首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper-based fungicides have been applied in apple orchards for a long time, which has resulted in increasing soil Cu concentration. However, the microbial and enzyme properties of the orchard soils remain poorly understood. This study aimed to evaluate the effect of long-term application of Cu-based fungicides on soil microbial (microbial biomass carbon (Cmic), C mineralization, and specific respiration rate) and enzyme (urease, acid phosphatase, and invertase activities) properties in apple orchards. Soil samples studied were collected from apple orchards 5, 15, 20, 30, and 45 years old, and one adjacent forest soil as for reference. The mean Cu concentrations of orchard soils significantly increased with increasing orchard ages ranging from 21.8 to 141 mg kg−1, and the CaCl2-extractable soil Cu concentrations varied from 0.00 to 4.26 mg kg−1. The soil mean Cmic values varied from 43.6 to 116 mg kg−1 in the orchard soils, and were lower than the value of the reference soil (144 mg kg−1). The ratio of soil Cmic to total organic C (Corg) increased from 8.10 to 18.3 mg Cmic g−1 Corg with decreasing orchard ages, and was 26.1 mg Cmic g−1 Corg for the reference soil. A significant correlation was observed between total- or CaCl2-extractable soil Cu and soil Cmic or Cmic/Corg, suggesting that the soil Cu was responsible for the significant reductions in Cmic and Cmic/Corg. The three enzyme activity assays also showed the similar phenomena, and declined with the increasing orchard ages. The mean soil C mineralization rates were elevated from 110 to 150 mg CO2-C kg−1 soil d−1 compared with the reference soil (80 mg CO2-C kg−1 soil d−1), and the mean specific respiration rate of the reference soil (0.63 mg CO2-C mg−1 biomass C d−1) was significantly smaller than the orchard soils from 1.19 to 3.55 mg CO2-C mg−1 biomass C d−1. The soil C mineralization rate and the specific respiration rate can be well explained by the CaCl2-extractable soil Cu. Thus, the long-term application of copper-based fungicides has shown adverse effects on soil microbial and enzyme properties.  相似文献   

2.
We examined the effects of forest clearfelling on the fluxes of soil CO2, CH4, and N2O in a Sitka spruce (Picea sitchensis (Bong.) Carr.) plantation on an organic-rich peaty gley soil, in Northern England. Soil CO2, CH4, N2O as well as environmental factors such as soil temperature, soil water content, and depth to the water table were recorded in two mature stands for one growing season, at the end of which one of the two stands was felled and one was left as control. Monitoring of the same parameters continued thereafter for a second growing season. For the first 10 months after clearfelling, there was a significant decrease in soil CO2 efflux, with an average efflux rate of 4.0 g m−2 d−1 in the mature stand (40-year) and 2.7 g m−2 d−1 in clearfelled site (CF). Clearfelling turned the soil from a sink (−0.37 mg m−2 d−1) for CH4 to a net source (2.01 mg m−2 d−1). For the same period, soil N2O fluxes averaged 0.57 mg m−2 d−1 in the CF and 0.23 mg m−2 d−1 in the 40-year stand. Clearfelling affected environmental factors and lead to higher daily soil temperatures during the summer period, while it caused an increase in the soil water content and a rise in the water table depth. Despite clearfelling, CO2 remained the dominant greenhouse gas in terms of its greenhouse warming potential.  相似文献   

3.
Most soil respiration measurements are conducted during the growing season. In tundra and boreal forest ecosystems, cumulative winter soil CO2 fluxes are reported to be a significant component of their annual carbon budgets. However, little information on winter soil CO2 efflux is known from mid-latitude ecosystems. Therefore, comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of ecosystem carbon budgets and the response of soil CO2 efflux to climate changes. In this study we measured winter soil CO2 efflux and its contribution to annual soil respiration for seven ecosystems (three forests: Pinus sylvestris var. mongolica plantation, Larix principis-rupprechtii plantation and Betula platyphylla forest; two shrubs: Rosa bella and Malus baccata; and two meadow grasslands) in a forest-steppe ecotone, north China. Overall mean winter and growing season soil CO2 effluxes were 0.15-0.26 μmol m−2 s−1 and 2.65-4.61 μmol m−2 s−1, respectively, with significant differences in the growing season among the different ecosystems. Annual Q10 (increased soil respiration rate per 10 °C increase in temperature) was generally higher than the growing season Q10. Soil water content accounted for 84% of the variations in growing season Q10 and soil temperature range explained 88% of the variation in annual Q10. Soil organic carbon density to 30 cm depth was a good surrogate for SR10 (basal soil respiration at a reference temperature of 10 °C). Annual soil CO2 efflux ranged from 394.76 g C m−2 to 973.18 g C m−2 using observed ecosystem-specific response equations between soil respiration and soil temperature. Estimates ranged from 424.90 g C m−2 to 784.73 g C m−2 by interpolating measured soil respiration between sampling dates for every day of the year and then computing the sum to obtain the annual value. The contributions of winter soil CO2 efflux to annual soil respiration were 3.48-7.30% and 4.92-7.83% using interpolated and modeled methods, respectively. Our results indicate that in mid-latitude ecosystems, soil CO2 efflux continues throughout the winter and winter soil respiration is an important component of annual CO2 efflux.  相似文献   

4.
Our aim was to determine if soil ergosterol concentration provides a quantitative estimate of the soil fungal biomass concentration, as is usually assumed. This was done by comparing soil ergosterol measurements with soil fungal biomass (fungal biomass C) concentrations estimated by microscopic measurements and by the selective inhibition technique linked to substrate-induced respiration (SIR). The measurements were compared in a silty-clay loam soil given a range of previous treatments designed to increase or decrease the soil fungal biomass and so also to change the soil ergosterol concentration. The treatments used were ryegrass amendment, to increase the total and fungal biomass, and CHCl3-fumigation and the addition of the biocides, captan, bronopol and dinoseb, to decrease both ergosterol and fungal biomass C concentrations. The mineralization of ergosterol following addition to sand innoculated with soil extract, and to a sandy loam soil, was also determined. The added ergosterol was little, if at all, degraded following addition to either sand or the unfumigated or fumigated soil during a 10 d aerobic incubation. Similarly, pesticide addition did not significantly change soil ergosterol concentrations yet the soil fungal biomass C concentration decreased significantly. Thus, the ratio: (soil ergosterol concentration/soil fungal biomass C concentration) was much higher in the pesticide-treated soils than the control soil. Following ryegrass amendment, soil ergosterol concentration increased from about 6-12 μg−1 soil within 5 d and then decreased gradually to about 7 μg g−1 soil by 20 d incubation. Changes in fungal biomass C (measured by direct microscopy) closely mirrored changes in soil ergosterol over this period. However, when the amended soil was fumigated and then incubated for a further 5 d, the initial ergosterol concentration declined from 7 to 5 μg g−1 soil by 20 d incubation (a decline of about 0.4). The comparable decline in fungal biomass C was about eight-fold. Thus the ratio of ergosterol to fungal biomass C increased from 0.005 to about 0.01. There was a significant correlation (r>0.84, P<0.001) between soil ergosterol concentration and fungal biomass measured by either SIR or microscopy. However, three data points played a vital role in the correlation. When these points were excluded the relationship was very poor (r<0.4). Our results therefore suggest that substantial amounts of ergosterol may exist, other than in living cells, for considerable periods, with little, if any mineralization. Thus, these results indicate that ergosterol and fungal biomass C concentrations are not always closely correlated, due to the slow metabolism of ergosterol in recently dead fugal biomass and/or the existence of exocellular ergosterol in soil.  相似文献   

5.
Afforestation and reforestation of pastures are key land-use changes in New Zealand that help sequester carbon (C) to offset its carbon dioxide (CO2) emissions under the Kyoto Protocol. However, relatively little attention has been given so far to associated changes in trace gas fluxes. Here, we measure methane (CH4) fluxes and CO2 production, as well as microbial C, nitrogen (N) and mineral-N, in intact, gradually dried (ca. 2 months at 20 °C) cores of a volcanic soil and a heavier textured, non-volcanic soil collected within plantations of Pinus radiata D. Don (pine) and adjacent permanent pastures. CH4 fluxes and CO2 production were also measured in cores of another volcanic soil under reverting shrubland (mainly Kunzea var. ericoides (A. Rich) J. Thompson) and an adjacent pasture. CH4 uptake in the pine and shrubland cores of the volcanic soils at field capacity averaged about 35 and 14 μg CH4-C m−2 h−1, respectively, and was significantly higher than in the pasture cores (about 21 and 6 μg CH4-C m−2 h−1, respectively). In the non-volcanic soil, however, CH4-C uptake was similar in most cores of the pine and pasture soils, averaging about 7-9 μg m−2 h−1, except in very wet samples. In contrast, rates of CO2 production and microbial C and N concentrations were significantly lower under pine than under pasture. In the air-dry cores, microbial C and N had declined in the volcanic soil, but not in the non-volcanic soil; ammonium-N, and especially nitrate-N, had increased significantly in all samples. CH4 uptake was, with few exceptions, not significantly influenced by initial concentrations of ammonium-N or nitrate-N, nor by their changes on air-drying. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of only the pine and pasture soils showed that different methanotrophic communities were probably active in soils under the different vegetations. The C18 PLFAs (type II methanotrophs) predominated under pine and C16 PLFAs (type I methanotrophs) predominated under pasture. Overall, vegetation, soil texture, and water-filled pore space influenced CH4-C uptake more than did soil mineral-N concentrations.  相似文献   

6.
In the range of volumetric water content, θ, from about 0.12 cm3 cm–3 to saturation the relation between bulk electrical conductivity, Cb, and bulk electrical permittivity, ε, of mineral soils was observed to be linear. The partial derivative ?Cb/?ε appeared independent of the moisture content and directly proportional to soil salinity. We found that the variable Xs = ?Cb/?ε determined from in situ measurements of Cb(θ > 0.2) and ε(θ > 0.2) can be considered as an index of soil salinity, and we call it the ‘salinity index’. Knowing the index and sand content for a given soil we could calculate the electrical conductivity of the soil water, Cw, which is a widely accepted measure of soil salinity. The two variables from which the salinity index can be calculated, i.e. Cb and ε, can be read simultaneously from the same sensor by time-domain reflectometry. Quantities and symbols a constant /dS m–1 b constant c constant /dS m–1 C b electrical conductivity of bulk soil /dS m–1 C b′ constant equal to 0.08 dS m–1 C s electrical conductivity of a solution used to moisten soil samples /dS m–1 C w electrical conductivity of soil water defined as the soil salinity /dS m–1 C wref reference salinity (that truly existing) resulting from the procedure of moistening samples, expressed as Cs + Cr/dS m–1 C r baseline value of Cs due to residual soluble salts present in the soil /dS m–1 d constant D dry soil bulk density /g cm–3 l slope r ratio S sand content /% by weight t time /s X s salinity index /dS m–1 X si initial salinity index when distilled water is used to moisten soil samples /dS m–1 Y a moisture-independent salinity-dependent variable /dS m–1 z coordinate along direction of flow of the soil solution ε′ constant equal to 6.2 ε relative bulk electrical permittivity (dielectric constant) of the soil θ volumetric water content determined thermogravimetrically using oven-drying /cm3 cm–3  相似文献   

7.
The main energy sources of soil microorganisms are litter fall, root litter and exudation. The amount on these carbon inputs vary according to basal area of the forest stand. We hypothesized that soil microbes utilizing these soil carbon sources relate to the basal area of trees. We measured the amount of soil microbial biomass, soil respiration and microbial community structure as determined by phospholipid fatty acid (PLFA) profiles in the humus layer (FH) of an even-aged stand of Scots pine (Pinus sylvestris L.) with four different basal area levels ranging from 19.9 m2 ha−1 in the study plot Kasper 1 to 35.7 m2 ha−1 in Kasper 4. Increasing trend in basal respiration, total PLFAs and fungal-to-bacterial ratio was observed from Kasper 1 to Kasper 3 (basal area 29.2 m2 ha−1). The soil microbial community structure in Kasper 3 differed from that of the other study plots.  相似文献   

8.
Adenylate (i.e. adenosine tri- (ATP), di- (ADP) and monophosphates (AMP)) and microbial biomass C data were collected over a wide range of sites including forest floor layers and forest, grassland and arable soils. Microbial biomass C was measured by fumigation extraction and adenylates after alkaline Na3PO4/DMSO/EDTA extraction and HPLC detection. Our aims were (1) to test whether the sum of adenylates is a better estimate for microbial biomass than the determination of ATP, (2) to compare our conversion values with those proposed by others, and (3) to analyse whether soil properties or land use form affect the relationships between ATP, adenylates and microbial biomass C. A close relationship was found between microbial biomass C and ATP (r=0.96), but also with the sum of adenylates (r=0.96) within all appropriately conditioned soil samples (n=112). In the mineral soil (n=98), the geometric means of the ATP-to-microbial biomass C ratio and the adenylates-to-microbial biomass C ratio were 7.4 and 11.4 μmol g−1, respectively. The mean ratios did not differ significantly between the different texture classes and land use forms. In the forest floor, the ATP-to-microbial biomass C ratio and the adenylates-to-microbial biomass C ratio were both roughly two-thirds of those of the mineral soil. The average adenylate energy charge (AEC) of all soil samples was 0.79 and showed a strong negative relationship with the soil pH (r=−0.69). However, the AEC is presumably only indirectly affected by the soil pH.  相似文献   

9.
Recent research on life in extreme environments has shown that some microorganisms metabolize at extremely low temperatures in Arctic and Antarctic ice and permafrost. Here, we present kinetic data on CO2 and 14CO2 release from intact and 14C-glucose amended tundra soils (Barrow, Alaska) incubated for up to a year at 0 to −39°C. The rate of CO2 production declined exponentially with temperature but it remained positive and measurable, e.g. 2-7 ng CO2-C cm−3 soil d−1, at −39 °C. The variation of CO2 release rate (v) was adequately explained by the double exponential dependence on temperature (T) and unfrozen water content (W) (r2>0.98): v=A exp(λT+kW) and where A, λ and k are constants. The rate of 14CO2 release from added glucose declined more steeply with cooling as compared with the release of total CO2, indicating that (a) there could be some abiotic component in the measured flux of CO2 or (b) endogenous respiration is more cold-resistant than substrate-induced respiration. The respiration activity was completely eliminated by soil sterilization (1 h, 121 °C), stimulated by the addition of oxidizable substrate (glucose, yeast extract), and reduced by the addition of acetate, which inhibits microbial processes in acidic soils (pH 3-5). The tundra soil from Barrow displayed higher below-zero activity than boreal soils from West Siberia and Sweden. The permafrost soils (20-30 cm) were more active than the samples from seasonally frozen topsoil (0-10 cm, Barrow). Finding measurable respiration to −39 °C is significant for determining, understanding, and predicting current and future CO2 emission to the atmosphere and for understanding the low temperature limits of microbial activity on the Earth and on other planets.  相似文献   

10.
Land application of animal wastes from intensive grassland farming has resulted in growing environmental problems relating to greenhouse gas emissions, ammonia volatilisation, and nitrate and phosphorus leaching into surface and groundwater. We examined the short-term effects of dairy slurry amendment on carbon sequestration and enzyme activities in a temperate grassland (Southwest England). Slurry was collected from cows fed either on perennial ryegrass (C3) or maize (C4) silages. Fifty m3 ha−1 of each of the obtained C3 or C4 slurries (δ13C=−30.7 and −21.3‰, respectively) were applied to a C3 pasture soil with δ13C of −30.0±0.2‰. We found that water soluble organic carbon (WSOC) content was two to three times higher in the slurry amended plots compared with the unamended control. No significant change in the soil microbial biomass (SMB) carbon content was observed in the four weeks (772 h) following slurry application. Natural abundance 13C isotope analysis suggested a rapid initial incorporation (>25% within 2 h of application) of slurry-derived C in the SMB-C and WSOC pools of the 0-2 cm layer. Linear relationships were found between slurry-derived C in the whole soil, SMB, and WSOC for the 0-2 cm depth in the soil. Applied slurry-derived C was sequestered in the SMB pool in two phases. The first phase (0-48 h) was dominated by the incorporation of labile slurry C from the liquid phase, whereas beyond 48 h slurry-derived C was mainly from less mobile particulate C. No significant differences between treatments were found for invertase and xylanase. Urease activity was always higher in slurry treatments. Cellobiohydrolase, β-N-acetyl-glucosamidase, β-glucosidase and acid phosphatase activities became significantly higher in slurry treatments after 336 h. However, the observed temporal changes in enzyme activities were not correlated with the amounts of slurry-C incorporated in the SMB and WSOC pool.  相似文献   

11.
Soil microbial biomass was analyzed in a rapidly subsiding coastal bottomland forest at three sites along an elevation change of ∼1 m and an associated hydrologic gradient of 400 m from rare (ridge site), to occasional (intermediate site), to frequent flooding (swamp site). Given the current rate of relative sea-level rise in this area (subsidence+global mean sea-level rise ∼1.2 cm y−1), this gradient may represent a space-for-time substitution for about one century of future sea-level rise. Along the hydrologic gradient, microbial biomass carbon (MBC) in the upper 20 cm of mineral soil was 157±26 (ridge), 134±14 (intermediate), and 90±20 (swamp) g C m−2. MBC was positively correlated with soil organic matter (r2=0.76, P=0.002) and the ratio of MBC to soil organic C ranged from 0.008 to 0.017 depending on soil depth and site. Generally, MBC decreased with increasing soil moisture from the ridge to the swamp site. Although MBC was statistically similar overall in the ridge and intermediate sites, the intermediate site had the largest fraction (45%) at 0-5 cm, whereas the ridge site had the largest fraction (40%) below 10-20 cm. Based on a space-for-time substitution model using non-linear regression analysis, we predict that MBC in the upper 20 cm of soil is likely to decrease by about one-third along the transect over the next century as a result of subsidence and sea-level rise.  相似文献   

12.
We evaluated the spatial structures of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) fluxes in an Acacia mangium plantation stand in Sumatra, Indonesia, in drier (August) and wetter (March) seasons. A 60 × 100-m plot was established in an A. mangium plantation that included different topographical elements of the upper plateau, lower plateau, upper slope and foot slope. The plot was divided into 10 × 10-m grids and gas fluxes and soil properties were measured at 77 grid points at 10-m intervals within the plot. Spatial structures of the gas fluxes and soil properties were identified using geostatistical analyses. Averaged N2O and CO2 fluxes in the wetter season (1.85 mg N m−2 d−1 and 4.29 g C m−2 d−1, respectively) were significantly higher than those in the drier season (0.55 mg N m−2 d−1 and 2.73 g C m−2 d−1, respectively) and averaged CH4 uptake rates in the drier season (−0.62 mg C m−2 d−1) were higher than those in the wetter season (−0.24 mg C m−2 d−1). These values of N2O fluxes in A. mangium soils were higher than those reported for natural forest soils in Sumatra, while CO2 and CH4 fluxes were in the range of fluxes reported for natural forest soils. Seasonal differences in these gas fluxes appears to be controlled by soil water content and substrate availability due to differing precipitation and mineralization of litter between seasons. N2O fluxes had strong spatial dependence with a range of about 18 m in both the drier and wetter seasons. Topography was associated with the N2O fluxes in the wetter season with higher and lower fluxes on the foot slope and on the upper plateau, respectively, via controlling the anaerobic-aerobic conditions in the soils. In the drier season, however, we could not find obvious topographic influences on the spatial patterns of N2O fluxes and they may have depended on litter amount distribution. CO2 fluxes had no spatial dependence in both seasons, but the topographic influence was significant in the drier season with lowest fluxes on the foot slope, while there was no significant difference between topographic positions in the wetter season. The distributions of litter amount and soil organic matter were possibly associated with CO2 fluxes through their effects on microbial activities and fine root distribution in this A. mangium plantation.  相似文献   

13.
Based on the enclosed chamber method, soil respiration measurements of Leymus chinensis populations with four planting densities (30, 60, 90 and 120 plants/0.25 m2) and blank control were made from July 31 to November 24, 2003. In terms of soil respiration rates of L. chinensis populations with four planting densities and their corresponding root biomass, linear regressive equations between soil respiration rates and dry root weights were obtained at different observation times. Thus, soil respiration rates attributed to soil microbial activity could be estimated by extrapolating the regressive equations to zero root biomass. The soil microbial respiration rates of L. chinensis populations during the growing season ranged from 52.08 to 256.35 mg CO2 m−2 h−1. Soil microbial respiration rates in blank control plots were also observed directly, ranging from 65.00 to 267.40 mg CO2 m−2 h−1. The difference of soil microbial respiration rates between the inferred and the observed methods ranged from −26.09 to 9.35 mg CO2 m−2 h−1. Some assumptions associated with these two approaches were not completely valid, which might result in this discrepancy. However, these two methods' application could provide new insights into separating root respiration from soil microbial respiration. The root respiration rates of L. chinensis populations with four planting densities could be estimated based on measured soil respiration rates, soil microbial respiration rates and corresponding mean dry root weight, and the highest values appeared at the early stage, then dropped off rapidly and tended to be constant after September 10. The mean proportions of soil respiration rates of L. chinensis populations attributable to the inferred and the observed root respiration rates were 36.8% (ranging from 9.7 to 52.9%) and 30.0% (ranging from 5.8 to 41.2%), respectively. Although root respiration rates of L. chinensis populations declined rapidly, the proportion of root respiration to soil respiration still increased gradually with the increase of root biomass.  相似文献   

14.
The effects of salinity and Mg2+ alkalinity on the size and activity of the soil microbial communities were investigated. The study was conducted along the border area of the alluvial fan of the Taolai River. Thirty soil samples were taken which had an electrical conductivity (EC) gradient of 0.93-29.60 mS cm−1. Soil pH ranged from 8.60 to 9.33 and correlated positively with Mg2+/Ca2+ ratio, exchangeable Mg2+ percentage and HCO3+CO32−. Mg2+/Ca2+ varied considerably from 3.04 to 61.31, with an average of 23.03. Exchangeable Mg2+ percentage generally exceeded 60% and had a positive correlation with Mg2+/Ca2+. HCO3+CO32− averaged 1.63 cmol kg−1 and usually did not exceed 2.0 cmol kg−1.Microbial biomass, indices of microbial activity and the activities of the hydrolases negatively correlated with Mg2+/Ca2+ or exchangeable Mg2+ percentage. Biomass C, biomass N, microbial quotient (the percentage of soil organic C present as biomass C), biomass N as a percentage of total N, potentially mineralizable N, FDA hydrolysis rate and arginine ammonification rate decreased exponentially with increasing EC. The biomass C/N tended to be lower in soils with higher salinity and Mg2+ alkalinity, probably reflecting the bacterial dominance in microbial biomass in alkalized magnesic soils. The metabolic quotient (qCO2) positively correlated with salinity and Mg2+ alkalinity, and showed a quadratic relationship with EC, indicating that increasing salinity and Mg2+ alkalinity resulted in a progressively smaller, more stressed microbial communities which was less metabolically efficient. Consequently, our data suggest that salinity and Mg2+ alkalinity are stressful environments for soil microorganisms.  相似文献   

15.
It has been suggested that soil-thawing and snow-melting are critical triggers for vigorous emissions of nitrous oxide (N2O) from soils in cold regions. However, because soil freezing is affected by air temperature and snow cover, accurate predictions that estimate subsequent emissions of this important greenhouse gas are difficult to make. In this study, we measured in situ soil gas N2O and oxygen (O2) concentrations at two experimental sites in northern Japan over the period of a year, from November 2008 to October 2009, to clarify the factors stimulating N2O production in soil at low temperatures. The sites were N-fertilized bare arable lands with different soil frost depths and snowmelt rates, according to the snow cover management imposed. Winter-to-spring net N2O fluxes, ranging from −0.10 to 1.95 kg N2O-N ha−1, were positively correlated with the annual maximum soil frost depth (ranging from 0.03 to 0.41 m; r = 0.951***). In the plots with deeper maximum soil frost, winter-to-spring N2O fluxes represented 58% to 85% of the annual values. Soil N2O production was stimulated when the soil frost depth was greater than 0.15 m or the daily mean soil temperature at 0.05-m depth was below −2.0 °C. In the soil with the greatest frost depth, soil gas N2O concentrations at the depth of 0.10 m peaked at 46 ppm when soil gas O2 concentrations fell down to 0.12 m3 m−3 under soil temperature below 0.0 °C. Snowmelt acceleration had no stimulating effect on N2O production in the soil during the winter-to-spring period.  相似文献   

16.
Small changes in C cycling in boreal forests can change the sign of their C balance, so it is important to gain an understanding of the factors controlling small exports like water-soluble organic carbon (WSOC) fluxes from the soils in these systems. To examine this, we estimated WSOC fluxes based on measured concentrations along four replicate gradients in upland black spruce (Picea mariana [Mill.] BSP) productivity and soil temperature in interior Alaska and compared them to concurrent rates of soil CO2 efflux. Concentrations of WSOC in organic and mineral horizons ranged from 4.9 to 22.7 g C m−2 and from 1.4 to 8.4 g C m−2, respectively. Annual WSOC fluxes (4.5-12.0 g C m−2 y−1) increased with annual soil CO2 effluxes (365-739 g C m−2 y−1) across all sites (R2=0.55, p=0.02), with higher fluxes occurring in warmer, more productive stands. Although annual WSOC flux was relatively small compared to total soil CO2 efflux across all sites (<3%), its relative contribution was highest in warmer, more productive stands which harbored less soil organic carbon. The proportions of relatively bioavailable organic fractions (hydrophilic organic matter and low molecular weight acids) were highest in WSOC in colder, low-productivity stands whereas the more degraded products of microbial activity (fulvic acids) were highest in warmer, more productive stands. These data suggest that WSOC mineralization may be a mechanism for increased soil C loss if the climate warms and therefore should be accounted for in order to accurately determine the sensitivity of boreal soil organic C balance to climate change.  相似文献   

17.
To compare factors that control methane flux in forest soils, we studied three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in Chubu district, central Japan. The three sites are located at different altitudes: 630 m (SET), 1010 m (INB), and 1350 m (OSK). Methane was absorbed at every site. The highest uptake rate was observed in the middle-altitude soil (INB, 5.89 mg CH4 m−2 d−1), which was the only site where methane uptake rate was correlated with air and soil surface temperatures. Methane flux in the field was not correlated with water content, inorganic N content, or water-soluble organic carbon. C/N ratio was correlated with methane flux (r=0.64,p<0.001). The results suggest that some organic inhibitors might be produced through decomposition of organic matter. There was a negative correlation between methane uptake rate and water-soluble Al (r=−0.63,p<0.001). Inhibition of methane consumption by 1 and 5 mM Al solutions was observed in laboratory incubation. This result suggests that water-soluble Al may be a factor controlling methane uptake. Multiple regression with a backward-elimination procedure identified three variables that were significantly associated with methane flux in the field (p<0.05): air temperature, C/N ratio, and the concentration of water-soluble Al.  相似文献   

18.
Similar to higher plants, microbial autotrophs possess photosynthetic systems that enable them to fix CO2. To measure the activity of microbial autotrophs in assimilating atmospheric CO2, five paddy soils were incubated with 14C-labeled CO2 for 45 days to determine the amount of 14C-labeled organic C being synthesized. The results showed that a significant amount of 14C-labeled CO2 incorporated into microbial biomass was soil specific, accounting for 0.37%–1.18% of soil organic carbon (14C-labeled organic C range: 81.6–156.9 mg C kg?1 of the soil after 45 days). Consequently, high amounts of C-labeled organic C were synthesized (the synthesis rates ranged from 86 to 166 mg C m?2 d?1). The amount of atmospheric 14CO2 incorporated into microbial biomass (14C-labeled microbial biomass) was significantly correlated with organic C components (14C-labeled organic C) in the soil (r = 0.80, p < 0.0001). Our results indicate that the microbial assimilation of atmospheric CO2 is an important process for the sequestration and cycling of terrestrial C. Our results showed that microbial assimilation of atmospheric CO2 has been underestimated by researchers globally, and that it should be accounted for in global terrestrial carbon cycle models.  相似文献   

19.
Emissions of N2O were measured following addition of 15N-labelled (2.6-4.7 atom% excess 15N) agroforestry residues (Sesbania sesban, mixed Sesbania/Macroptilium atropurpureum, Crotalaria grahamiana and Calliandra calothyrsus) to a Kenyan oxisol at a rate of 100 mg N kg soil−1 under controlled environment conditions. Emissions were increased following addition of residues, with 22.6 mg N m−2 (124.4 mg N m−2 kg biomass−1; 1.1 mg 15N m−2; 1.03% of 15N applied) emitted as N2O over 29 d after addition of both Sesbania and Macroptilium residues in the mixed treatment. Fluxes of N2O were positively correlated with CO2 fluxes, and N2O emissions and available soil N were negatively correlated with residue lignin content (r=−0.49;P<0.05), polyphenol content (r=−0.94;P<0.05), protein binding capacity (r=−0.92;P<0.05) and with (lignin+polyphenol)-to-N ratio (r=−0.55;P<0.05). Lower emission (13.6 mg N m−2 over 29 d; 94.5 mg N m−2 kg biomass−1; 0.6 mg 15N m−2; 0.29% of 15N applied) after addition of Calliandra residue was attributed to the high polyphenol content (7.4%) and high polyphenol protein binding capacity (383 μg BSA mg plant−1) of this residue binding to plant protein and reducing its availability for microbial attack, despite the residue having a N content of 2.9%. Our results indicate that residue chemical composition, or quality, needs to be considered when proposing mitigation strategies to reduce N2O emissions from systems relying on incorporation of plant biomass, e.g. improved-fallow agroforestry systems, and that this consideration should extend beyond the C-to-N ratio of the residue to include polyphenol content and their protein binding capacity.  相似文献   

20.
The accumulation and transformation of organic matter during soil development is rarely investigated although such processes are relevant when discussing about carbon sequestration in soil. Here, we investigated soils under grassland and forest close to the North Sea that began its genesis under terrestrial conditions 30 years ago after dikes were closed. Organic C contents of up to 99 mg g−1 soil were found until 6 cm soil depth. The humus consisted mainly of the fraction lighter than 1.6 g cm−3 which refers to poorly degraded organic carbon. High microbial respiratory activity was determined with values between 1.57 and 1.17 μg CO2-C g−1 soil h−1 at 22 °C and 40 to 70% water-holding capacity for the grassland and forest topsoils, respectively. The microbial C to organic C ratio showed values up to 20 mg Cmic g−1 Corg. Although up to 2.69 kg C m−2 were estimated to be sequestered during 30 years, the microbial indicators showed intensive colonisation and high transformation rates under both forest and grassland which were higher than those determined in agricultural and forest topsoils in Northern Germany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号