共查询到20条相似文献,搜索用时 32 毫秒
1.
A miniaturised method developed to measure the mineralisation of 13C-labelled organic compounds in small soil samples is presented. Soil samples (<0.5 g) were placed in wells of microtiter plates with CO2 traps (NaOH-soaked glass microfiber filters) and amended with 13C-labelled substrate. The microtiter plate was covered with a seal and placed in a microplate clamp system to ensure that each well was airtight. After incubation, the CO2 traps were transferred to tightly sealed glass phials under CO2-free atmosphere and the 13C-labelled CO2 was released by addition of H3PO4. The CO2 was measured by micro-GC and its isotopic signature was determined using a GC-IRMS. The qualitative and quantitative efficiency of the microplate system was demonstrated by comparison with direct measurement of CO2 in the headspace of phials in which similarly treated soil samples had been incubated. The two methods showed similar mineralisation rates for added 13C-substrates but the apparent mineralisation of soil organic matter was greater with the microtiter plate method. The microplate system presented here is suitable for studying the mineralisation of different kinds of 13C-labelled substrates in small soil samples and allows analysis of functional and molecular characteristics on the same micro-samples. 相似文献
2.
Variations in the amount and composition of immobilized nitrogen (N) in major soil organic matter fractions were investigated
in a 730-day soil incubation experiment using 15N-labeled urea and 15N nuclear magnetic resonance spectroscopy with the cross polarization/magic angle spinning (15N CPMAS NMR) method. After 730 days, 24.7% of the applied N was recovered from the soil as organic N. The urea-derived N recovered
from humic acids and humin decreased from 11.2 and 33.8% of the applied amount after 14 days to 1.6 and 20.4% after 730 days,
respectively. When these values were corrected for the microbial biomass (MB) N, they ranged from 9.0 to 1.2% and 28 to 18%,
respectively. The proportion of urea-derived N recovered from fulvic acids was low, ranging between 0.4 and 5.8% (with MB
N) or 5.6% (without MB N) of the applied amount, whereas that from water-soluble nonhumic substances (WS-NHS; NHS in the fulvic
acid fraction) remained high, 28–33% of the applied amount after correction for the contribution of MB N up to day 365, and
decreased to 0.9% thereafter. The 15N CPMAS NMR spectra of humic acids, fulvic acids, and humin showed the largest signal at −254 to −264 ppm, corresponding to
peptide/amide N. The proportions of heterocyclic, peptide/amide, guanidine/aniline, and free amino N in the urea-derived humic
acid N were 3–7, 83–90, 5–7, and 2–4%, respectively. More than 80% loss of the urea-derived humic acid N did not markedly
alter their composition. No time-dependent variations were also observed for the proportions of respective N functional groups
in humin N, which were 3–5, 71–78, 12–17, and 6–10% in the same order as above. These results suggest the greater importance
of physical stability than structural variation for the initial accumulation of organic N in soil. 相似文献
3.
Pierre Bottner Lina Sarmiento Ruben Callisaya-Bautista 《Soil biology & biochemistry》2006,38(8):2162-2177
N-rich (C:N=27) and N-poor (C:N=130) wheat straw, labelled with 14C and 15N, was incubated for 2 yr in two major ecosystems of the upper elevation belt of cultivation in the high Andes: the moist Paramo (precipitation=1329 mm, altitude=3400 m asl, Andes of Merida, Venezuela) and the dry Puna (precipitation=370 mm, altitude=3800 m asl, Central Altiplano, Bolivia). The experiment was installed in young (2 yr) and old (7 yr) fallow plots. The following soil analyses were performed at nine sampling occasions: soil moisture, total-14C and -15N, and Microbial Biomass (MB)-14C and -15N. The measured data were fitted by the MOMOS-6 model (a process based model, with five compartments: labile and stable plant material, MB, and labile (HL) and stable humus (HS)) coupled with the SAHEL model (soil moisture prediction) using daily measured and/or predicted meteorological data. The aim was to understand how (1) the climatic conditions, (2) the quality of plant material, (3) the fallow age and (4) the soil properties affect the cycling of C and N within the soil organic matter system.The fallow age (2 and 7 yr) did not affect the measured data or the model predictions, indicating that in these systems the decomposition potential is not affected by fallow length. During the short initial active decomposition phase, the labile plant material was quickly exhausted, enabling a build up of MB and of HL. During the low activity phase, that covered 4/5 of the time of exposure, the MB size decreased slowly and the HL pool was progressively exhausted as it was reused by the MB as substrate. The HL compartment was directly or indirectly the major source for the inorganic 15N production. If the C:N ratio of the added plant material increased, the model predicted (1) a reduction of the decomposition rates of the plant material (essentially the stable plant material) and (2) an increased mortality of the MB which increased the production of HL (microbial cadavers and metabolites). Thus the essential effect of the slower decomposition due to the N-poor plant material was a higher accumulation of C and N in the HL and its slower recycling by the MB during the low activity phase. The labelling experiment allows to understand the higher soil native organic matter content in Paramo soils compared to Puna. The large sequestration of organic matter generally observed in the Paramo soils can be explained by two abiotic factors: the unfavourable soil microstructure and the accumulation of free aluminium linked to the climatic and acid soil conditions, inhibiting the microbial activity physically and chemically. 相似文献
4.
Microbial colonization of soil-incorporated, 13C-labeled, crimson clover and ryegrass straw residues was followed under western Oregon field conditions from late summer (September) to the following early summer (mid-June) by measuring the 13C content of phospholipid fatty acid (PLFA) extracted from residues recovered from soil. Residue type influenced the rate of appearance of specific PLFA during early decomposition, with branch chain bacterial PLFA (i15:0, a15:0, i16:0) appearing on clover and ryegrass residues in October and November, respectively. By April, additional PLFA (16:1ω5, 16:1ω7, cy17:0, 18:0, 18:1ω9) had appeared on both residues. Between April and June, microbial community structure shifted again with significant increases (cy17:0, 18:0, 18:1ω9), and decreases (18:1ω7+10Me18:0) detected in the quantities of specific PLFA on both residue types. In the case of clover, the PLFA-C was derived primarily from residue C (85-100%), whereas in the case of ryegrass, both residue C (57-66%), and soil C contributed substantially to the PLFA-C. 相似文献
5.
To study C chemistry and nutrient dynamics in decomposing residues and P dynamics at the residue-soil interface, young pea (Pea-Y) and mature pea (Pea-M) residues were incubated in a sandy soil with low P availability. The study was conducted in microcosms in which the residues were separated from the soil by a nylon mesh. Controls consisted of microcosms without residues. Residues and the soil in the immediate vicinity of the nylon mesh were sampled after 5, 15, 28, 42 and 61 days. Residue chemistry was studied by 13C nuclear magnetic resonance (NMR) spectroscopy and determination of C, N and P concentrations. Compared to Pea-M, Pea-Y was characterised by higher N and P concentrations, higher percentage of proteins, esters, fatty acids and sugars, and was more easily decomposable in the first 15 days. Pea-M residues had a greater percentage of cellulose and other polysaccharides than Pea-Y and showed a more gradual loss in dry weight. Differences in C chemistry and N and P concentration between the residues decreased with time. The decomposition of Pea-Y and Pea-M residues resulted in an increase in microbial P in the residue-soil interface compared to the control, but available P was increased only in the vicinity of Pea-Y residues. 相似文献
6.
The main process by which dissolved organic matter (DOM) is retained in forest soils is likely to be sorption in the mineral horizons that adds to stabilized organic matter (OM) pools. The objectives of this study were to determine the extent of degradation of sorbed OM and to investigate changes in its composition during degradation. DOM of different origins was sorbed to a subsoil and incubated for 1 year. We quantified mineralized C by frequent CO2 measurements in the headspace of the incubation vessels and calculated mean residence times by a double exponential model. Mineralization of C of the corresponding DOM in solution was used as a control to estimate the extent of DOM stabilization by sorption. Changes in the composition of sorbed OM during the incubation were studied by spectroscopic (UV, fluorescence) and isotope (13C, 14C) measurements after hot-water extraction of OM.The fraction of sorbed organic C mineralized during the incubation was only one-third to one-sixth of that mineralized in solution. The mean residence time of the most stable OM sample was estimated to increase from 28 years in solution to 91 years after sorption. For highly degradable DOM samples, the portion of stable C calculated by a double exponential model nearly doubled upon sorption. With less degradable DOM the stability increased by only 20% after sorption. Therefore, the increase in stability due to sorption is large for labile DOM high in carbohydrates and relatively small for stable DOM high in aromatic and complex molecules. Nevertheless, in terms of stability the rank order of OM types after sorption was the same as in solution. Furthermore, the extent of sorption of recalcitrant compounds was much larger than sorption of labile compounds. Thus, sorptive stabilization of this stable DOM sample was four times larger than for the labile ones. We conclude that stabilization of OM by sorption depends on the intrinsic stability of organic compounds sorbed. We propose that the main stabilization processes are selective sorption of intrinsically stable compounds and strong chemical bonds to the mineral soil and/or a physical inaccessibility of OM to microorganisms. The UV, fluorescence and 13C measurements indicated that aromatic and complex compounds, probably derived from lignin, were preferentially stabilized by sorption of DOM. The 13C and 14C data showed that degradation of the indigenous OM in the mineral soil decreased after sorption of DOM. We estimated DOM sorption stabilizes about 24 Mg C ha−1 highlighting the importance of sorption for accumulation and preservation of OM in soil. 相似文献
7.
V. Wolters 《Biology and Fertility of Soils》1991,11(2):151-156
Summary The effects of simulated acid rain on litter decomposition in a calcareous soil (pHH
2
O 5.8) were studied. Litterbags (45 m and 1 mm mesh size) containing freshly fallen beech leaf litter were exposed to different concentrations of acid in a beech forest on limestone (Göttinger Wald. Germany) for 1 year. Loss of C, the ash content, and CO2–C production were measured at the end of the experiment. Further tests measured the ability of the litter-colonizing microflora to metabolize 14C-labelled beech leaf litter and hyphae. The simulated acid rain strongly reduced CO2–C and 14CO2–C production in the litter. This depression in production was very strong when the input of protons was 1.5 times greater than the normal acid deposition, but comparatively low when the input was 32 times greater. acid deposition may thus cause a very strong accumulation of primary and secondary C compounds in the litter layer of base-rich soils, even with a moderate increase in proton input. The presence of mesofauna significantly reduced the ability of the acid rain to inhibit C mineralization. The ash content to the 1-mm litterbags indicated that this was largely due to transport of base-rich mineral soil into the litter. 相似文献
8.
S. Bek 《Biology and Fertility of Soils》1994,17(1):21-26
Soil was amended with 14C-labelled unripe straw only (C:N ratio ca. 20), with 14C-labelled unripe straw plus unlabelled ripe straw (C:N ratio ca. 100) or with 14C-labelled unripe straw plus glucose. Half the samples with 14C-labelled straw and half the samples with 14C-labelled plus unlabelled straw were cropped with rape plants. A decreased rate of mineralization of the 14C-labelled straw was found in the planted soil compared with the unplanted soil. The reduction was most profound in the soil amended with both labelled and unlabelled straw, indicating that at least part of the reduction was due to competition between plants and microorganisms for mineral N. No other explanations for the decrease in mineralization in the presence of plants were found. The soil amended with glucose which simulated the effect of root exudates showed an increased rate of mineralization. Therefore, the reduction in the presence of plants was probably not due to microbial use of the rhizodeposition in favour of the labelled straw. Only a minor part of the reduction was apparently due to uptake of labelled C by the plant, as only small amounts were found in the roots and shoots at harvest. The difference in 14C mineralization between treatments was not reflected in the number of bacteria in the soil at harvest. The number of bacteria, which was determined by plate counts and direct microscopy, was the same in all the soils, rhizosphere soils as well as bulk soils. 相似文献
9.
Sergey Blagodatsky Evgenia Blagodatskaya Tatyana Yuyukina 《Soil biology & biochemistry》2010,42(8):1275-1283
The most frequently used models simulating soil organic matter (SOM) dynamics are based on first-order kinetics. These models fail to describe and predict such interactions as priming effects (PEs), which are short-term changes in SOM decomposition induced by easily available C or N sources. We hypothesized that if decomposition rate depends not only on size of the SOM pool, but also on microbial biomass and its activity, then PE can be simulated. A simple model that included these interactions and that consisted of three C pools - SOM, microbial biomass, and easily available C - was developed. The model was parameterized and evaluated using results of 12C-CO2 and 14C-CO2 efflux after adding 14C-labeled glucose to a loamy Haplic Luvisol. Experimentally measured PE, i.e., changes in SOM decomposition induced by glucose, was compared with simulated PE. The best agreement between measured and simulated CO2 efflux was achieved by considering both the total amount of microbial biomass and its activity. Because it separately described microbial turnover and SOM decomposition, the model successfully simulated apparent and real PE.The proposed PE model was compared with three alternative approaches with similar complexity but lacking interactions between the pools and neglecting the activity of microbial biomass. The comparison showed that proposed new model best described typical PE dynamics in which the first peak of apparent PE lasted for 1 day and the subsequent real PE gradually increased during 60 days. This sequential decomposition scheme of the new model, with immediate microbial consumption only of soluble substrate, was superior to the parallel decomposition scheme with simultaneous microbial consumption of two substrates with different decomposability. Incorporating microbial activity function in the model improved the fit of simulation results with experimental data, by providing the flexibility necessary to properly describe PE dynamics. We conclude that microbial biomass should be considered in models of C and N dynamics in soil not only as a pool but also as an active driver of C and N turnover. 相似文献
10.
The chemical composition and quantity of plant inputs to soil are primary factors controlling the size and structure of the soil microbial community. Little is known about how changes in the composition of the soil microbial community affect decomposition rates and other ecosystem functions. This study examined the degradation of universally 13C-labeled glucose, glutamate, oxalate, and phenol in soil from an old-growth Douglas-fir (Pseudotsuga menziesii)—western hemlock (Tsuga heterophylla) forest in the Oregon Cascades that has experienced 7 y of chronic C input manipulation. The soils used in this experiment were part of a larger Detritus Input and Removal Treatment experiment and have received normal C inputs (control), doubled wood inputs, or root and litter input exclusion (no inputs). Soil from the doubled wood treatment had a higher fungal:bacterial ratio, and soil from the no inputs treatment had a lower fungal:bacterial ratio, than the control soil. Differences in the utilization of the compounds added to the field-manipulated soils were assessed by following the 13C tracer into microbial biomass and respiration. In addition, 13C-phospholipid fatty acids (PLFA) analysis was used to examine differential microbial utilization of the added substrates. Glucose and glutamate were metabolized similarly in soils of all three litter treatments. In contrast, the microbial community in the double wood soil respired more added phenol and oxalate, whereas microbes in the no inputs soil respired less added phenol and oxalate, than the control soil. Phenol was incorporated primarily into fungal PLFA, especially in soil of the double wood treatment. The addition of all four substrates led to enhanced degradation of soil organic matter (priming) in soils of all three litter treatments, and was greater following the addition of phenol and oxalate as compared to glucose and glutamate. Priming was greater in the no inputs soil as compared to the control or doubled wood soils. These results demonstrate that altering plant inputs to soil can lead to changes in microbial utilization of C compounds. It appears that many of these changes are the result of alteration in the size and composition of the microbial community. 相似文献
11.
Arbuscular mycorrhizal fungi contribute to C and N enrichment of soil organic matter in forest soils
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process. 相似文献
12.
Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems 总被引:1,自引:0,他引:1
This study coupled stable isotope probing with phospholipid fatty acid analysis (13C-PLFA) to describe the role of microbial community composition in the short-term processing (i.e., C incorporation into microbial biomass and/or deposition or respiration of C) of root- versus residue-C and, ultimately, in long-term C sequestration in conventional (annual synthetic fertilizer applications), low-input (synthetic fertilizer and cover crop applied in alternating years), and organic (annual composted manure and cover crop additions) maize-tomato (Zea mays - Lycopersicum esculentum) cropping systems. During the maize growing season, we traced 13C-labeled hairy vetch (Vicia dasycarpa) roots and residues into PLFAs extracted from soil microaggregates (53-250 μm) and silt-and-clay (<53 μm) particles. Total PLFA biomass was greatest in the organic (41.4 nmol g−1 soil) and similar between the conventional and low-input systems (31.0 and 30.1 nmol g−1 soil, respectively), with Gram-positive bacterial PLFA dominating the microbial communities in all systems. Although total PLFA-C derived from roots was over four times greater than from residues, relative distributions (mol%) of root- and residue-derived C into the microbial communities were not different among the three cropping systems. Additionally, neither the PLFA profiles nor the amount of root- and residue-C incorporation into the PLFAs of the microaggregates were consistently different when compared with the silt-and-clay particles. More fungal PLFA-C was measured, however, in microaggregates compared with silt-and-clay. The lack of differences between the mol% within the microbial communities of the cropping systems and between the PLFA-C in the microaggregates and the silt-and-clay may have been due to (i) insufficient differences in quality between roots and residues and/or (ii) the high N availability in these N-fertilized cropping systems that augmented the abilities of the microbial communities to process a wide range of substrate qualities. The main implications of this study are that (i) the greater short-term microbial processing of root- than residue-C can be a mechanistic explanation for the higher relative retention of root- over residue-C, but microbial community composition did not influence long-term C sequestration trends in the three cropping systems and (ii) in spite of the similarity between the microbial community profiles of the microaggregates and the silt-and-clay, more C was processed in the microaggregates by fungi, suggesting that the microaggregate is a relatively unique microenvironment for fungal activity. 相似文献
13.
While dissolved organic matter (DOM) in soil solution is a small but reactive fraction of soil organic matter, its source and dynamics are unclear. A laboratory incubation experiment was set up with an agricultural topsoil amended with 13C labelled maize straw. The dissolved organic carbon (DOC) concentration in soil solution increased sharply from 25 to 186 mg C L−1 4 h after maize amendment, but rapidly decreased to 42 mg C L−1 and reached control values at and beyond 2 months. About 65% of DOM was straw derived after 4 h, decreasing to 29% after one day and only 1.3% after 240 days. A significant priming effect of the straw on the release of autochthonous DOM was found. The DOM fractionation with DAX-8 resin revealed that 98% of the straw derived DOM was hydrophilic in the initial pulse while this hydrophilic fraction was 20-30% in control samples. This was in line with the specific UV absorbance of the DOM which was significantly lower in the samples amended with maize residues than in the control samples. The δ13C of the respired CO2 matched that of DOC in the first day after amendment but exceeded it in following days. The straw derived C fractions in respired CO2 and in microbial biomass were similar between 57 and 240 days after amendment but were 3-10 fold above those in the DOM. This suggests that the solubilisation of C from the straw is in steady state with the DOM degradation or that part of the straw is directly mineralised without going into solution. This study shows that residue application releases a pulse of hydrophilic DOM that temporarily (<3 days) dominates the soil DOM pool and the degradable C. However, beyond that pulse the majority of DOM is derived from soil organic matter and its isotope signature differs from microbial biomass and respired C, casting doubt that the DOM pool in the soil solution is the major bioaccessible C pool in soil. 相似文献
14.
Susan E. Crow Elizabeth W. Sulzman Richard D. Bowden 《Soil biology & biochemistry》2006,38(11):3279-3291
A detailed understanding of the processes that contribute to the δ13C value of respired CO2 is necessary to make links between the isotopic signature of CO2 efflux from the soil surface and various sources within the soil profile. We used density fractionation to divide soils from two forested sites that are a part of an ongoing detrital manipulation experiment (the Detrital Input and Removal Treatments, or DIRT project) into two soil organic matter pools, each of which contributes differently to total soil CO2 efflux. In both sites, distinct biological pools resulted from density fractionation; however, our results do not always support the concept that the light fraction is readily decomposable whereas the heavy fraction is recalcitrant. In a laboratory incubation following density fractionation we found that cumulative respiration over the course of the incubation period was greater from the light fraction than from the heavy fraction for the deciduous site, while the opposite was true for the coniferous site.Use of stable isotopes yielded insight as to the nature of the density fractions, with the heavy fraction solids from both forests isotopically enriched relative to those of the light fraction. The isotopic signature of respired CO2, however, was more complicated. During incubation of the fractions there was an initial isotopic depletion of the respired CO2 compared to the substrate for both soil fractions from both forests. Over time for both fractions of both soils the respired δ13C reflected more closely the initial substrate value; however, the transition from depleted to enriched respiration relative to substrate occurs at a different stage of decomposition depending on site and substrate recalcitrance. We found a relationship between cumulative respiration during the incubation period and the duration of the transition from isotopically depleted to enriched respiration in the coniferous site but not the deciduous site. Our results suggest that a shift in microbial community or to dead microbial biomass as a substrate could be responsible for the transition in the isotopic signature of respired CO2 during decomposition. It is likely that a combination of organic matter quality and isotopic discrimination by microbes, in addition to differences in microbial community composition, contribute to the isotopic signature of different organic matter fractions. It is apparent that respired δ13CO2 cannot be assumed to be a direct representation of the substrate δ13C. Detailed knowledge of the soil characteristics at a particular site is necessary to interpret relationships between the isotopic values of a substrate and respired CO2. 相似文献
15.
Haiyan Chu Jianguo Zhu Xiangui Lin Rui Yin Zubin Xie Zhihong Cao Takeshi Fujii 《Biology and Fertility of Soils》2007,43(6):811-814
In this study, we investigated the effects of lanthanum (La), one of the rare earth elements (REEs), on microbial biomass
C as well as the decomposition of 14C-labelled glucose in a fluvo-aquic soil in 28 days. The soil was collected from the field plots under maize/wheat rotation
in Fengqiu Ecological Experimental Station of Chinese Academy of Sciences, Henan Province, China. Application of La decreased
soil microbial biomass C during the experimental period, and there was a negative correlation (P < 0.01) between microbial biomass and application rate of La. La increased microbial biomass 14C after 14C glucose addition, and the increase was significant (P < 0.05) at the rates of more than 160 mg kg−1 soil. La slightly increased 14CO2 evolution at lower rates of application but decreased it at higher rates 1 day after 14C glucose addition, while there was no significant effect from days 2 to 28. For the cumulative 14CO2 evolution during the incubation of 28 days, La slightly increased it at the rates of less than 120 mg kg−1 soil, while significantly decreased (P < 0.05) it at the rate of 200 mg kg−1 soil. The results indicated that agricultural use of REEs such as La in soil could decrease the amount of soil microbial
biomass and change the pattern of microbial utilization on glucose C source in a short period. 相似文献
16.
Feike A. Dijkstra Jack A. Morgan Ronald F. Follett 《Soil biology & biochemistry》2010,42(7):1073-1082
Plants can affect soil organic matter decomposition and mineralization through litter inputs, but also more directly through root-microbial interactions (rhizosphere effects). Depending on resource availability and plant species identity, these rhizosphere effects can be positive or negative. To date, studies of rhizosphere effects have been limited to plant species grown individually. It is unclear how belowground resources and inter-specific interactions among plants may influence rhizosphere effects on soil C decomposition and plant N uptake. In this study, we tested the simple and interactive effects of plant diversity and water availability on rhizosphere-mediated soil C decomposition and plant N uptake. The study was conducted in the greenhouse with five semi-arid grassland species (monocultures and mixtures of all five species) and two water levels (15 and 20% gravimetric soil moisture content). We hypothesized that microbial decomposition and N release would be less in the low compared to high water treatment and less in mixtures compared to monocultures. Rhizosphere effects on soil C decomposition were both positive and negative among the five species when grown in monoculture, although negative effects prevailed by the end of the experiment. When grown in mixture, rhizosphere effects reduced soil C decomposition and plant N uptake compared to monocultures, but only at the low-water level. Our results suggest that when water availability is low, plant species complementarity and selection effects on water and N use can decrease soil C decomposition through rhizosphere effects. Although complementarity and selection effects can increase plant N uptake efficiency, plant N uptake in the mixtures was still lower than expected, most likely because rhizosphere effects reduced N supply in the mixtures more than in the monocultures. Our results indicate that rhizosphere effects on C and N cycling depend on water availability and inter-specific plant interactions. Negative rhizosphere effects on soil C decomposition and N supply in mixtures relative to monocultures of the component species could ultimately increase soil C storage and possibly influence how plant communities in semi-arid grasslands respond to global climate change. 相似文献
17.
Decomposition rates of the [2-14C]-glucose and [2-14C]-glycine in four different soils of the long-term field trial of Moscow were investigated in a 3-months laboratory experiment in which 14CO2 respiration was measured. A model with three decomposition components and two distribution parameters was developed and validated with the data of the experiment. The decay rate constants of free [2-14C]-glucose (4–32 day-1) were slower than those of [2-14C]-glycine (16–44 day-1). The calculated use efficiency for microbial biosynthesis of the second carbon atom was 47% for glucose and 31% for glycine. The potential half-life of labelled carbon in the microbial soil biomass ranged from 0.6 to 4.4 days, depending on the soil type and the initial amount of added substrate. The calculated total utilisation of carbon by the soil biomass from glycine was about 2–5 times lower than that of glucose.The modelled 14C incorporation into the microbial soil biomass reached its maximum on the first day of the incubation experiment and did not exceed 22% of the 14C input. Both of the investigated substances decomposed most rapidly in the soil samples from sites that have not being fertilised with organic or mineral fertilisers during an 81-years period. 相似文献
18.
Effect of chemical composition on the release of nitrogen from agricultural plant materials decomposing in soil under field conditions 总被引:2,自引:0,他引:2
M. M. Müller V. Sundman O. Soininvaara A. Meriläinen 《Biology and Fertility of Soils》1988,6(1):78-83
Summary In two field experiments, plant materials labelled with 15N were buried separately within mesh bags in soil, which was subsequently sown with barley. In the first experiment, different parts of white clover (Trifolium repens), red clover (T. pratense), subterranean clover (T. subterraneum), field bean (Vicia faba), and timothy (Phleum pratense) were used, and in the second, parts of subterranean clover of different maturity. The plant materials were analysed for their initial concentrations of total N, 15N, C, ethanol-soluble compounds, starch, hemicellulose, cellulose, lignin, and ash. After the barley had been harvested, the bags were collected and analysed for their total N and 15N. In the first experiment the release of N was highest from white clover stems + petioles (86%) and lowest from field bean roots (20%). In stepwise regression analysis, the release of N was explained best by the initial concentrations of lignin, cellulose, hemicellulose, and N (listed according to decreasing partial correlations). Although the C/N ratio of the plant materials varied widely (11–46), statistically the release of N was not significantly correlated with this variable. The results of the second experiment using subterranean clover of different maturity confirmed those of the first experiment. 相似文献
19.
Lothar Beyer 《Biology and Fertility of Soils》1995,19(2-3):197-202
To determine whether there is a relationship between the composition of soil organic matter and the activity of the soil microbial biomass, the composition of the organic matter in 12 typical arable soils in Northwest Germany was investigated by wet chemical analysis and CPMAS cross polarization magic angle spinning 13C-NMR spectroscopy. The data were correlated with the microbial biomass as estimated by substrate-induced respiration. A strong correlation between the microbial biomass and alkylic C compounds was observed (r=-0.960***). Recalcitrant substances were enriched in this fraction, which were classified as humic acids according to the wet chemical procedure. The microbial decomposition of these humic acids is probably retarded, due to their chemical structure and/or physical bonding, when the soil microbial biomass activity is limited. 相似文献
20.
The productivity of temperate forests is often limited by soil N availability, suggesting that elevated atmospheric N deposition could increase ecosystem C storage. However, the magnitude of this increase is dependent on rates of soil organic matter formation as well as rates of plant production. Nonetheless, we have a limited understanding of the potential for atmospheric N deposition to alter microbial activity in soil, and hence rates of soil organic matter formation. Because high levels of inorganic N suppress lignin oxidation by white rot basidiomycetes and generally enhance cellulose hydrolysis, we hypothesized that atmospheric N deposition would alter microbial decomposition in a manner that was consistent with changes in enzyme activity and shift decomposition from fungi to less efficient bacteria. To test our idea, we experimentally manipulated atmospheric N deposition (0, 30 and 80 kg NO3−-N) in three northern temperate forests (black oak/white oak (BOWO), sugar maple/red oak (SMRO), and sugar maple/basswood (SMBW)). After one year, we measured the activity of ligninolytic and cellulolytic soil enzymes, and traced the fate of lignin and cellulose breakdown products (13C-vanillin, catechol and cellobiose).In the BOWO ecosystem, the highest level of N deposition tended to reduce phenol oxidase activity (131±13 versus 104±5 μmol h−1 g−1) and peroxidase activity (210±26 versus 190±21 μmol h−1 g−1) and it reduced 13C-vanillin and 13C-catechol degradation and the incorporation of 13C into fungal phospholipids (p<0.05). Conversely, in the SMRO and SMBW ecosystems, N deposition tended to increase phenol oxidase and peroxidase activities and increased vanillin and catechol degradation and the incorporation of isotope into fungal phospholipids (p<0.05). We observed no effect of experimental N deposition on the degradation of 13C-cellulose, although cellulase activity showed a small and marginally significant increase (p<0.10). The ecosystem-specific response of microbial activity and soil C cycling to experimental N addition indicates that accurate prediction of soil C storage requires a better understanding of the physiological response of microbial communities to atmospheric N deposition. 相似文献