首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble organic N and microbial N pools in terrestrial ecosystems have been less studied than those of inorganic N. Therefore, cross-system variation in their pool sizes and seasonal dynamics, both absolute and relative to inorganic N pools, needs to be quantified so that their ecological importance in different ecosystems can be evaluated. We measured extractable soil organic N (ESON), microbial biomass N (MBN), and the net production rates of ESON in red oak-dominated remnant forests, along an urban-rural gradient in the New York City metropolitan area. We were interested in (1) determining the seasonal dynamics of ESON and MBN, and (2) examining whether the contrasts in land use (urban, suburban, rural) surrounding these forest remnants were associated with different amounts of ESON and MBN. This field-based study was conducted continuously for 16 months. Yearly average ESON concentrations ranged from 60 to 140 mg kg−1 soil organic matter (SOM), 3-4 times those of inorganic N, and average MBN ranged from 600 to 1100 mg kg−1 SOM. There was a considerable MBN increase in spring in all plots across the gradient. The average increase expressed on an areal basis (to a depth of 7.5 cm) ranged from 1.75 to 4.19 g N m−2. The N incorporated into the microbial biomass in spring was gradually released later in the growing season (the mean MBN decrease ranged from 1.11 to 3.82 g N m−2). The spring MBN increase could be an important retention mechanism for conserving soil inorganic N when plant N uptake may be low. The amplitude in the seasonal dynamics of ESON was far less than that of inorganic N, as was that of net ESON production rates when compared to net N mineralization. These suggest a closer coupling of plant N uptake with inorganic N, much more than with ESON. Both ESON and MBN were significantly higher in rural soils than in urban soils, and both concentrations were positively correlated with SOM content. The variation in ESON, MBN, or SOM associated with this urbanization gradient suggests that the form of N exported, the plant N budget and soil N retention mechanisms may be differentially affected by urban, suburban and rural land uses.  相似文献   

2.
Changes of land-use type (LUT) can affect soil nutrient pools and cycling processes that relate long-term sustainability of ecosystem, and can also affect atmospheric CO2 concentrations and global warming through soil respiration. We conducted a comparative study to determine NH4+ and NO3 concentrations in soil profiles (0–200 cm) and examined the net nitrogen (N) mineralization and net nitrification in soil surface (0–20 cm) of adjacent naturally regenerated secondary forests (NSF), man-made forests (MMF), grasslands and cropland soils from the windy arid and semi-arid Hebei plateau, the sandstorm and water source area of Beijing, China. Cropland and grassland soils showed significantly higher inorganic N concentrations than forest soils. NO3-N accounted for 50–90% of inorganic N in cropland and grassland soils, while NH4+-N was the main form of inorganic N in NSF and MMF soils. Average net N-mineralization rates (mg kg1 d1) were much higher in native ecosystems (1.51 for NSF soils and 1.24 for grassland soils) than in human disturbed LUT (0.15 for cropland soils and 0.85 for MMF soils). Net ammonification was low in all the LUT while net nitrification was the major process of net N mineralization. For more insight in urea transformation, the increase in NH4+ and, NO3 concentrations as well as C mineralization after urea addition was analyzed on whole soils. Urea application stimulated the net soil C mineralization and urea transformation pattern was consistent with net soil N mineralization, except that the rate was slightly slower. Land-use conversion from NSF to MMF, or from grassland to cropland decreased soil net N mineralization, but increased net nitrification after 40 years or 70 years, respectively. The observed higher rates of net nitrification suggested that land-use conversions in the Hebei plateau might lead to N losses in the form of nitrate.  相似文献   

3.
Forests naturally maintained by stand-replacing wildfires are often managed with clearcut harvesting, yet we know little about how replacing wildfire with clearcutting affects soil processes and properties. We compared the initial recovery of carbon (C) and nitrogen (N) pools and dynamics following disturbance in jack pine (Pinus banksiana) stands in northern Lower Michigan, USA, by sampling soils (Oa+A horizons) from three “treatments”: 3-6-year-old harvest-regenerated stands, 3-6-year-old wildfire-regenerated stands and 40-55-year-old intact, mature stands (n=4 stands per treatment). We measured total C and N; microbial biomass and potentially mineralizable C and N; net nitrification; and gross rates of N mineralization and nitrification. Burned stands exhibited reduced soil N but not C, whereas clearcut and mature stands had similar quantities of soil organic matter. Both disturbance types reduced microbial biomass C compared to mature stands; however, microbial biomass N was reduced in burned stands but not in clearcut stands. The experimental C and N mineralization values were fit to a first-order rate equation to estimate potentially mineralizable pool size (C0 and N0) and rate parameters. Values for C0 in burned and clearcut stands were approximately half that of the mature treatment, with no difference between disturbance types. In contrast, N0 was lowest in the wildfire stands (170.2 μg N g−1), intermediate in the clearcuts (215.4 μg N g−1) and highest in the mature stands (244.6 μg N g−1). The most pronounced difference between disturbance types was for net nitrification. These data were fit to a sigmoidal growth equation to estimate potential NO3 accumulation (Nitmax) and kinetic parameters. Values of Nitmax in clearcut soils exceeded that of wildfire and mature soils (149.2 vs. 83.5 vs. 96.5 μg NO3-N g−1, respectively). Moreover, the clearcut treatment exhibited no lag period for net NO3 production, whereas the burned and mature treatments exhibited an approximate 8-week lag period before producing appreciable quantities of NO3. There were no differences between disturbances in gross rates of mineralization or nitrification; rather, lower NO3 immobilization rates in the clearcut soils, 0.20 μg NO3 g−1 d−1 compared to 0.65 in the burned soils, explained the difference in net nitrification. Because the mobility of NO3 and NH4+ differs markedly in soil, our results suggest that differences in nitrification between wildfire and clearcutting could have important consequences for plant nutrition and leaching losses following disturbance.  相似文献   

4.
We measured soil microbial biomass nitrogen (MBN), microbial uptake of 15N, potential net mineralization and net nitrification in the laboratory to determine the influence of tree species on nitrogen (N) transformations in soils of the Catskills Mountains, New York, USA. Organic horizon soils were taken from single species plots of beech (Fagus grandifolia), hemlock (Tsuga canadensis), red oak (Quercus rubra), sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis). 15NH4Cl was added to the soils and N pools were sampled at 1, 3, 10 and 28 days to examine microbial uptake of 15N over time. Soil MBN was about 60% lower in red oak and sugar maple soils than in the other three species. Soil pools of NO3 and rates of net nitrification were significantly greater in soils associated with sugar maple than hemlock, red oak and yellow birch. With the exception of sugar maple soils, microbial recovery of 15N was significantly greater after 10 and 28 days compared to 60 min and 1 day following 15N tracer addition. Microbial 15N recovery declined significantly within sugar maple stands within the first 3 days of incubation. Soil carbon to nitrogen ratio (C:N) was lowest in sugar maple soils and highest in red oak soils. However, correlations between soil C:N and MBN or rates of net mineralization and nitrification were not significant. Soil moisture could account for 22% of the variation in MBN and 36% of the variation in net mineralization. Soil microbial transformations of N vary among tree species stands and may have consequences for forest N retention and loss.  相似文献   

5.
Fires in grasslands significantly alter nutrient cycling processes. Seasonal climatic changes can interact with fire to further modify nutrient cycling processes. To investigate the effects of fire on soil nitrogen transformation processes and their seasonal change and interannual variability in a typical steppe in Inner Mongolia, we determined the rates of net nitrogen mineralization and nitrification over two growing seasons and a winter following a prescribed spring fire in May 2006. Fire significantly decreased rates of both net nitrogen mineralization and net nitrification during the first growing season and winter following burning. Cumulative net nitrogen mineralization in unburned and burned plots in the 2006 growing season was 133% and 183% higher, respectively, than in the drier 2007 growing season. Nitrogen mineralization apparently occurred in winter and the cumulative net nitrogen mineralization from October 2, 2006, to April 27, 2007 in unburned and burned plots amounted to 1.18 ± 0.25 g N m−2 and 0.51 ± 0.08 g N m−2, respectively. Cumulative net nitrogen mineralization was higher in a wet 2006 than in a dry 2007 growing season, indicating that the net N mineralization rate was sensitive to soil moisture in a dry season. Our study demonstrated that a one-time prescribed fire decreased net N mineralization rates only for a short period of time after burning while interannual variation in climate had more significant effects on the process of nitrogen mineralization.  相似文献   

6.
Intact soil cores from three adjacent sites (Site A: grazed, Site B: fenced for 4 years, and Site C: fenced for 24 years) were incubated in the laboratory to examine effects of temperature, soil moisture, and their interactions on net nitrification and N mineralization rates in the Inner Mongolia grassland of Northern China. Incubation temperature significantly influenced net nitrification and N mineralization rates in all the three grassland sites. There were no differences in net nitrification or N mineralization rates at lower temperatures (−10, 0, and 5 °C) whereas significant differences were found at higher temperatures (15, 25, and 35 °C). Soil moisture profoundly impacted net nitrification and N mineralization rates in all the three sites. Interactions of temperature and moisture significantly affected net nitrification and mineralization rates in Site B and C, but not in Site A. Temperature sensitivity of net nitrification and N mineralization varied with soil moisture and grassland site. Our results showed greater net N mineralization rates and lower concentrations of inorganic N in the grazed site than those in the fenced sites, suggesting negative impacts of grazing on soil N pools and net primary productivity.  相似文献   

7.
The effects of repeated synthetic fertilizer or cattle slurry applications at annual rates of 50, 100 or 200 m3 ha−1 yr−1 over a 38 year period were investigated with respect to herbage yield, N uptake and gross soil N dynamics at a permanent grassland site. While synthetic fertilizer had a sustained and constant effect on herbage yield and N uptake, increasing cattle slurry application rates increased the herbage yield and N uptake linearly over the entire observation period. Cattle slurry applications, two and four times the recommended rate (50 m3 ha−1 yr−1, 170 kg N ha−1), increased N uptake by 46 and 78%, respectively after 38 years. To explain the long-term effect, a 15N tracing study was carried out to identify the potential change in N dynamics under the various treatments. The analysis model evaluated process-specific rates, such as mineralization, from two organic-N pools, as well as nitrification from NH4+ and organic-N oxidation. Total mineralization was similar in all treatments. However, while in an unfertilized control treatment more than 90% of NH4+ production was related to mineralization of recalcitrant organic-N, a shift occurred toward a predominance of mineralization from labile organic-N in the cattle slurry treatments and this proportion increased with the increase in slurry application rate. Furthermore, the oxidation of recalcitrant organic-N shifted from a predominant NH4+ production in the control treatment, toward a predominant NO3 production (heterotrophic nitrification) in the cattle slurry treatments. The concomitant increase in heterotrophic nitrification and NH4+ oxidation with increasing cattle slurry application rate was mainly responsible for the increase in net NO3 production rate. Thus the increase in N uptake and herbage yield on the cattle slurry treatments could be related to NO3 rather than NH4+ production. The 15N tracing study was successful in revealing process-specific changes in the N cycle in relationship to long-term repeated amendments.  相似文献   

8.
Soils and vegetation were analyzed in 20 lodgepole pine (Pinus contorta) forest stands, varying in age from 50 to 350 years, that had initiated following stand-replacing fire. Our goal was to determine how nitrogen availability (NH4+-N) and microbial community composition varied with stand age-class and to determine whether differences could be explained by canopy, soil, or understory characteristics. Gross NH4+ mineralization was measured using laboratory isotopic pool dilution, and microbial community composition was evaluated using microbial membrane lipids. The microbial community composition of stands in the 300-350 age class was distinct from stands in younger age classes. Microbial community composition among sites varied with pH, % organic matter, and phosphorus. Gross NH4+ mineralization rates averaged 1.45±0.07 mg NH4+ kg soil−1 d−1 while consumption averaged 1.37±0.20 mg NH4+ kg soil−1 d−1, resulting in low net NH4+ mineralization rates (0.08±0.18 mg NH4+ kg soil−1 d−1), but rates were not significantly different with stand age-class at p<0.05. At p<0.10, net NH4+ mineralization was significantly higher in the 300-350 age class compared to the 125-175 age class. None of the measured variables significantly explained NH4+ consumption and net mineralization patterns. However, gross NH4+ mineralization rates were best explained by information on microbial community structure (i.e. lipids). Variation among stands within a given age-classes was high, indicating that patterns of N cycling across landscapes reflect substantial heterogeneity among mature stands.  相似文献   

9.
Nitrogen mineralisation in soils of various forest sites (pine plantation, natural and thinned oak) at Uluda? University campus in Bursa, Turkey was investigated continuously over a year by the field incubation method. Net nitrogen mineralisation and nitrification rates varied depending on sampling dates. Although nitrogen mineralisation and nitrification rates increased in the spring and summer months, there was no seasonal variation in the soils of the examined forests. Annual net nitrate (NO3?–N) accumulation in the upper soil layer (0–5 cm) was higher in Oak I and Oak II (14 kg ha y?1 and 12 kg ha y?1) than in the pine plantation (8 kg ha y?1). While annual net NO3?–N accumulation (0–5 cm) varied between the oak forests (possibly due to forest management practices), annual net Nmin values were similar in these forests. No significant correlation was found between the examined soil parameters and net nitrification and mineralisation rates in the soils (P > 0.05). These results indicate that tree species and forest management practices play important roles in N cycling in forest ecosystems.  相似文献   

10.
The present study was carried out to understand whether fine root growth and N mineralization are synchronized in such a manner that helps to conserve N in the humid subtropical forest ecosystem, and to assess whether or not these processes are influenced by human disturbance. The study was conducted in two pairs of undisturbed and disturbed stands of subtropical humid forest in the Jaintia hill district of Meghalaya, northeast India. The amount of fine root (540–754 g m–2) and coarse root (307–387 g m–2) mass in the protected stands was higher than those recorded (fine root 422–466 g m–2, coarse root 247–305 g m–2) in the unprotected stands. The total annual root production was also higher in the protected stands (1,102–1,242 g m–2) than the unprotected stands (890–940 g m–2). The mean concentration of NH4+–N and NO3–N was higher in the protected stands than in the unprotected stands. The inorganic-N (NH4+–N and NO3–N) concentration was markedly high during the dry period and low during the wet period in all the stands. Inorganic-N concentration, nitrification and N mineralization rates were significantly (P<0.01) higher in the surface (0–10 cm) than the subsurface (10–20 cm) layer. The low and high N mineralization rates observed during the dry and wet periods, respectively, coincided with the lean and peak periods of fine root mass. Disturbance in the forests caused a reduction in fine root mass as well as in N mineralization.  相似文献   

11.
Nest excavation and agricultural activities of the leaf-cutting ant Atta sexdens create complex belowground heterogeneity in secondary forests of Eastern Amazonia. We examined the effects of this heterogeneity on inorganic-N stocks, net mineralization, and net nitrification to test the hypothesis that the bulk soil of the nests has higher net rates of mineralization and nitrification than soil that was not affected by the influences of ant nests, throughout the profile. This study was conducted in a secondary forest at Fazenda Vitoria, near Paragominas in the Eastern Brazilian Amazon, where a previous study showed that the bulk soil of ant nests had elevated NO3. The results of the inorganic-N measurements were consistent with the previous study, showing elevated NO3 deep in the soil profile of the nests. However, neither net mineralization nor net nitrification were significantly greater at depth in the mineral soil of the nests compared to soil that was not influenced by nests (P=0.05), although variability was higher in the nest soil. These results suggest that the NO3 may have diffused into the surrounding mineral from the N-rich organic matter buried by the ants in chambers within the deep soil.  相似文献   

12.
13.
Small changes in C cycling in boreal forests can change the sign of their C balance, so it is important to gain an understanding of the factors controlling small exports like water-soluble organic carbon (WSOC) fluxes from the soils in these systems. To examine this, we estimated WSOC fluxes based on measured concentrations along four replicate gradients in upland black spruce (Picea mariana [Mill.] BSP) productivity and soil temperature in interior Alaska and compared them to concurrent rates of soil CO2 efflux. Concentrations of WSOC in organic and mineral horizons ranged from 4.9 to 22.7 g C m−2 and from 1.4 to 8.4 g C m−2, respectively. Annual WSOC fluxes (4.5-12.0 g C m−2 y−1) increased with annual soil CO2 effluxes (365-739 g C m−2 y−1) across all sites (R2=0.55, p=0.02), with higher fluxes occurring in warmer, more productive stands. Although annual WSOC flux was relatively small compared to total soil CO2 efflux across all sites (<3%), its relative contribution was highest in warmer, more productive stands which harbored less soil organic carbon. The proportions of relatively bioavailable organic fractions (hydrophilic organic matter and low molecular weight acids) were highest in WSOC in colder, low-productivity stands whereas the more degraded products of microbial activity (fulvic acids) were highest in warmer, more productive stands. These data suggest that WSOC mineralization may be a mechanism for increased soil C loss if the climate warms and therefore should be accounted for in order to accurately determine the sensitivity of boreal soil organic C balance to climate change.  相似文献   

14.
Soil organic-N dynamics, its controlling factors and its relationships with stand quality were studied in the 0-15 cm soil layer of 24 pinewoods with contrasting age, productivity and parent material (granite; acid schists), searching for N variables useful to predict stand growth and site quality. No significant differences were found between young and old stands for any of the N variables considered, nor two- or three-order interactions among stand age, site quality and parent material. The soil total-N content, which was correlated positively with the Al oxides content (a soil organic matter (SOM) stabilizing agent), did not vary significantly according to parent material, but it was lower (P≤0.02) in stands with high than with low site index (2.68±1.11 and 3.97±1.13 g N kg−1 soil, respectively). The soil δ15N ranged from +3.5 to +6.5 δ, without significant differences among stand groups, and it was negatively correlated with water holding capacity, exchangeable bases, Al oxides and N content, suggesting that: (i) N losses by NO3 leaching are the most important controlling factor of δ15N in these temperate humid region soils; and (ii) soil N richness is related with limited N losses, which discriminate against 15N. At any incubation time, no significant differences were found in soil inorganic-N content among stand groups (7.78±4.57, 39.33±16.20 and 67.80±26.50 mg N kg−1 soil at 0, 42 and 84 d, respectively). During the incubation, the relative importance of ammonification decreased and that of the nitrification increased. The net N mineralization rate (NNMR, in percentage of organic N) was significantly higher in granite than in schists soils at both 42 d (1.24±0.34 and 0.75±0.37%, respectively) and 84 d (2.18±0.56 and 1.53±0.66%, respectively). In high quality pinewoods, the NNMR at 42 and 84 d (1.16±0.45 and 2.12±0.79%, respectively) were significantly higher than in low quality stands (0.83±0.35 and 1.59±0.45%, respectively). This result, together with those on soil total-N and inorganic-N supply, suggests that soil N dynamics in low and high quality stands are different: in the former there is a bigger N pool with a slower turnover, whereas in the latter there is a smaller N pool with a faster turnover, both factors being nearly compensated, making the soil available N supply in both types of stand similar. After 42 and 84 d of incubation, the NNMR and the nitrification rates were higher in the coarse textured soils, likely due to the low physical and chemical protection of their SOM; both rates were positively correlated with available P, exchangeable K+ and CEC base saturation, suggesting strong relationships among the availabilities of the main plant nutrients, and they increased with SOM quality (low C-to-N ratio). The strong negative correlation of site index with soil total-N (r=−0.707; P≤0.005), and its positive correlations with NNMR after 42 and 84 d of incubation, suggested that site quality and potential productivity are closely related to soil organic-N dynamics. Half of the site index variation in the stands studied could be predicted with a cheap and easy analysis of soil N content, the prediction being slightly improved if soil δ15N is included and, more significantly, by including N mineralization measurements.  相似文献   

15.
Though microbial activity is known to occur in frozen soils, little is known about the fate of animal manure N applied in the fall to agricultural soils located in areas with prolonged winter periods. Our objective was to examine transformations of soil and pig slurry N at low temperatures. Loamy and clay soils were either unamended (Control), amended with 15NH4-labeled pig slurry, or amended with the pig slurry and wheat straw. Soils were incubated at −6, −2, 2, 6, and 10 °C. The amounts of NH4, NO3 and microbial biomass N (MBN), and the presence of 15N in these pools were monitored. Total mineral N, NO3 and 15NO3 increased at temperature down to −2 °C in the loam soil and −6 °C in the clay soil, indicating that nitrification and mineralization proceeded in frozen soils. Nitrification and mineralization rates were 1.8-4.9 times higher in the clay than in the loamy soil, especially below freezing point (3.2-4.9), possibly because more unfrozen water remained in the clay than in the loamy soil. Slurry addition increased nitrification rates by 3-14 times at all temperatures, indicating that this process was N-limited even in frozen soils. Straw incorporation caused significant net N immobilization only at temperatures ≥2 °C in both soils; the rates were 1.4-3.4 higher in the loam than in the clay soil. Nevertheless, up to 30% of the applied 15N was present in MBN at all temperatures. These findings indicate that microbial N immobilization occurred in frozen soils, but was not strong enough to induce net immobilization below the freezing point, even in the presence of straw. The Q10 values for estimated mineralization and nitrification rates were one to two orders-of-magnitude larger below 2 °C than above this temperature (13-208 versus 1.5-6.9, respectively), indicating that these processes are highly sensitive to a small increase in soil temperature around the freezing point of water. This study confirms that net mineralization and nitrification can occur at potentially significant rates in frozen agricultural soils, especially in the presence of organic amendments. In contrast, net N immobilization could be detected essentially above the freezing point. Our results imply that fall-applied N could be at risk of overwinter losses, particularly in fine-textured soils.  相似文献   

16.
Heterotrophic and autotrophic nitrification in two acid pasture soils   总被引:1,自引:0,他引:1  
Laboratory incubation experiments, using 15N-labeling techniques and simple analytical models, were conducted to measure heterotrophic and autotrophic nitrification rates in two acid soils (pH 4.8-5.3; 1/5 in H2O) with high organic carbon contents (6.2-6.8% in top 5 cm soil). The soils were from pastures located near Maindample and Ruffy in the Northeast Victoria, Australia. Gross rates of N mineralization, nitrification and immobilization were measured. The gross rates of autotrophic nitrification were 0.157 and 0.119 μg N g−1 h−1 and heterotrophic nitrification rates were 0.036 and 0.009 μg N g−1 h−1 for the Maindample and Ruffy soils, respectively. Heterotrophic nitrification accounted for 19% and 7% of the total nitrification in the Maindample and Ruffy soils, respectively. The heterotrophic nitrifiers used organic N compounds and no as the substrate for nitrification.  相似文献   

17.
Forest ecosystems on the Loess Plateau are receiving increasing attention for their special importance in carbon fixation and conservation of soil and water in the region. Soil respiration was investigated in two typical forest stands of the forest-grassland transition zone in the region, an exotic black locust (Robinia pseudoacacia) plantation and an indigenous oak (Quercus liaotungensis) forest, in response to rain events (27.7 mm in May 2009 and 19 mm in May 2010) during the early summer dry season. In both ecosystems, precipitation significantly increased soil moisture, decreased soil temperature, and accelerated soil respiration. The peak values of soil respiration were 4.8 and 4.4 μmol CO2 m−2 s−1 in the oak plot and the black locust plot, respectively. In the dry period after rainfall, the soil moisture and respiration rate gradually decreased and the soil temperature increased. Soil respiration rate in black locust stand was consistently less than that in oak stand, being consistent with the differences in C, N contents and fine root mass on the forest floor and in soil between the two stands. However, root respiration (Rr) per unit fine root mass and microbial respiration (Rm) per unit the amount of soil organic matter were higher in black locust stand than in oak stand. Respiration by root rhizosphere in black locust stand was the dominant component resulting in total respiration changes, whereas respiration by roots and soil microbes contributed equally in oak stand. Soil respiration in the black locust plantation showed higher sensitivity to precipitation than that in the oak forest.  相似文献   

18.
The productivity of temperate forests is often limited by soil N availability, suggesting that elevated atmospheric N deposition could increase ecosystem C storage. However, the magnitude of this increase is dependent on rates of soil organic matter formation as well as rates of plant production. Nonetheless, we have a limited understanding of the potential for atmospheric N deposition to alter microbial activity in soil, and hence rates of soil organic matter formation. Because high levels of inorganic N suppress lignin oxidation by white rot basidiomycetes and generally enhance cellulose hydrolysis, we hypothesized that atmospheric N deposition would alter microbial decomposition in a manner that was consistent with changes in enzyme activity and shift decomposition from fungi to less efficient bacteria. To test our idea, we experimentally manipulated atmospheric N deposition (0, 30 and 80 kg NO3-N) in three northern temperate forests (black oak/white oak (BOWO), sugar maple/red oak (SMRO), and sugar maple/basswood (SMBW)). After one year, we measured the activity of ligninolytic and cellulolytic soil enzymes, and traced the fate of lignin and cellulose breakdown products (13C-vanillin, catechol and cellobiose).In the BOWO ecosystem, the highest level of N deposition tended to reduce phenol oxidase activity (131±13 versus 104±5 μmol h−1 g−1) and peroxidase activity (210±26 versus 190±21 μmol h−1 g−1) and it reduced 13C-vanillin and 13C-catechol degradation and the incorporation of 13C into fungal phospholipids (p<0.05). Conversely, in the SMRO and SMBW ecosystems, N deposition tended to increase phenol oxidase and peroxidase activities and increased vanillin and catechol degradation and the incorporation of isotope into fungal phospholipids (p<0.05). We observed no effect of experimental N deposition on the degradation of 13C-cellulose, although cellulase activity showed a small and marginally significant increase (p<0.10). The ecosystem-specific response of microbial activity and soil C cycling to experimental N addition indicates that accurate prediction of soil C storage requires a better understanding of the physiological response of microbial communities to atmospheric N deposition.  相似文献   

19.
Soil samples were collected from litter, humus and mineral soil layers to a depth of 50 cm in 37–42 year-old limed and unlimed plots in one beech and three spruce stands in S Sweden for determination of carbon (C) and nitrogen (N) pools, C and N mineralization rates and nitrification rates. The samples were sifted while still fresh and incubated at a constant temperature (15°C) and soil moisture (50 % WHC) for 110–180 days with periodic subsamplings. The C and N pools in the uppermost soil layers were significantly lower in plots limed with 9–10 t CaCO3 ha?1 than in unlimed plots, whereas the pools in the deeper mineral soil did not differ markedly between the treatments. In the whole soil profile, the C and N pools had, on average, decreased by 16% (P<0.05) and 11% (P>0.05), respectively, after 40 yrs. The smaller reduction in N pools resulted in significantly lower C:N ratios and increased N immobilization in the limed spruce plots but not in the limed beech plot. C and net N mineralization rates were increased in some of the limed plots and decreased in others. This indicates that liming can still have a stimulatory effect after 40 yrs in some soils. The nitrification potential was increased in the limed plots. Liming did not increase tree growth in the stands investigated. We conclude that liming with high doses of CaCO3 is likely to reduce pools of soil C and possibly even soil N in relation to unlimed areas in spruce and beech forests in S Sweden. If trees in limed stands do not respond with better growth, the treatment will thus result in a net ecosystem loss of C and N in relation to unlimed areas. It was not possible to conclude whether the effects of low doses of lime would be similar to those of high doses.  相似文献   

20.
The impact of land-use change on soil nitrogen (N) transformations was investigated in adjacent native forest (NF), 53 y-old first rotation (1R) and 5 y-old second rotation (2R) hoop pine (Araucaia cunninghamii) plantations. The 15N isotope dilution method was used to quantify gross rates of N transformations in aerobic and anaerobic laboratory incubations. Results showed that the land-use change had a significant impact on the soil N transformations. Gross ammonification rates in the aerobic incubation ranged between 0.62 and 1.78 mg N kg−1 d−1, while gross nitrification rates ranged between 2.1 and 6.6 mg N kg−1 d−1. Gross ammonification rates were significantly lower in the NF and the 1R soils than in the 2R soils, however gross nitrification rates were significantly higher in the NF soils than in the plantation soils. The greater rates of gross nitrification found in the NF soil compared to the plantation soils, were related to lower soil C:N ratios (i.e. more labile soil N under NF). Nitrification was found to be the dominant soil N transformation process in the contrasting forest ecosystems. This might be attributed to certain site conditions which may favour the nitrifying community, such as the dry climate and tree species. There was some evidence to suggest that heterotrophic nitrifiers may undertake a significant portion of nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号