilizers and herbicides applied at recommended rates. The empty package consisted of a less expensive, low-yielding crop variety seeded at a low rate, with no fertilizer or herbicide applied. Between these two extremes were treatments in which fertilizers or herbicides were applied at 50% of recommended rates or not at all. Each treatment was repeated year after year in the same plot, i.e., treatment effects were cumulative. Fertilizer effects on soil microbial biomass C (MBC), β-glucosidase enzyme activity and bacterial functional diversity (based on community-level physiological profiles) were usually positive. Reduced fertilizer application rates reduced the beneficial fertilizer effects. Significant herbicide effects on soil microbiological properties occurred less often, were smaller in magnitude than fertilizer effects, and were mostly negative. Reduced herbicide rates reduced the deleterious herbicide effects. These significant fertilizer and herbicide effects were observed in canola more than barley, and mostly in the final year of the study, indicating the cumulative nature of treatment effects over time. Therefore, repeated applications of agricultural inputs like fertilizers and herbicides can have more significant effects on soil biology and biological processes than single applications indicate. 相似文献
14.
Rebecca E. Drenovsky Geoff N. Elliott Kate M. Scow 《Soil biology & biochemistry》2004,36(11):1793-1800
Phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME), both lipid-based approaches used to characterize microbial communities, were compared with respect to their reliable detection limits, extraction precision, and ability to differentiate agricultural soils. Two sets of soil samples, representing seven crop types from California's Central Valley, were extracted using PLFA and TSFAME procedures. PLFA analysis required 10 times more soil than TSFAME analysis to obtain a reliable microbial community fingerprint and total fatty acid content measurement. Although less soil initially was extracted with TSFAME, total fatty acid (FA) content g−1 soil (DW) was more than 7-fold higher in TSFAME- versus PLFA-extracted samples. Sample extraction precision was much lower with TSFAME analysis than PLFA analysis, with the coefficient of variation between replicates being as much as 4-fold higher with TSFAME extraction. There were significant differences between PLFA- and TSFAME-extracted samples when biomarker pool sizes (mol% values) for bacteria, actinomycetes, and fungi were compared. Correspondence analysis (CA) of PLFA and TSFAME samples indicated that extraction method had the greatest influence on sample FA composition. Soil type also influenced FA composition, with samples grouping by soil type with both extraction methods. However, separate CAs of PLFA- and TSFAME extracted samples depicted strong differences in underlying sample groupings. Recommendations for the selection of extraction method are presented and discussed. 相似文献
15.
葡萄糖和不同数量氮素供给对黑土氨基糖动态的影响 总被引:6,自引:1,他引:6
通过室内培养实验探讨了葡萄糖及不同数量的NH4+施入对土壤中三种氨基糖(氨基葡萄糖、氨基半乳糖和胞壁酸)动态的影响,同时利用氨基葡萄糖和胞壁酸的比值探讨了微生物在养分固持过程中的相对贡献。结果表明,土壤氨基糖数量受到外加碳源和养分的显著影响,且其变化各有特征。胞壁酸受养分影响最为显著,可在一定程度上调节并平衡碳氮元素的供给与需求;氨基葡萄糖稳定性高于胞壁酸,但在碳源极度缺乏时也可分解;养分状况对氨基半乳糖的影响并不显著。碳源是促进土壤微生物氮素固持的关键因子,在活性碳源存在下,相对丰富的氮素供给有利于细菌的快速生长,而碳源相对充足时则有利于真菌的快速增殖。 相似文献
16.
Composting and thermal drying are amongst the most commonly used post-digestion processes for allowing sanitation and biological stabilization of sewage sludge from municipal treatment plants, and making it suitable as soil conditioner for use in agriculture. To assess the impact of sludge-derived materials on soil microbial properties, fresh (LAF), composted (LAC) and thermally dried (LAT) sludge fractions, each resulting from a different post-treatment process of a same aerobically digested sewage sludge, were added at 1% (w/w) application rate on two contrasting (a loam and a loamy sand) soils and incubated under laboratory conditions for 28 days. Soil respiration, microbial ATP content, hydrolytic activities and arginine ammonification rate were monitored throughout the incubation period. Results showed that soil biochemical variables, including the metabolic quotient (qCO2), were markedly stimulated after sludge application, and the magnitude of this stimulatory effect was dependent on sludge type (precisely LAT > LAF > LAC), but not on soil type. This effect was related to the content of stable organic matter, which was lower in LAT. Genetic fingerprinting by PCR–DGGE revealed that compositional shifts of soil bacterial and, at greater extent, actinobacterial communities were responsive to the amendment with a differing sludge fraction. The observed time-dependent changes in the DGGE profiles of amended soils reflected the microbial turnover dependent on the sludge nutrient input, whereas no indications of adverse effects of sludge-borne contaminants were noted. Our findings indicate that composting rather thermal drying can represent a more appropriate post-digestion process to make sewage sludge suitable for use as soil conditioner in agriculture. 相似文献
17.
This study describes the effects of balanced versus nutrient-deficiency fertilization on soil microbial biomass, activity, and bacterial community structure in a long-term (16 years) field experiment. Long-term fertilization greatly increased soil microbial biomass C and dehydrogenase activity, except that the P-deficiency fertilization had no significant effect. Organic manure had a significantly greater (P<0.05) impact on the biomass C and the activity, compared with mineral fertilizers. Microbial metabolic activity (dehydrogenase activity per microbial biomass C) was significantly higher (P<0.05) under balanced fertilization than under nutrient-deficiency fertilization. General bacterial community structure was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) targeting eubacterial 16S rRNA gene. Mineral fertilization did not affect the DGGE banding pattern, while specific DGGE band was observed in organic manure-fertilized soils. Phylogenetic analysis showed that the change of bacterial community in organic manure-fertilized soil might not be because of the direct influence of the bacteria in the compost, but because of the promoting effect of the compost on the growth of an indigenous Bacillus sp. in the soil. We emphasize the importance of balanced-fertilization, as well as the role of P, in maintaining soil organic matter, and promoting the biomass and activity of microorganisms. 相似文献
18.
Prolonged simulated acid rain treatment in the subarctic: Effect on the soil respiration rate and microbial biomass 总被引:2,自引:0,他引:2
Humus chemistry and respiration rate, ATP, ergosterol, and muramic acid concentration as measures of chemical properties, microbial activity, biomass, and indicators of fungal and bacterial biomass were studied in a long-term acid rain experiment in the far north of Finnish Lapland. The treatments used in this study were dry control, irrigated control (spring water, pH 6), and two levels of simulated acid rain (pH 4 and pH 3). Originally (1985–1988), simulated acid rain was prepared by adding both H2SO4 and HNO3 (1.9:1 by weight). In 1989 the treatments were modified as follows. In subarea 1 the treatments continued unchanged (H2SO4+HNO3 in rain to pH 4 and pH 3), but in subarea 2 only H2SO4 was applied. The plots were sampled in 1992. The acid application affected humus chemistry by lowering the pH, cation exchange capacity, and base saturation (due to a decrease in Ca and Mg) in the treatment with H2SO4+HNO3 to pH 4 (total proton load over 8 years 2.92 kmol ha-1), whereas the microbial variables were not affected at this proton load, and only the respiration rate decreased by 20% in the strongest simulated acid rain treatment (total proton load 14.9 kmol ha-1). The different ratios of H2SO4+HNO3 in subareas 1 and 2 did not affect the results. 相似文献
19.
Prolonged intensive arable cropping of semiarid grassland soils in the South African Highveld resulted in a significant loss of C, N and associated living and dead microbial biomass. To regenerate their soils, farmers converted degraded arable sites back into secondary pastures. The objective of this study was to clarify the contribution of microorganisms to the sequestration of C and N in soil during this regeneration phase. Composite samples were taken from the topsoils of former arable land, namely Plinthustalfs, which had been converted to pastures 1-31 years ago. Amino sugars were determined as markers for microbial residues in the bulk soil and in selected particle-size fractions. The results showed that when C and N contents increased during the secondary pasture usage, the amino sugar concentration in the bulk soil (0-5 cm) recovered at similar magnitude and reached a new steady-state level after approximately 90 years, which corresponded only to 90% of the amino sugar level in the primary grassland. The amino sugar concentration in the clay-sized fraction recovered to a higher end level than in the bulk soil, and also at a faster annual rate. This confirms that especially the finer particles contained a high amount of amino sugars and were responsible, thus, for the restoration of microbially derived C and N. The incomplete recovery of amino sugars in bulk soil can only in parts be attributed to a slightly coarser texture of secondary grassland that had lost silt through wind erosion. The soils particularly had also lost the ability to restore microbial residues below 5 cm soil depth. Overall, the ratios of glucosamine to muramic acid also increased with increasing duration of pasture usage, suggesting that fungi dominated the microbial sequestration of C and N whereas the re-accumulation of bacterial cell wall residues was less pronounced. However, the glucosamine-to-muramic acid ratios finally even exceeded those of the primary grassland, indicating that there remained some irreversible changes of the soil microbial community by former intensive crop management. 相似文献
20.
Approximately 0.6% of the total UK land surface is occupied by golf courses, but little investigation into the biological properties of the soil under this type of amenity turf has been reported. The soil microbiota has a significant role within the majority of nutrient cycles. In order to analyse how golf course management affects the soil microbial community, an investigation of the phenotypic microbial community structure using phospholipid fatty acid (PLFA) analysis was carried out. Principal component analysis of PLFA biomarkers indicated that there were consistent relationships between the tees, fairways and greens and the soil microbial community structure. No conclusive mechanism could be demonstrated in one-way analysis with corresponding physical parameters (P>0.05 in all cases). Cannonical correlation analysis (CCA) using 28 PLFA biomarkers concurrently with 9 physicochemical parameters showed a highly significant relationship on different playing surfaces at all of the golf courses surveyed (P<0.01). The construction and maintenance of specific areas of a golf course, irrespective of geographical location, closely reflect the physicochemical status of the soil microbial habitat. 相似文献