首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil organic matter (SOM) is a key factor in ecosystem dynamics. A better understanding of the global relationship between environmental characteristics, ecosystems and SOM chemistry is vital in order to assess its specific influence on carbon cycles. This study compared the composition of extracted SOM in 18 topsoil samples taken under tundra, taiga, steppe, temperate forest and tropical forest using pyrolysis-GC/MS. Results indicate that SOM from cold climates (tundra, taiga) still resembles the composition of litter, evidenced by high quantities of levosugars and long alkanes relative to N-compounds and a clear odd-over-even dominance of the longer alkanes. Under temperate conditions, increased microbial degradation generally results in a more altered SOM chemistry. SOM formed under temperate coniferous forests shows an accumulation of aromatic and aliphatic moieties, probably induced by substrate limitations. Tropical SOM was characterized by an SOM composition rich in N-compounds and low in lignins, without any accumulation of recalcitrant fractions (i.e. aliphatic and aromatic compounds). Lignin composition moreover varies according to vegetation type. Results were validated against 13 new samples. The humic signature of topsoil organic matter formed under different biomes indicates a dominating effect of (i) SOM input composition related to vegetation, and (ii) SOM breakdown reflecting both climate and input quality. No evidence was found for a chemically stabilized SOM fraction under favorable decomposition conditions (temperate or warm climate with broadleaved vegetation).  相似文献   

2.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots.  相似文献   

3.
Historic alterations in land use from forest to grassland and cropland to forest were used to determine impacts on carbon (C) stocks and distribution and soil organic matter (SOM) characteristics on adjacent Cambisols in Eastern Germany. We investigated a continuous Norway spruce forest (F-F), a former cropland afforested in 1930 (C-F), and a grassland deforested in 1953 (F-G). For C and N stocks, we sampled the A and B horizons of nine soil pits per site. Additionally, we separated SOM fractions of A and B horizons by physical means from one central soil pit per pedon. To unravel differences of SOM composition, we analyzed SOM fractions by 13C-CPMAS NMR spectroscopy and radiocarbon analysis. For the mineral soils, differences in total C stocks between the sites were low (F-F = 8.3 kg m−2; C-F = 7.3 kg m−2; F-G = 8.2 kg m−2). Larger total C stocks (+25%) were found under continuous forest compared with grassland, due to the C stored within the organic horizons. Due to a faster turnover, the contents of free particulate organic matter (POM) were lower under grassland. High alkyl C/O/N-alkyl C ratios of free POM fractions indicated higher decomposition stages under forest (1.16) in relation to former cropland (0.48) and grassland (0.33). Historic management, such as burning of tree residues, was still identifiable in the subsoils by the composition and 14C activity of occluded POM fractions. The high potential of longer lasting C sequestration within fractions of slower turnover was indicated by the larger amounts of claybound C per square meter found under continuous forest in contrast to grassland.  相似文献   

4.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

5.
Forest soils contain about 30% of terrestrial carbon (C) and so knowledge of the influence of forest management on stability of soil C pools is important for understanding the global C cycle. Here we present the changes of soil C pools in the 0-5 cm layer in two second-rotation Pinus radiata (D.Don) plantations which were subjected to three contrasting harvest residue management treatments in New Zealand. These treatments included whole-tree harvest plus forest floor removal (defined as forest floor removal hereafter), whole-tree, and stem-only harvest. Soil samples were collected 5, 10 and 15 years after tree planting at Kinleith Forest (on sandy loam soils) and 4, 12 and 20 years after tree planting at Woodhill Forest (on sandy soils). These soils were then physically divided into light (labile) and heavy (stable) pools based on density fractionation (1.70 g cm−3). At Woodhill, soil C mass in the heavy fraction was significantly greater in the whole-tree and stem-only harvest plots than the forest floor removal plots in all sampling years. At Kinleith, the soil C mass in the heavy fraction was also greater in the stem-only harvest plots than the forest floor removal plots at year 15. The larger stable soil C pools with increased residue return was supported by analyses of the chemical composition and plant biomarkers in the soil organic matter (SOM) heavy fractions using NMR and GC/MS. At Woodhill, alkyl C, cutin-, suberin- and lignin-derived C contents in the SOM heavy fraction were significantly greater in the whole-tree and stem-only harvest plots than in the forest floor removal plots in all sampling years. At Kinleith, alkyl C (year 15), cutin-derived C (year 5 and 15) and lignin-derived C (Year 5 and 10) contents in the SOM heavy fraction were significantly greater in stem-only harvest plots than in plots where the forest floor was removed. The analyses of plant C biomarkers and soil δ13C in the light and heavy fractions of SOM indicate that the increased stable soil C in the heavy fraction with increased residue return might be derived from a greater input of recalcitrant C in the residue substrate.  相似文献   

6.
Soil food webs are mainly based on three primary carbon (C) sources: root exudates, litter, and recalcitrant soil organic matter (SOM). These C sources vary in their availability and accessibility to soil organisms, which could lead to different pathways in soil food webs. The presence of three C isotopes (12C, 13C and 14C) offers an unique opportunity to investigate all three C sources simultaneously. In a microcosm experiment we studied the effect of food web complexity on the utilization of the three carbon sources. We choose an incomplete three factorial design with (i) living plants, (ii) litter and (iii) food web complexity. The most complex food web consisted of autochthonous microorganisms, nematodes, collembola, predatory mites, endogeic and anecic earthworms. We traced C from all three sources in soil, in CO2 efflux and in individual organism groups by using maize grown on soil developed under C3 vegetation and application of 14C labelled ryegrass shoots as a litter layer. The presence of living plants had a much greater effect on C pathways than food web complexity. Litter decomposition, measured as 14CO2 efflux, was decreased in the presence of living plants from 71% to 33%. However, living plants increased the incorporation of litter C into microbial biomass and arrested carbon in the litter layer and in the upper soil layer. The only significant effect of food web complexity was on the litter C distribution in the soil layers. In treatments with fungivorous microarthropods (Collembola) the incorporation of litter carbon into mineral soil was reduced. Root exudates as C source were passed through rhizosphere microorganisms to the predator level (at least to the third trophic level). We conclude that living plants strongly affected C flows, directly by being a source of additional C, and indirectly by modifying the existing C flows within the food web including CO2 efflux from the soil and litter decomposition.  相似文献   

7.
The contribution of forest soils to the total carbon budget and to the emission of greenhouse gases is an important problem involved in many international programs, including the Kyoto Protocol. Direct measurements of the carbon pool in forest soils and its changes are slow and expensive; therefore, mathematical models are proposed in different countries for describing the dynamics of soil organic matter (SOM). The models differ in complexity and consider different processes of SOM mineralization and humification. The input parameters include model coefficients (these are usually the rates of decomposition and humification of different SOM compartments) and the initial values for different SOM pools. The coefficients can be estimated in special laboratory and field experiments, but the characteristics of the initial values for different SOM pools are usually absent. In this case, some assumptions about the character of SOM accumulation, which depends on forest vegetation, are used. The most realistic is the use of databases on the pools of carbon and other elements related to the types of forest or habitat conditions, including the primarily water regime and soil fertility. Under some suppositions, the agreement conditions between the main parameters of the SOM and forest vegetation can be formulated to assess the initial SOM pools in the forest litter and mineral horizons of the soil. An example of assessing the prediction of forest soil dynamics in Leningrad oblast was considered.  相似文献   

8.
[目的]研究黄土高原农林业生产表层土壤水土流失,为该区域及其相似地区生态修复中树种选择及配置提供科学依据。[方法]以杨树+柠条乔灌混交林、杨树纯林、油松常绿针叶林和柠条灌木纯林下4种不同植被群落类型下表土为对象,进行抗剪力学特性研究,并分析土壤含水率对其力学特性的影响力。[结果]在测试表土含水率2.5%~12.5%范围内,4种不同植被类型及裸地对照样地土壤结皮抗剪强度和黏聚力均随着土壤含水率的增加呈增大的趋势,表明在一定范围内表土湿润程度的增加对提高土壤表层抗蚀能力起到积极作用;4种不同植被群落类型表土抗剪强度和黏聚力的值均显著大于裸地的值,说明水土保持的林草措施对表层土壤结构的改善起到了促进作用,从而提高了表层土壤的抗侵蚀能力;在测试含水率2.5%~12.5%范围内随着含水率的增加各样地表土内摩擦角无明显的变化规律。[结论] 4种不同植被群落类型中柠条+杨树混交林下表土抗剪强度、黏聚力总体表现最大,这也从另外一方面说明了水土保持的林草措施中营造混交林的优越性。  相似文献   

9.
Computational experiments with the ROMUL mathematical model were performed for studying the dynamics of soil organic matter (SOM) in spruce forests of northeastern Czechia that were disturbed because of the atmospheric sulfur deposition in the second half of the 20th century. The effect of the soil acidification on the decomposition dynamics of the forest die-back in the model is of importance. Conditions of the forest productivity were found under which the SOM pool could be preserved. It was shown that, later on, the content of the litter will decrease because of the forest degradation, and the succession changes due to the effect of the contamination will affect the type of vegetation, as well as the type of soil organic matter. The total SOM content will decrease in this case. However, the maintenance of the grass productivity can slow down this process. It was noted that the quantitative prediction of the SOM dynamics requires measurements of the productivity parameters of the forest as a whole and the living ground cover, including the content of root litter, and the hydrothermal regime of the soil determining the transformation of the litter and humus.  相似文献   

10.
不同森林植被下土壤活性有机碳的含量及动态变化   总被引:11,自引:0,他引:11  
Soil organic matter (SOM) in forest ecosystems is not only important to global carbon (C) storage but also to sustainable management of forestland with vegetation types, being a critical factor in controlling the quantity and dynamics of SOM. In this field experiment soil plots with three replicates were selected from three forest vegetation types: broadleaf, Masson pine (Pinus massoniana Lamb.), and Chinese fir (Cunninghamia lanceolata Hook.). Soil total organic C (TOC), two easily oxidizable C levels (EOC1 and EOC2, which were oxidized by 66.7 mmol L^-1 K2Cr2O7 at 130-140℃ and 333 mmol L^-1 KMnO4 at 25 ℃, respectively), microbial biomass C (MBC), and water-soluble organic C (WSOC) were analyzed for soil samples. Soil under the broadleaf forest stored significantly higher TOC (P ≤ 0.05). Because of its significantly larger total soil C storage, the soil under the broadleaf forest usually had significantly higher levels (P ≤ 0.05) of the different labile organic carbons, EOC1, EOC2, MBC, and WSOC; but when calculated as a percentage of TOC each labile C fraction of the broadleaf forest was significantly lower (P ≤ 0.05) than one of the other two forests. Under all the three vegetation types temperature as well as quality and season of litter input generally affected the dynamics of different organic C fractions in soils, with EOC1, EOC2, and MBC increasing closely following increase in temperature, whereas WSOC showed an opposite trend.  相似文献   

11.
In this study we used compound specific 13C and 14C isotopic signatures to determine the degree to which recent plant material and older soil organic matter (SOM) served as carbon substrates for microorganisms in soils. We determined the degree to which plant-derived carbon was used as a substrate by comparison of the 13C content of microbial phospholipid fatty acids (PLFA) from soils of two sites that had undergone a vegetation change from C3 to C4 plants in the past 20-30 years. The importance of much older SOM as a substrate was determined by comparison of the radiocarbon content of PLFA from soils of two sites that had different 14C concentrations of SOM.The 13C shift in PLFA from the two sites that had experienced different vegetation history indicated that 40-90% of the PLFA carbon had been fixed since the vegetation change took place. Thus PLFA were more enriched in 13C from the new C4 vegetation than it was observed for bulk SOM indicating recent plant material as preferentially used substrate for soil microorganisms. The largest 13C shift of PLFA was observed in the soil that had high 14C concentrations of bulk SOM. These results reinforce that organic carbon in this soil for the most part cycles rapidly. The degree to which SOM is incorporated into microbial PLFA was determined by the difference in 14C concentration of PLFA derived from two soils one with high 14C concentrations of bulk SOM and one with low. These results showed that 0-40% of SOM carbon is used as substrate for soil microorganisms. Furthermore a different substrate usage was identified for different microorganisms. Gram-negative bacteria were found to prefer recent plant material as microbial carbon source while Gram-positive bacteria use substantial amounts of SOM carbon. This was indicated by 13C as well as 14C signatures of their PLFA. Our results find evidence to support ‘priming’ in that PLFA indicative of Gram-negative bacteria associated with roots contain both plant- and SOM-derived C. Most interestingly, we find PLFA indicative of archeobacteria (methanothrophs) that may indicate the use of other carbon sources than plant material and SOM to a substantial amount suggesting that inert or slow carbon pools are not essential to explain carbon dynamics in soil.  相似文献   

12.
Soil faunal bioturbation (‘bioturbation’) is often cited as a major process influencing the vertical distribution of soil organic matter (SOM). The influence of bioturbation on vertical SOM transport is complex because it is the result of interaction between different groups of soil faunal species that redistribute SOM through the soil profile in distinct ways. We performed a semi‐quantitative micromorphological analysis of soil faunal pedofeatures and related their occurrence to the vertical distribution of SOM and high‐resolution radiocarbon dating in volcanic ash soils under montane forest and grassland (páramo) vegetation in the northern Ecuadorian Andes. The páramo soil data suggest that bioturbation was largely responsible for the vertical distribution of SOM, while illuviation and root input were of minor importance. Bioturbation was caused by endogeic species, which typically mix the soil only over short vertical distances. Short vertical distance mixing was apparently enhanced by the upward shifting of bioturbation as a result of soil thickening due to SOM accumulation. A change from páramo to forest vegetation was accompanied by a change from endogeic to epigeic species. As these latter species do not redistribute material vertically, this eventually resulted in the formation of thick ectorganic horizons in the forest.  相似文献   

13.
Reclamation of Brazilian cerrados (savannas) has been intensified in the last decades, with implications for soil quality and soil organic matter (SOM) dynamics. Studying the impact of different tillage systems is essential to define better strategies for land use in Cerrado, which may favor C sequestration and improve soil quality. We used density fractionation and 13C natural abundance to assess changes in SOM in an Oxisol previously under a cerrado sensu-stricto following 30 years of cultivation. The objectives of the study were to: (i) evaluate the long-term impact of tillage systems on SOM stocks in a Dark Red Latosol (Oxisol) from the Cerrado Biome, and (ii) better understand the dynamics of SOM in different density fractions of this soil. Cultivation led to compaction, which significantly increased soil bulk density. This resulted in the systematic overestimation of C and N stocks in cultivated areas when compared to the natural cerrado. Conversion of the cerrado into cropland using plow tillage (PT) or no-tillage (NT) system did not alter the total C (100 Mg ha−1) and N (7 Mg ha−1) stocks in the first 45 cm depth at the end of 30 years of cultivation. However, about 22% of the total C was replaced by C from maize. The relative replacement of C decreased following the order: free light fraction (F-LF)>heavy fraction (HF)>occluded light fraction (O-LF). The low substitution in the O-LF was attributed to a possible presence of charcoal. Converting cerrado into cropland significantly decreased F-LF quantity. The proportions of C replacement in this fraction were higher in PT than NT, suggesting a faster turnover in PT. Nevertheless, because most C (95%) was held in the HF, C dynamics in the whole soil were controlled by the behavior of this fraction. The maintenance of C levels even at the end of 30 years of cultivation and the lack of differentiation between NT and PT were attributed to the high clay contents and Fe+Al oxi-hydroxides concentrations of the studied soil as well as to a sufficient C supply by the maize crop.  相似文献   

14.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

15.
《Applied soil ecology》2011,48(3):210-216
Labile soil organic matter (SOM) can sensitively respond to changes in land use and management practices, and has been suggested as an early and sensitive indicator of SOM. However, knowledge of effects of forest vegetation type on labile SOM is still scarce, particularly in subtropical regions. Soil microbial biomass C and N, water-soluble soil organic C and N, and light SOM fraction in four subtropical forests were studied in subtropical China. Forest vegetation type significantly affected labile SOM. Secondary broadleaved forest (SBF) had the highest soil microbial biomass, basal respiration and water-soluble SOM, and the pure Cunninghamia lanceolata plantation (PC) the lowest. Soil microbial biomass C and N and respiration were on average 100%, 104% and 75%, respectively higher in the SBF than in the PC. The influence of vegetation on water-soluble SOM was generally larger in the 0–10 cm soil layer than in the 10–20 cm. Cold- and hot-water-soluble organic C and N were on average 33–70% higher in the SBF than in the PC. Cold- and hot-soluble soil organic C concentrations in the coniferous-broadleaved mixed plantations were on average 38.1 and 25.0% higher than in the pure coniferous plantation, and cold- and hot-soluble soil total N were 51.4 and 14.1% higher, respectively. Therefore, introducing native broadleaved trees into pure coniferous plantations increased water-soluble SOM. The light SOM fraction (free and occluded) in the 0–10 cm soil layer, which ranged from 11.7 to 29.2 g kg−1 dry weight of soil, was strongly affected by vegetation. The light fraction soil organic C, expressed as percent of total soil organic C, ranged from 18.3% in the mixed plantations of C. lanceolata and Kalopanax septemlobus to 26.3% in the SBF. In addition, there were strong correlations among soil organic C and labile fractions, suggesting that they were in close association and partly represented similar C pools in soils. Our results indicated that hot-water-soluble method could be a suitable measure for labile SOM in subtropical forest soils.  相似文献   

16.
北京主要河流河岸带实施平原造林工程后,对河岸带植被类型及土壤造成不同程度影响。研究河岸带原有及重建植被类型土壤生态化学计量特征,对河岸生态系统土壤碳氮磷平衡及固碳潜力提升提供科学依据。选取北京温榆河昌平段岸边原有植被类型3种样地(乔木林、乔灌林及草地),重建植被类型2种样地(乔木林与灌木林),共15个样方,采集3层(0—10,10—20,20—30 cm)土壤样品,分析并计算碳(C)、氮(N)和磷(P)含量及计量比。结果表明:原有与重建植被类型的土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量分别为3.810~10.320,0.223~0.700,0.551~0.692 g/kg, C/N、N/P、C/P分别为11.592~25.373,0.373~1.022,5.662~15.493;SOC与TN均在表层聚集,且同N/P、C/P一样表现出随土层深度增加而减少趋势,C/N反之,TP受土层深度影响较小;原有植被类型(乔木林)土壤SOC和TN均高于其他植被类型,在10—20,20—30 cm土层间C/N、C/P均显著低于其他植被类型(P<0.05);原有植被类型(草地)在0—10...  相似文献   

17.
The long-term storage of soil organic matter (SOM) in forest soils is still poorly understood. In this study, particle size fractionation in combination with accelerator mass spectroscopy (AMS) and solid state 13C nuclear magnetic resonance (NMR) spectroscopy was applied to investigate organic carbon (OC) stabilisation in Cambisol and Luvisol profiles under spruce (Picea abies) and beech (Fagus sylvatica L.) forests. In most samples, OC was preferentially associated with <2 μm fractions. Throughout soil profiles the contribution of OC in the clay fraction to the total OC increased from 27%-53% in A horizons to 44-86% in E, B and EB horizons. The 200-2000 μm fractions from all sites and all depths showed a percentage of modern C (pmC)>100. They were enriched in 14C owing to high inputs of recent material from leaves and roots. Clearly less active material was associated with <2 and 2-20 μm fractions. This demonstrated that the particle size fractionation procedure applied to our study was capable to isolate a young OC fraction in all samples. The pmC values were strongly decreasing with depth but the decrease was much more pronounced in the fine fractions. The <2 and 2-20 μm fractions of B, E and EB horizons revealed radiocarbon ages between 512 and 4745 years before present which indicated that the SOM in those horizons was little affected by the recent vegetation. The major components of labile and stable SOM pools in topsoils and subsoils were always O/N-alkyl C (28-53%) and alkyl C (14-48%) compounds. NMR spectra of bulk soils and particle size fractions indicated that high alkyl C and O/N-alkyl C proportions throughout the soil profile are typical of Cambisols and Luvisols which were not subjected to regular burning. A relation between radiocarbon age and chemical composition throughout soil profiles was not observed. This suggests that the long-term stabilisation of SOM is mainly controlled by the existence of various mechanisms of protection offered by the soil matrix and soil minerals but not by the chemical structure of SOM itself.  相似文献   

18.
  【目的】  藏东南地区高山生态系统有巨大的土壤碳汇潜力,研究其不同生态系统下土壤有机碳 (SOC) 储存的变化特征及其影响因子,有助于深入了解青藏高原土壤碳循环及区域碳源汇平衡。  【方法】  本研究在西藏色季拉山西坡海拔3000~4600 m开展密集土壤采样,研究不同海拔高度下不同植被类型SOC的储存特征,并分析其关键影响因子。  【结果】  表层0—5 cm的SOC含量随海拔升高而增加,4个植被带SOC含量平均值表现为高寒草甸 (8.31% ± 0.77%) > 暗针叶林 (7.20% ± 0.90%) > 高寒灌丛草甸 (6.74% ± 0.80%) > 针阔混交林 (3.88% ± 0.46%)。在剖面5—10、10—15、15—20、20—30、30—40、40—60 cm各层SOC含量随海拔升高呈先增加后降低趋势,SOC含量在4种植被带的平均值表现为暗针叶林 > 高寒灌丛草甸 > 高寒草甸 > 针阔混交林。SOC含量随剖面深度增加而显著下降,高寒草甸和高寒灌丛草甸SOC垂直分布特征为表层聚集型,而针阔混交林和暗针叶林SOC垂直分布特征为普通递减型。剖面0—20、20—40、40—60 cm的SOC储量随海拔升高呈先增加后降低的特征。在表层0—20 cm高寒草甸SOC储量最高 (C 95.66 ± 4.81 t/hm2);在剖面20—40和40—60 cm暗针叶林SOC储量最高,且其在整个0—60 cm剖面的SOC总储量在所有植被类型中最高 (C 199.14 ± 11.10 t/hm2);针阔混交林SOC储量在剖面各层均为最低,且其在整个剖面的SOC总储量 (C 111.45 ± 10.30 t/hm2) 显著低于其他植被类型。剖面各层SOC储量与年平均温度、凋落物碳氮比呈显著负相关,而与海拔高度、年平均降水量和土壤含水量呈显著正相关。逐步回归显示土壤含水量是影响剖面各层以及整个剖面SOC储存的关键因子。随机森林模型对SOC储存的解释度为50.32%~65.82%,土壤含水量对表层土体SOC预测的相对贡献最高,年平均温度、年平均降水量和凋落物质量对各层SOC预测均有显著贡献,而植被类型对SOC预测的相对贡献随剖面加深而逐步增加。  【结论】  色季拉山西坡不同海拔高度下SOC的储存特征随不同植被类型和剖面深度而发生显著变化,环境因子(如土壤水分) 对表层土体SOC储存有关键影响,植被类型对深层土体SOC储量变化的预测有重要贡献。  相似文献   

19.
中国南方丘陵区存在着自然过程和人类活动交互影响的、土地利用—土地覆盖叠加变化的多种土壤景观,其土壤质量对乡村农业产业发展具有重要影响。在南京市远郊的溧水区晶桥镇芝山村域小流域,选取流域内生态保护的林地、农业利用的园地、旱地和稻田4种土壤景观,于秋季分别采集表土样品,测定土壤基础理化性质、土壤团聚体粒径组成及土壤微生物磷脂肪酸和胞外酶活性分布,分析土壤肥力、土壤团聚化、土壤生物活性等关键性质在不同土壤景观中的变异情况,并采用土壤质量评价方法探明土壤景观与表土质量的变化关系。结果表明,与原生林地相比,农业土壤景观中有机质减少50.93%~69.63%,土壤团聚体平均重量直径降低41.34%~68.71%;相应地,土壤微生物总磷脂脂肪酸含量也降低19.20%~42.04%,土壤归一化酶活性降低22.48%~63.27%。因此,与林地景观土壤相比,农业土壤景观的土壤生态系统服务功能已经显著削弱。不过,在农业土壤景观中,稻田的土壤有机质储量和微生物活性相对较高。回归分析表明,土壤有机质含量是影响土壤性质变化的最强因子。基于总数据集和最小数据集的土壤质量评价和基于土壤健康理念的土壤功能质量评价均表明,表土总体土壤质量的变化趋势为林地>稻田>旱地>园地。同时,基于土壤健康理念的评价体系能综合地反映不同土壤景观间土壤的质量变化及其生态系统功能意义。  相似文献   

20.
We examined the effects of root and litter exclusion on the rate of soil CO2 efflux and microbial biomass at a soil depth of 25 cm in a secondary forest (dominated by Tabebuia heterophylla) and a pine (Pinus caribaea) plantation in the Luquillo Experimental Forest in Puerto Rico. The experimental plots were initially established in 1990, when root, forest floor mass and new litterfall were excluded for 7 y since then. Soil respiration was significantly reduced in the litter and root exclusion plots in both the secondary forest and the pine plantation compared with the control. Root exclusion had a greater effect on soil CO2 efflux than the litter exclusion in the plantation, whereas a reversed pattern was observed in the secondary forest. The reduction of microbial biomass in the root exclusion plot was greater in the secondary forest (59%) than in the plantation (31%), while there was no difference of the reduction in the litter exclusion plots between these forests. Our results suggest that above-ground input and roots (root litter and exudates) differentially affect soil CO2 efflux under different vegetation types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号