首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of soil pH on the phospholipid fatty acid (PLFA) composition of the microbial community was investigated along the Hoosfield acid strip, Rothamsted Research, UK - a uniform pH gradient between pH 8.3 and 4.5. The influence of soil pH on the total concentration of PLFAs was not significant, while biomass estimated using substrate induced respiration decreased by about 25%. However, the PLFA composition clearly changed along the soil pH gradient. About 40% of the variation in PLFA composition along the gradient was explained by a first principal component, and the sample scores were highly correlated to pH (R2 = 0.97). Many PLFAs responded to pH similarly in the Hoosfield arable soil compared with previous assessments in forest soils, including, e.g. monounsaturated PLFAs 16:1ω5, 16:1ω7c and 18:1ω7, which increased in relative concentrations with pH, and i16:0 and cy19:0, both of which decreased with pH. Some PLFAs responded differently to pH between the soil types, e.g. br18:0. We conclude that soil pH has a profound influence on the microbial PLFA composition, which must be considered in all applications of this method to detect changes in the microbial community.  相似文献   

2.
A change in environmental conditions may result in altered soil microbial communities in alpine grasslands but the extent and direction of the change is largely unknown. The aim of our study was to investigate (i) differences in soil microbial communities across an elevation gradient of (sub)alpine grassland soils in the Swiss Alps, and (ii) the long-term effect of translocation of soil cores from a higher to a lower elevation site. The translocation of undisturbed soil cores from a high alpine site (2525 m asl) to a subalpine site near the timberline (1895 m asl) induced an effective artificial warming of 3.3 °C. We hypothesized that after longer than a decade, soil microbial community in translocated cores would differ from that at the original site but resemble the community at the new site. Results from soil phospholipid fatty acid (PLFA) analysis confirm significant differences in microbial communities between sites and a shift in total microbial biomass (TMB) and proportional distribution of structural groups in the translocated cores towards the lower elevation community. Patterns related to translocation were also observed as shifts in the fractional biomass of ectomycorrhizal and arbuscular fungi, and in relative contents of several structural groups. Hence, soil microbial community activity and diversity indicate a moderate shift towards new site conditions after 11 years and therefore, our data suggest slow responses of microbial communities to environmental changes in alpine soils.  相似文献   

3.
Phospholipid fatty acid (PLFA) profiles were measured in soils from 14 sites in eastern China representing typical geographic zones of varying latitude from north (47.4°N) to south (21.4°N). Amounts of soil microbial biomass, measured as total amounts of PLFAs, showed no regular trend with latitude, but were positively correlated with soil organic carbon content, the concentration of humic acid and amorphous iron oxide. Soil microbial community structure showed some biogeographical distribution trends and was separated into three groups in a cluster analysis and principal coordinate analysis of log transformed PLFA concentrations (mol%). Soils in the first group came from northern China with medium mean annual temperature (1.2–15.7 °C) and rainfall (550–1021 mm). Soils in the second group originated from southern China with a relatively higher mean annual temperature (15.7–21.2 °C) and rainfall (1021–1690 mm). Soils clustered in the third group originated from the most southerly region. The northern soils contained relatively more bacteria and Gram-negative PLFAs, while the southern soils had more fungi and pressure indexed PLFAs. These differences in soil microbial community structure were largely explained by soil pH, while other site and soil characteristics were less important.  相似文献   

4.
Heavy metal contamination in an area immediately surrounding a zinc smelter has resulted in destruction of over 485 hectares of forest. The elevated levels of heavy metals in these soils have had significant impacts on the population size and overall activity of the soil microbial communities. Remediation of these soils has resulted in increases in indicators of biological activity and viable population size, which suggest recovery of the microbial populations. Questions remain as to how the metal contamination and subsequent remediation at this site have impacted the population structure of the soil microbial communities. In the current study, microbial communities from this site were analyzed by the phospholipid fatty acid (PLFA) procedure. Principal component analysis of the PLFA profiles indicated that there were differences in the profiles for soils with different levels of metal contamination, and that soils with higher levels of metal contamination showed decreases in indicator PLFAs for mycorrhizal fungi, Gram-positive bacteria, fungi, and actinomycetes. PLFA profiles for remediated sites indicated that remediated soils showed increases in indicator PLFAs for fungi, actinomycetes, and Gram-positive bacteria, compared to unremediated metal contaminated soils. These data suggest a change in the population structure of the soil microbial communities resulting from metal contamination and a recovery of several microbial populations resulting from remediation.  相似文献   

5.
发酵床养猪是一种新型的养殖技术,可有效缓解养猪的环境污染问题,微生物在其中起关键作用。为明确养猪发酵床发酵过程微生物群落的变化规律,为发酵床的科学管理提供依据,本研究采用磷脂脂肪酸生物标记(phospholipid fatty acids,PLFA)法分析养猪发酵床不同发酵等级垫料的微生物群落结构特征。采用色差法将垫料分为3个发酵程度等级:1级、2级和3级,采集不同发酵等级表层(0~15 cm)和里层(30~45 cm)垫料样本,测定各样本的PLFA。结果表明,共检测到61种PLFA,发酵2级垫料的PLFA种类最多,发酵3级垫料的PLFA种类最少。在各垫料中,PLFA分布量均表现为细菌 > 真菌 > 放线菌。指示细菌、真菌、放线菌、革兰氏阳性细菌(G+)、革兰氏阴性细菌(G-)的PLFA及总PLFA在各发酵等级表层垫料的分布量均显著大于其在里层垫料的分布量,最大值出现在发酵1级表层垫料中。与对照(未发酵垫料)相比,发酵垫料总PLFA含量均显著增加(P<0.05)。发酵3级表层垫料的真菌/细菌值最大,发酵2级表层垫料的G+/G-值最大。多样性分析表明,Shannon指数和Pielou指数最大值出现在发酵2级垫料中,而Simpson指数最大值出现在发酵3级表层垫料中。聚类分析表明,当欧氏距离为233.15时,可将不同发酵等级垫料聚为3个类群,同一发酵级别的垫料聚在相同类群中;主成分分析表明,发酵1级表层和里层垫料单独归一类群,其他发酵等级垫料和对照垫料归另一类群中。综上,不同发酵等级垫料的微生物种群结构不同,发酵1级表层垫料微生物分布量最大,发酵2级垫料的微生物种类最多,相同发酵级别表层和里层垫料微生物群落结构相似。  相似文献   

6.
Phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME), both lipid-based approaches used to characterize microbial communities, were compared with respect to their reliable detection limits, extraction precision, and ability to differentiate agricultural soils. Two sets of soil samples, representing seven crop types from California's Central Valley, were extracted using PLFA and TSFAME procedures. PLFA analysis required 10 times more soil than TSFAME analysis to obtain a reliable microbial community fingerprint and total fatty acid content measurement. Although less soil initially was extracted with TSFAME, total fatty acid (FA) content g−1 soil (DW) was more than 7-fold higher in TSFAME- versus PLFA-extracted samples. Sample extraction precision was much lower with TSFAME analysis than PLFA analysis, with the coefficient of variation between replicates being as much as 4-fold higher with TSFAME extraction. There were significant differences between PLFA- and TSFAME-extracted samples when biomarker pool sizes (mol% values) for bacteria, actinomycetes, and fungi were compared. Correspondence analysis (CA) of PLFA and TSFAME samples indicated that extraction method had the greatest influence on sample FA composition. Soil type also influenced FA composition, with samples grouping by soil type with both extraction methods. However, separate CAs of PLFA- and TSFAME extracted samples depicted strong differences in underlying sample groupings. Recommendations for the selection of extraction method are presented and discussed.  相似文献   

7.
土壤微生物群落结构对凋落物组成变化的响应   总被引:9,自引:0,他引:9  
凋落物分解是陆地生态系统养分循环的关键过程,明确凋落物多样性如何影响土壤微生物群落构成和多度,继而潜在地改变凋落物分解的微生物学机制有助于认识生物多样性和森林生态系统功能的关系。通过小盆模拟试验,应用磷脂脂肪酸谱图的方法研究了我国南方红壤丘陵区典型物种马尾松和湿地松的凋落物分别与白栎和青冈的凋落物混合,与单一针叶凋落物分解时相比,针阔混合凋落物分解过程中土壤微生物群落结构的变化,结果显示:(1)针阔混合凋落物分解时土壤微生物群落磷脂脂肪酸(Phospholipidfatty acids,PLFA)总量低于单一针叶处理,细菌和放线菌的相对多度高于单一针叶处理,真菌则相反,群落真菌/细菌低于单一针叶处理,土壤微生物生物量的差异主要来自于真菌;(2)主成分分析表明:针阔混合凋落物分解与单一针叶凋落物分解的土壤微生物群落结构差异显著,两个时期(分解9个月和18个月)主成分一分别可以解释65.74%和89.63%的变异,第一主成分主要包括18∶2ω6,9、18∶1ω9c、17∶0和10Me18∶0等磷脂脂肪酸;(3)土壤微生物群落结构受凋落物初始C/N和木质素/N调控,土壤微生物群落细菌的相对多度与凋落物初始C/N和木质素/N显著负相关,真菌则与凋落物初始C/N和木质素/N显著正相关,群落真菌/细菌与凋落物初始C/N和木质素/N显著正相关。针阔凋落物混合分解通过改变凋落物C/N和木质素/N,提供了对分解者更为有利的微环境。  相似文献   

8.
To understand root–soil–microbe interactions in rhizo-depletion of xenobiotics, we conducted a glasshouse study using specially designed laminar rhizoboxes which allow intact layers of near- (1–5 mm) and far- (>5 mm) rhizosphere soil to be harvested separately from root surfaces without the removal of the root material itself. Plant (Lolium perenne L.) seedlings were grown for 90 days in a soil treated with PCP at 20 and 50 mg kg−1. Changes in PCP depletion, soil microbial biomass and community structure (as indicated by phospholipid fatty acids (PLFAs) profiles) with increasing distance from the root surfaces were then assessed after harvesting. Surprisingly, depletion of PCP in the planted rhizoboxes exhibited a nonlinear dependence on the distance to root surfaces, with the most rapid loss in the 2 or 3 mm near-rhizosphere layers, contrasting to the well-known linear gradient of root exudates and mineral nutrients etc. (generally, the extent gradually decreased with increasing distance from the root surface). Soil microbial biomass carbon, however, decreased linearly as expected with increasing distance from the roots. The microbial community structures as indicated by PLFA profiles showed distance-dependent selective enrichment of competent species that may be responsible for efficient PCP depletion. The results suggest that root exudates induced modifications of microbial communities in the PCP contaminated rhizosphere and spatially modified the dominant species within these communities, resulting in the nonlinear PCP depletion pattern.  相似文献   

9.
 Analyses of phospholipid fatty acids (PLFAs) were used to assess variations in soil microbial biodiversity, community structure and biomass, and consequently, the soil microbial successions in time along the climate gradient of the Judean Desert. Principal component analysis of the PLFA data revealed that the degree of time- and space-related variations in PLFA composition and microbial community structure was high among the desert habitats. Significant shifts of specific groups of fatty acids caused by climatic variations were observed. The biomass represented by the total amounts of PLFAs indicated that the greater the average amount of precipitation, the higher the biomass. The results indicate that at least three different microorganism strategies were probably followed: (1) in soils with a high biomass during the rainy period, a significant biomass decrease occurred during the dry period, mainly due to an extraordinary decrease of Gram-negative bacteria as indicated by the decrease of typical monounsaturated fatty acids and hydroxy-substituted phospholipid fatty acids in semi-arid climates; (2) in soils with low biomass content during the rainy period, a significant increase of biomass during the dry period occurred, due mainly to the increase of eukaryotes, Gram-positive, and Gram-negative bacteria characterized by polyunsaturated, branched chain and some of the monounsaturated fatty acids, respectively; and (3) relatively low and constant biomass during the entire observation period in the more arid zones of the Judean Desert. Received: 12 January 1998  相似文献   

10.
A 22-factorial design with sulphuric acid (pH 3.1) and Cu-Ni addition was used to assess the effects of moderate amounts of continuous acid (Acid and CuNi+Acid) and metal (CuNi and CuNi+Acid) deposition on humus microbial activity and community structure in the field after nine growing seasons. These 20 field experiment samples were also used to measure the suitability of wood ash for remediation. Microcosms were treated with wood ash at a fertilization rate of 5000 kg ha−1, irrigated with water and incubated for 2 months in the dark at 20 °C and a constant relative humidity of 60%. Microcosms only irrigated with water served as a control. Microbial activity was measured as basal respiration. Microbial community structure was determined by phospholipid fatty acid analysis, which mainly targets bacteria. Fungal community structure was assessed by 18S rDNA-targeted polymerase chain reaction-denaturing gradient gel electrophoresis analysis. The bioavailability of Cu was tested with the Pseudomonas fluorescens DF57-Cu15 reporter strain, which bioluminescences in the presence of Cu. Our field study showed, that acid and metal treatments both changed the humus layer microbial community structure. Acid application decreased humus layer pH and base saturation (BS) and increased the amounts of both extractable and bioavailable Cu. Metal application increased the concentration of extractable Ni and changed the fungal community structure. In irrigated laboratory microcosms the above-mentioned treatment effects were still seen except for the acid and metal effects on microbial and fungal community structures. For ash-treated microcosms, neither acid nor metal effects were found for humus layer pH, BS, extractable Cu and Ni, or bioavailable Cu. Thus, wood ash can be used for remediation of acid and metal polluted humus.  相似文献   

11.
We have investigated the structure of a microbial community in semi-natural sandy grassland in southeast Sweden. The sand is rich in lime, but in most places the soil is decalcified in the upper layers, and therefore this site shows a large variation in pH within short distances. We collected samples at three different soil depths (0-10 cm, 10-20 cm and 20-30 cm) and found the pH to range from 5 to 8 in the topsoil and from 4.5 to 9.5 in the deepest layer. The abundance of saprophytic fungi and bacteria was investigated using signature phospholipid fatty acids and arbuscular mycorrhizal fungi (AMF) using the neutral lipid fatty acid 16:1ω5. The PLFA pattern of the topsoil was different from that in the other two layers, as indicated by principal component analysis. The saprotrophic fungi were associated with high pH, and bacteria with low pH in these sandy soils. No relation was found between pH and AMF in the topsoil, while a positive relation was found in the deepest soil layer. The saprophytic fungi-to-bacteria ratio was constant with depth, while the AMF-to-bacteria ratio increased with soil depth. The results showed that high soil pH favoured fungal saprophytes in sandy grasslands and that AMF are relatively more abundant than the other two groups in deeper soil layers; particularly so when the pH is high.  相似文献   

12.
The effects of land use and management practice on soil physical, chemical and microbiological properties may provide essential information for assessing sustainability and environmental impact. This study compared the effects of 41 years of no-tillage (NT) with continuous apple orchard, with those of conventional tillage (CT) with wheat–soybean rotation and another of puddling (PD) with continuous rice on the characteristics of a pumice Andisol in a temperate region of northern Japan. Higher values for bulk density, penetration resistance, pH, C/N ratio, exchangeable Na (X-Na), Fe, and Mn were observed for PD than NT and CT. On the other hand, organic matter, EC, N, exchangeable K (X-K), exchangeable Ca (X-Ca) and Cu were significantly higher for NT than CT and PD. Highest content of Zn was found in CT compared to other practices. The three-phase composition at pF 2.0 was significantly affected by land use and tillage practices. The solid phase and liquid phase were greater under PD than under NT and CT, while air phase was greater under CT than under NT and PD. Significantly higher values for saturated hydraulic conductivity was found in CT than NT and PD. Total phospholipid fatty acid (PLFA) and PLFA for bacteria, aerobes and cyanobacteria were remarkably higher in NT than CT and PD, regardless of depth. On the other hand, PLFA for methane-oxidizing bacteria, sulfate-reducing bacteria and mycorrhizae were significantly higher in CT than NT and PD. PLFA for fungi was significantly higher in surface (0–10 cm) soils than subsurface (10–20 cm) soils regardless of treatments. Highest bacterial and fungal diversity evaluated by DNA band number in DGGE analysis based on PCR amplification of 16S rDNA and 18S rDNA fragments, respectively, were observed in surface soil of PD. The result suggests a linkage between microbial community and tillage practices in temperate Andisol. This study also justifies the need of measuring soil characteristics based on soil microbial communities.  相似文献   

13.
A better understanding of soil microbial processes is required to improve the synchrony between nutrient release from plant residues and crop demand. Phospholipid fatty acid analysis was used to investigate the effect of two crop rotations (continuous maize and maize-crotalaria rotation) and P fertilization (0 and 50 kg P ha−1 yr−1, applied as triple superphosphate) on microbial community composition in a highly weathered soil from western Kenya. Microbial substrate use in soils from the field experiment was compared in incubation experiments. Higher levels of soil organic matter and microbial biomass in the maize-crotalaria rotation were connected with higher total amounts of phospholipid fatty acids and an increase in the relative abundances of indicators for fungi and gram-negative bacteria. P fertilization changed the community profile only within the continuous maize treatment. The decomposition of glucose, cellulose and three plant residues (all added at 2.5 g C kg−1 soil) proceeded faster in soil from the maize-crotalaria rotation, but differences were mostly transient. Microbial P and N uptake within one week increased with the water-soluble carbon content of added plant residues. More P and N were taken up by the greater microbial biomass in soil from the maize-crotalaria rotation than from continuous maize. Re-mineralization of nutrients during the decline of the microbial biomass increased also with the initial biological activity of the soil, but occurred only for a high quality plant residue within the half year incubation period. Compared to the effect of crop rotation, P fertilization had a minor effect on microbial community composition and substrate use.  相似文献   

14.
不同培肥方式对土壤有机碳与微生物群落结构的影响   总被引:4,自引:1,他引:3  
为揭示旱作区耕地土壤有机碳累积规律及其与土壤微生物群落间的相互作用机制,试验采用磷脂脂肪酸(PLFA)指纹图谱及土壤腐殖质形态分组的方法,通过田间定位试验,研究了马铃薯-马铃薯-油用向日葵-马铃薯-油用向日葵轮作模式下,有机、无机肥配施(不施肥、单施化肥、化肥配施牛粪、化肥配施羊粪、化肥配施生物有机肥、化肥配施黄腐酸钾)对土壤有机碳累积、土壤腐殖质形态的影响及其与土壤微生物群落结构间的相互关系。结果表明:在连续培肥5年间,随培肥时间延长,土壤有机碳呈波动性上升趋势。与对照相比,化肥配施牛粪、化肥配施羊粪处理土壤有机碳以年6.61%和8.97%的增长率累积增加,不同处理外源有机碳含量及有机肥种类的差异影响了土壤有机碳的累积速率。化肥配施高量有机肥(化肥+羊粪、化肥+牛粪)处理显著提高了土壤稳结态、松结态腐殖质含量及松结态/紧结态腐殖质的比例,且以PLFA表征的土壤细菌、真菌、放线菌、原生动物、土壤微生物群落总生物量与对照处理间均有显著性差异(P0.05)。与对照相比,各施肥处理的革兰氏阳性菌/革兰氏阴性菌(G+/G-)值均呈降低趋势;但不同有机无机相结合的土壤培肥方式对土壤G+/G-的比例没有显著差异。多元分析表明,基于土壤微生物主要类群磷脂脂肪酸含量的排序轴与基于土壤有机碳、腐殖质形态的排序轴之间相关性(P1=0.568,P2=0.611)较好,累积变量在98.69%上揭示不同有机无机培肥措施影响下的土壤微生物群落生物量与环境因子间的相互关系。土壤松结态腐殖质含量与土壤G+/G-比值正相关。外源有机碳的施入促进了土壤紧结态腐殖碳向稳结态、松结态腐殖质转化;较高量外源有机碳施入有助于提升土壤细菌、真菌的生物量。总体而言,土壤微生物群落结构的变化是受有机无机培肥措施所引起的土壤有机碳含量、腐殖质形态变化驱动;化肥配施牛粪和化肥配施羊粪有利于土壤有机碳积累和松结态腐殖质的形成,促进土壤中微生物生物量提高。研究结果可为宁夏中部干旱区土壤合理培肥提供科学依据。  相似文献   

15.
Toxic compounds in soils threaten groundwater quality in two ways: as potential contaminants themselves, and by retarding the microbial degradation of other organic compounds, thus enhancing their deep penetration. Benzotriazole (BTA) is a chemical with versatile industrial applications, used in large quantities worldwide, and represents a potential threat to the environment due to its apparent toxicity and recalcitrance. When used as an additive in aircraft deicing/antiicing fluid on airports, substantial spills of these mixtures and jet fuel will inevitably reach the soil. We have investigated the subsoil (1-2 m depth) microbial degradation and growth on four relevant organic substrates found in airport run-off (acetate, formate, glycol and toluene) in the presence of concentrations of BTA which can be found in airport run-off. Monitoring CO2 evolution showed growth-dependent degradation rates for all substrates (sigmoid CO2 accumulation curves), which were significantly affected by BTA. The mineralization of acetate was only moderately retarded and only by the highest BTA concentration used (400 mg l−1 in soil solution); formate and glycol mineralization was substantially retarded at 200 mg l−1, and toluene mineralization already at 10 mg l−1 BTA. Mass balances (fraction of added C recovered as CO2) suggested that the microbial growth yield (g biomass-C formed per g substrate C) was severely reduced with increasing concentrations of BTA. The analysis of phospholipid fatty acids (PLFA) demonstrated that Gram-negative bacteria were dominating among the organisms growing on all four substrates. The total amount of PLFA increased with approximately 1000 pmol PLFA g−1 soil in response to a dose of 0.93 μmol glycol-C g−1 soil, but this increase was gradually reduced with increasing BTA concentrations. This was in agreement with C mass balances based on CO2 measurements, verifying that BTA severely reduced the growth yields. The response of individual PLFA's to BTA and substrates demonstrated that non-growing organisms were largely unaffected (i.e. the PLFA's of which the absolute amounts did not increase in response to substrates were not affected by BTA), whereas those which were growing on the added substrates were uniformly reduced by BTA (all the PLFA's which increased in response to the substrates were negatively affected by BTA). The results suggest that BTA functions as an uncoupler, i.e. a substance that reduces the yield of ATP per mole of substrate used, or that the defence mechanisms represent a large energy burden to all microbial cells.  相似文献   

16.
不同肥力水平和利用历史的红壤磷脂脂肪酸图谱   总被引:4,自引:0,他引:4  
Analysis of phospholipid fatty acids(PLFAs) was used to estimate the microbial community structures of eight Chinese red soils with different fertility levels and land use histories.The total amounts of PLFAs in the soils were significantly correltaed with soil organic carbon, total nitrogen,microbial biomass C and basal respiration,indicating that total PLFA was closely related to fertility and sustainbility in these highly weathered soils.Soils of the eroded wastelan were rich in Gram-positive species .When the eroded soils were planted with citrus trees,the soil microbial population had changed little in 4 years but took up to 8-12 yearss before it reached a significantly different population,Multivariate analysis of PLFAs demonstrated that land use history and plant cover type had a significant impact on microbial community structure.Howver,the difference of soil microbial community structure in the paddy field compared to other land uses was not larger than expected in this experiment.  相似文献   

17.
Human activities are causing climatic changes and alter the composition and biodiversity of ecosystems. Climate change has been and will be increasing the frequency and severity of extreme climate events and natural disasters like floods in many ecosystems. Therefore, it is important to investigate the effects of disturbances on ecosystems and identify potential stabilizing features of ecological communities. In this study, soil microbial and nematode communities were investigated in a grassland biodiversity experiment after a natural flood to investigate if plant diversity is able to attenuate or reinforce the magnitude of effects of the disturbance on soil food webs. In addition to community analyses of soil microorganisms and nematodes, the stability indices proportional resilience, proportional recovery, and proportional resistance were calculated. Generally, soil microbial biomass decreased significantly due to the flood with the strongest reduction in gram-negative bacteria, while gram-positive bacteria were less affected by flooding. Fungal biomass increased significantly three months after the flood compared to few days before the flood, reflecting elevated availability of dead plant biomass in response to the flood. Similar to the soil microbial community, nematode community structure changed considerably due to the flood by favoring colonizers (in the broadest sense r-strategists; c–p 1, 2 nematodes), particularly so at high plant diversity. None of the soil microbial community stability indices and few of the nematode stability indices were significantly affected by plant diversity, indicating limited potential of plant diversity to buffer soil food webs against flooding disturbance. However, plant diversity destabilized colonizer populations, while persister populations (in the broadest sense K-strategists; c–p 4 nematodes) were stabilized, suggesting that plant diversity can stabilize and destabilize populations depending on the ecology of the focal taxa. The present study shows that changes in plant diversity and subsequent alterations in resource availability may significantly modify the compositional shifts of soil food webs in response to disturbances.  相似文献   

18.
The microbiota in the percolating water from the plow layer soil in paddy fields was studied based on the composition of phospholipid fatty acids (PLFAs) in a pot experiment. The mean concentrations of PLFAs in the percolating water were 17±5 and 11±4 µg L-1 in the planted and non-planted pots, respectively. The dominant PLFAs in the percolating water were 16: 0, 16: 1ω7c, 18: 1ω7, 18: 1ω9, il5: 0, and ail5: 0 PLFAs in both the planted and non-planted pots. The dominance percentage of 18: 3ω6c and 17: 1ω8 PLFAs increased at the late stage of rice growth in the planted pots. The percolating water from the planted pots contained in a higher percentage of straight mono-unsaturated PLFAs and a lower percentage of branched-chain PLFAs than that from the non-planted pots. Considerable differences in the PLFA composition in the percolating water were observed between the planted and non-planted treatments and with the duration of the growth period. Principal component analysis indicated that the microbiota in the percolating water was derived from the microbiota in the floodwater and in the plow layer soil. Cluster analysis showed that the similarity of the PLFA composition in the percolating water to the PLFA composition in the plow layer soil was higher than that in the floodwater. The stress factor that was estimated from the trans/cis ratio of 16: 1ω7 PLFA was 0.08±0.04 and 0.14±0.05 in the percolating water from the planted and non-planted pots, respectively, which indicated that the degree of stress on the microbiota in the percolating water from the planted pots was low in a similar way to the degree of stress on the microbiota in the floodwater, while the degree in the percolating water from the non-planted pots was similar to that in the plow layer soil, respectively.  相似文献   

19.
Techniques developed to measure microbial biomass in mineral soils may not give reliable results in humus. We evaluated the relationships between three techniques to estimate microbial biomass in forest humus: chloroform fumigation-extraction (CFE), total extractable phospholipid fatty acids (PLFA), and extractable DNA. There was a good relationship between PLFA and CFE (R2=0.96), with a slope slightly different from that previously reported for mineral soils (1 nmol PLFA corresponded to a flush of 3.2 μg C released by fumigation in humus cf. 2.4 μg C in mineral soil). There was no relationship between DNA concentration and the other two measurements of microbial biomass. This may be due, in part, to the high fungal biomass in forest humus, as DNA concentration per unit biomass is much more variable for fungi than bacteria.  相似文献   

20.
The effect of organic and inorganic fertiliser amendments is often studied shortly after addition of a single dose to the soil but less is known about the long-term effects of amendments. We conducted a study to determine the effects of long-term addition of organic and inorganic fertiliser amendments at low rates on soil chemical and biological properties. Surface soil samples were taken from an experimental field site near Cologne, Germany in summer 2000. At this site, five different treatments were established in 1969: mineral fertiliser (NPK), crop residues removed (mineral only); mineral fertiliser with crop residues; manure 5.2 t ha−1 yr−1; sewage sludge 7.6 t ha−1 yr−1 or straw 4.0 t ha−1 yr−1 with 10 kg N as CaCN2 t straw−1. The organic amendments increased the Corg content of the soil but had no significant effect on the dissolved organic C (DOC) content. The C/N ratio was highest in the straw treatment and lowest in the mineral only treatment. Of the enzymes studied, only protease activity was affected by the different amendments. It was highest after sewage amendment and lowest in the mineral only treatment. The ratios of Gram+ to Gram− bacteria and of bacteria to fungi, as determined by signature phospholipid fatty acids, were higher in the organic treatments than in the inorganic treatments. The community structure of bacteria and eukaryotic microorganisms was assessed by denaturing gradient gel electrophoresis (DGGE) and redundancy discriminate analyses of the DGGE banding patterns. While the bacterial community structure was affected by the treatments this was not the case for the eukaryotes. Bacterial and eukaryotic community structures were significantly affected by Corg content and C/N ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号