首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The idea of establishing mixed forests that are better adapted to site conditions than spruce monocultures has attracted increasing attention of forest owners and governmental institutions over the last decades. Currently, beech is being replanted and an increasing proportion of German forests are mixed stands. Focusing on the reaction of the soil fauna to forest conversion, this study investigates the response of the Collembola community to replacement of beech by spruce or by mixed stands of beech and spruce. Stands of different age were investigated in a factorial design with the factors stand type (beech, spruce and mixed stands) and stand age (30 and 120 years). Collembola communities did not differ strongly between stand types and stand age and were dominated by Folsomia quadrioculata and Mesaphorura species (e.g. Mesaphorura macrochaeta). Moreover, neither total abundance of Collembola nor densities of the fungal feeding euedaphic Onychiurinae and Tullbergiinae significantly responded to stand type and stand age. The density of the epedaphic and partly herbivorous groups Symphypleona/Neelipleona and Entomobryidae in the 120-year-old stands significantly exceeded that in the 30-year-old stands; presumably, this was due to the well developed herb layer in the 120-year-old stands with more open canopies. Canonical correspondence analysis (CCA) of the Collembola community of the L/F horizon also indicated that most of the epigeic species were associated with the 120-year-old stands. Moreover, the diversity of Collembola significantly increased with forest age which likely reflects increased amount and diversity of food resources in the 120-year-old stands. The density of the hygrophilous species Fo. quadrioculata was significantly higher in the spruce than in the beech stands; probably this was due to the higher water content in litter of the spruce stands. Moreover, the results of the CCAs indicated that soil pH is an important structuring force for the Collembola communities. Overall, the results suggest that stand type and forest age impact Collembola communities, presumably via changes in the amount and quality of food resources, such as living plant and herb litter materials. The pronounced changes which occurred with forest age likely were related to the development of more dense and diverse herb layer in mature forests which provides additional food resources in particular for epedaphic species. On the other hand, dominant species/functional groups of Collembola, such as hemiedaphic species, appear to depend predominantly on abiotic factors, most importantly soil pH and soil water content.  相似文献   

2.
Gap formation is suggested as an alternative forest management approach to avoid extreme changes in the N cycle of forest ecosystems caused by traditional management practises. The present study aimed to investigate the effect of gap formation on N availability in beech litter and mineral soil on sites, which experienced only little soil disturbance during tree harvest. N pools, litter decomposition, and N mineralization rates in mineral soil were studied in two gaps (17 and 30 m in diameter) in a 75-year-old managed European beech (Fagus sylvatica L.) forest in Denmark and related to soil temperature (5 cm depth) and soil moisture (15 cm depth). Investigations were carried out during the first 2 years after gap formation in measurement plots located along the north-south transect running through the centre of each gap and into the surrounding forest.An effect of gap size was found only for soil temperatures and litter mass loss: soil temperatures were significantly increased in the northern part of the large gap during the first year after gap formation, and litter mass loss was significantly higher in the smaller gap. All other parameters investigated revealed no effect of gap size. Nitrification, net mineralization, and soil N concentrations tended to be increased in the gaps. Cumulative rates of net mineralization were two fold higher in the gaps during the growing season (June-October), but a statistically significant increase was found only for soil NH4-N concentrations during this period. Forest floor parameters (C:N ratios, mass loss, N release) were not significantly modified during the first year after gap formation, neither were the total C content nor the C:N ratio in mineral soil at 0-10 cm depth.  相似文献   

3.
How the mixture of tree species modifies short-term decomposition has been well documented using litterbag studies. However, how litter of different tree species interact in the long-term is obscured by our inability to visually recognize the species identity of residual decomposition products in the two most decomposed layers of the forest floor (i.e. the Oe and Oa layers respectively). To overcome this problem, we used Near Infrared Reflectance Spectroscopy (NIRS) to determine indirectly the species composition of forest floor layers. For this purpose, controlled mixtures of increasing complexity comprising beech and spruce foliage materials at various stages of decomposition from sites differing in soil acid-base status were created. In addition to the controlled mixtures, natural mixtures of litterfall from mixed stands were used to develop prediction models. Following a calibration/validation procedure, the best regression models to predict the actual species proportion from spectral properties were selected for each tree species based on the highest coefficient of determination (R2) and the lowest root mean square error of prediction (RMSEP). For the validation, the R2 (predictions versus true proportions) were 0.95 and 0.94 for both beech and spruce components in mixtures of materials at all stages of decomposition from the gradient of sites. The R2 decreased only marginally by 0.04 when models were tested on independent samples of similar composition. The best models were used to predict the beech-spruce proportion in Oe and Oa layers of unknown composition. They provided in most cases plausible predictions when compared to the composition of the canopy above the sampling points. Thus, tedious and potentially erroneous hand sorting of forest floor layers may be replaced by the use of NIRS models to determine species composition, even at late stages of decomposition.  相似文献   

4.
Bacterial communities play an essential role in the sustainability of forest ecosystems by releasing from soil minerals the nutritive cations required not only for their own nutrition but also for that of trees. If it is admitted that the nutritional needs of trees vary during seasons, the seasonal dynamics of the mineral weathering bacterial communities colonizing the tree rhizosphere remain unknown. In this study, we characterized the mineral weathering efficacy of bacterial strains, from the rhizosphere and the adjacent bulk soil at four different seasons under two different tree species, the evergreen spruce and the deciduous beech, using a microplate assay that measures the quantity of iron released from biotite. We showed that the functional and taxonomic structures of the mineral weathering bacterial communities varied significantly with the tree species as well as with the season. Notably, the Burkholderia strains from the beech stand appeared more efficient to weather biotite that the one from the spruce stand. The mineral weathering efficacy of the bulk soil isolates did not vary during seasons under the beech stand whereas it was significantly higher for the spring and summer isolates from the spruce stand. The weathering efficacy of the rhizosphere isolates was significantly higher for the autumn isolates compared to the isolates sampled in the other seasons under the beech stand and in summer compared to the other seasons under spruce. These results suggest that seasonal differences do occur in forest soil bacterial communities and that evergreen and deciduous trees do not follow the same dynamic.  相似文献   

5.
The influence of individual trees in monocrop forests on soil microbial communities is poorly understood. We measured basal respiration, substrate-induced respiration and phospholipid fatty acids (PLFA), bacterial growth rate with the 3H-thymidine incorporation technique and fungal growth rate as 14C-acetate incorporation into ergosterol to investigate whether slow- and fast-growing 12-year-old Norway spruce (Picea abies) clones have affected differently on their associated soil microbial communities. Understorey vegetation, soil chemical properties and elemental concentrations of needles were also determined. The slow- and fast-growing spruce clones differed in PLFA profiles, understorey vegetation and elemental concentrations in needles suggesting that spruce clones have directly or indirectly affected soil microbes.  相似文献   

6.
The aim of this study was to compare the monoterpene content and distribution in litters and roots of three conifer species: Picea abies (L.) Karst, Picea sitchensis (Bong.) Carr. and Pinus sylvestris (L.). We analysed the monoterpene content of green needles, needle litter, F (fermentation) layer material and roots collected from monoculture plots. The rate of loss of monoterpenes from freshly fallen litter in the field was also studied at two monthly intervals over 10 months, to assess the length of time that monoterpenes entering the litter layer remain. Monoterpene analysis was carried out by extracting homogenised samples in hexane and identifying and quantifying the resulting monoterpenes using gas chromatography with flame ionisation detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Mean total monoterpene concentrations varied significantly between the three species examined (e.g. in freshly fallen litter 1531 ± 96, 100 ± 5 and 1175 ± 122 μg g−1 d. wt for P. abies, P. sitchensis and P. sylvestris); each species had distinctive and consistent monoterpene profiles associated with each type of tissue, and total monoterpene concentrations in green needles varied between individual trees of the same species, particularly for P. sitchensis. A substantial proportion of the monoterpene content of green needles remained in the needles after litter fall for P. abies (42%), P. sitchensis (11%) and P. sylvestris (30%). Although rates of monoterpene loss from needle litters varied initially (P. sylvestris > P. abies > P. sitchensis), the majority of the monoterpene content was lost after 4-6 months. Maximum monoterpene emission rates from decaying litter were calculated of 39 (P. abies), 1.7 (P. sitchensis) and 39 μg m−2 h−1 (P. sylvestris). Monoterpene concentrations in F layer material were very low (<10 μg g−1 d. wt). Roots, particularly in P. sylvestris, represented a significant pool of monoterpenes (185 ± 16, P. abies; 258 ± 54, P. sitchensis; 2133 ± 200 μg g−1 d. wt, P. sylvestris). The monoterpene profile was similar between roots and litter of P. sylvestris (α-pinene most abundant), and for P. sitchensis, (limonene and α-pinene most abundant), although a different pattern was observed between needle litter (most abundant β-pinene) and roots (most abundant myrcene) of P. abies. The relatively high concentrations and different profiles of monoterpenes characterised in upper organic soil horizons here emphasise the need for their influence on soil ecological processes to be assessed.  相似文献   

7.
Fagus grandifolia var. mexicana (Mexican beech) is limited to about 10 populations (2-35 ha) in the Sierra Madre Oriental, Mexico. The objectives were to assess the current status and distribution of beech by surveying five sites. Species richness varied between three to 27 tree species in the canopy, and from nine to 29 species in the understorey. Basal area of trees?5 cm dbh varied between 27.87 and 70.98 m2 ha−1, and density from 370 to 1290 individual ha−1. Beech represented 22-99.6% of total basal area, and 6.8-83.3% of total density. Beech dominance varied from monodominant to codominance with Carpinus caroliniana, Quercus spp., Liquidambar styraciflua, Magnolia schiedeana, and Podocarpus spp. Beech total population size ranged from 180 to 6300 trees with a total of less than 1300 individuals in four sites. Anthropogenic disturbance remains a major threat to these forests. It is uncertain whether Mexican beech will be able to survive without conservation efforts.  相似文献   

8.
Identification of trees with key microhabitats as well as knowledge of their ecological formation is important for the conservation of epiphytic bryophytes and lichens on beech. Based on the hypothesis that certain types of stem damage are crucial for the occurrence of epiphytes of conservation concern, we surveyed 145 beech trees (57-280 years) for different types of stem damage and analysed their relationship to other tree characteristics, epiphyte species and wood-inhabiting fungi in a forest landscape on acid soils.Three main types of stem damage were identified; canker, rot hole and surface rot. The incidence of rot holes was highest on trees with a low growth rate during the last 50 years, but was unrelated to tree size or age per se. Bark pH was significantly higher below than above rot holes, whereas no such relationship was found for cankers. Wood mould from rot holes had a very high pH, explaining the higher bark pH below this type of damage. The number of epiphyte species of conservation concern was strongly positively related to rot holes and high bark pH. Cankers had a weaker, yet significant positive effect. The fungus Psathyrella cernua was associated with the rot holes and is suggested to be a key species involved in creating this microhabitat.We conclude that slow-growing trees with rot holes are important for the conservation of epiphytes and should be selected as retention trees in managed forests. The study also highlights a potential for habitat restoration by inducing artificial damage and inoculation of decay fungi in beech trees.  相似文献   

9.
In February 1993 samples of litter from three different litter layers (upper, intermediate, and lower) were taken from a beechwood growing on basalt soil. Using the substrate-induced respiration method, we investigated the influence of fragmentation and glucose concentration on the maximum initial respiratory response. Glucose concentrations ranged between 0 and 160000 g g-1 dry weight. The initial respiratory response reached a maximum at 80000 g glucose g-1 dry weight. The addition of higher concentrations of glucose resulted in negligible changes in respiration. Litter materials of four different size classes (intact leaves, fragmented <100 mm2, <25 mm2, and <5 mm2) were amended with 80000 g glucose g-1 dry weight. Substrate-induced respiration was at a maximum in the size class <25 mm2. The addition of glucose to intact litter did not result in microbial growth. It is concluded that C is not the primary limiting element for the microflora in litter layers of the study site. Fragmentation of beech litter enabled the microorganisms to grow. Presumably, nutrients that limited microbial growth in intact litter were mobilized by the fragmentation procedure and enabled microorganisms to grow in fragmented litter materials.  相似文献   

10.
Aerated forest soils are a significant sink for atmospheric methane (CH4). Soil properties, local climate and tree species can affect the soil CH4 sink. A two-year field study was conducted in a deciduous mixed forest in the Hainich National Park in Germany to quantify the sink strength of this forest for atmospheric CH4 and to determine the key factors that control the seasonal, annual and spatial variability of CH4 uptake by soils in this forest. Net exchange of CH4 was measured using closed chambers on 18 plots in three stands exhibiting different beech (Fagus sylvatica L.) abundance and which differed in soil acidity, soil texture, and organic layer thickness. The annual CH4 uptake ranged from 2.0 to 3.4 kg CH4-C ha−1. The variation of CH4 uptake over time could be explained to a large extent (R2 = 0.71, P < 0.001) by changes in soil moisture in the upper 5 cm of the mineral soil. Differences of the annual CH4 uptake between sites were primarily caused by the spatial variability of the soil clay content at a depth of 0-5 cm (R2 = 0.5, P < 0.01). The CH4 uptake during the main growing period (May-September) increased considerably with decreasing precipitation rate. Low CH4 uptake activity during winter was further reduced by periods with soil frost and snow cover. There was no evidence of a significant effect of soil acidity, soil nutrient availability, thickness of the humus layer or abundance of beech on net-CH4 uptake in soils in this deciduous forest. The results show that detailed information on the spatial distribution of the clay content in the upper mineral soil is necessary for a reliable larger scale estimate of the CH4 sink strength in this mixed deciduous forest. The results suggest that climate change will result in increasing CH4 uptake rates in this region because of the trend to drier summers and warmer winters.  相似文献   

11.
Soil respiration is the largest terrestrial source of CO2 to the atmosphere. In forests, roughly half of the soil respiration is autotrophic (mainly root respiration) while the remainder is heterotrophic, originating from decomposition of soil organic matter. Decomposition is an important process for cycling of nutrients in forest ecosystems. Hence, tree species induced changes may have a great impact on atmospheric CO2 concentrations. Since studies on the combined effects of beech-spruce mixtures are very rare, we firstly measured CO2 emission rates in three adjacent stands of pure spruce (Picea abies), mixed spruce-beech and pure beech (Fagus sylvatica) on three base-rich sites (Flysch) and three base-poor sites (Molasse; yielding a total of 18 stands) during two summer periods using the closed chamber method. CO2 emissions were higher on the well-aerated sandy soils on Molasse than on the clayey soils on Flysch, characterized by frequent water logging. Mean CO2 effluxes increased from spruce (41) over the mixed (55) to the beech (59) stands on Molasse, while tree species effects were lower on Flysch (30-35, mixed > beech = spruce; all data in mg CO2-C m−2 h−1). Secondly, we studied decomposition after fourfold litter manipulations at the 6 mixed species stands: the Oi - and Oe horizons were removed and replaced by additions of beech -, spruce - and mixed litter of the adjacent pure stands of known chemical quality and one zero addition (blank) in open rings (20 cm inner diameter), which were covered with meshes to exclude fresh litter fall. Mass loss within two years amounted to 61-68% on Flysch and 36-44% on Molasse, indicating non-additive mixed species effects (mixed litter showed highest mass loss). However, base cation release showed a linear response, increasing from the spruce - over the mixed - to the beech litter. The differences in N release (immobilization) resulted in a characteristic converging trend in C/N ratios for all litter compositions on both bedrocks during decomposition. In the summers 2006 and 2007 we measured CO2 efflux from these manipulated areas (a closed chamber fits exactly over such a ring) as field indicator of the microbial activity. Net fluxes (subtracting the so-called blank values) are considered an indicator of litter induced changes only and increased on both bedrocks from the spruce - over the mixed - to the beech litter. According to these measurements, decomposing litter contributed between 22-32% (Flysch) and 11-28% (Molasse) to total soil respiration, strengthening its role within the global carbon cycle.  相似文献   

12.
Plants act as an important link between atmosphere and soil: CO2 is transformed into carbohydrates by photosynthesis. These assimilates are distributed within the plant and translocated via roots into the rhizosphere and soil microorganisms. In this study, 3 year old European beech trees (Fagus sylvatica L.) were exposed after the chilling period to an enriched 13C–CO2 atmosphere (δ13C = 60‰ – 80‰) at the time point when leaves development started. Temporal dynamics of assimilated carbon distribution in different plant parts, as well as into dissolved organic carbon and microbial communities in the rhizosphere and bulk soil have been investigated for a 20 days period. Photosynthetically fixed carbon could be traced into plant tissue, dissolved organic carbon and total microbial biomass, where it was utilized by different microbial communities. Due to carbon allocation into the rhizosphere, nutrient stress decreased; exudates were preferentially used by Gram-negative bacteria and (mycorrhizal) fungi, resulting in an enhanced growth. Other microorganisms, like Gram-positive bacteria and mainly micro eucaryotes benefited from the exudates via food web development. Overall our results indicate a fast turnover of exudates and the development of initial food web structures. Additionally a transport of assimilated carbon into bulk soil by (mycrorhizal) fungi was observed.  相似文献   

13.
The effects of mechanical perturbations on two soil microarthropod communities (oribatid mites and collembolans) were investigated in a moder beech forest on sandstone. We disturbed the soil matrix by sieving and mixing the litter and soil of the moder profile. The top litter layer (L material) and the deep mineral soil (Bv) remained intact. Three amounts of disturbance were established: a single perturbation, perturbations once every 2 months (60 d) and once every 2 weeks (14 d). Densities of most groups of oribatid mites and all groups of collembolans declined in the disturbance treatments. In most cases, densities were lowest in the strong perturbation treatment (14 d). Desmonomata were the only group of oribatid mites that benefited from intermediate amounts of disturbance but not from the strongest disturbance. Also, disturbances reduced diversity of oribatid mites and collembolans. According to their sensitivity to disturbances oribatid mites ranked Poronota=Enarthronota=Suctobelbidae (the most sensitive)>Oppiidae>Tectocepheus>Desmonomata. The ranking of collembolans was Folsomia (the most sensitive)>Hypogastruridae/Neanuridae>Onychiuridae=Isotomidae>Entomobryidae. Generally, tolerance of disturbance was wider for oribatid mites than for collembolans. The results indicate that disturbances such as mixing of litter and soil and comminution of litter material strongly affect the density and diversity of soil microarthropods. However, they also indicate that the soil microarthropod community is resistant to weaker disturbances. In the field, mechanical disturbances are often caused by burrowing of earthworms. Our results suggest that the high density of microarthropods in moder soils may be due to the low intensities of mechanical disturbances by earthworms.  相似文献   

14.
The application of lime in a mature Norway spruce (Picea abies [L.] Karst.) forest in southern Germany induced major changes in the activity of soil organisms and root growth. Since this may influence the chemical compostion of the soil organic matter (SOM) of the organic surface layer, its composition and changes due to the treatment were examined in this study.Fine roots of Norway spruce have a relatively low content of extractable lipids, a low alkyl C content (13C CPMAS NMR) and a high ratio of non-cellulosic to cellulosic carbohydrates (NC/CC, carbohydrate determination by MBTH and gas chromatography analyses) as compared to needles. Furthermore, they show high ratios of suberin/cutin compounds (thermally assisted hydrolysis and methylation, (THM)) and high ratios of eicosanic acid/phytadiene I in their lipid extracts (pyrolysis-GC/MS).Liming (4 t ha−1 dolomite) of a Norway spruce organic surface layer decreased the proportion of alkyl C, the alkyl C/O-alkyl C ratio, and the content of extractable lipids. The NC/CC ratio and the abundance of suberin relative to cutin components increased. The contribution of the chlorophyll component phytadiene I decreased in relation to eicosanic acid. These changes are attributed to increased fine root formation in the organic layer after liming. Furthermore, the presence of less degraded lignin (THM, peak ratio of 3,4-dimethoxybenzoic acid, methyl ester/3,4-dimethoxy-benzaldehyde) on the limed plot is explained by the increased input of relatively fresh fine root material. On the other hand, the decrease in the carbon-to-nitrogen ratio may be attributed to the higher microbial activity after liming.  相似文献   

15.
Effects of leaf litter of beech (Fagus sylvatica L.) and stinging nettles (Urtica dioica L.) and of the endogeic earthworm species Octolasion lacteum (Örley) on carbon turnover and nutrient dynamics in soil of three beechwood sites on a basalt hill (Hesse, Germany) were investigated in a laboratory experiment lasting for about 1 year. The sites were located along a gradient from basalt (upper part of the hill) to limestone (lower part of the hill) with an intermediate site in between (transition zone). At the intermediate site U. dioica dominated in the understory whereas at the other sites Mercurialis perennis L. was most abundant. The amount and composition of organic matter was similar in soil of the basalt (carbon content 5.9%, C/N ratio 13.8) and intermediate site (carbon content 5.6%, C/N ratio 14.3) but the soil of the intermediate site produced more CO2 (in total +17.5%) and more nitrogen (as nitrate) was leached from this soil (in total +55.6%). It is concluded that the soil of the intermediate site contains a large mobile carbon and nitrogen pool and the formation of this pool is ascribed to the input of U. dioica litter. Leaf litter of U. dioica strongly increased NO3 -N leaching immediately after the litter had been added, whereas nitrogen was immobilized due to addition of beech litter. Despite the very fast initial decomposition of nettle litter, the increase in CO2 production due to this litter material was only equivalent to 20.1% of the amount of carbon added with the nettle litter; the respective value for beech litter was 34.8%. Earthworms altered the time course of carbon and nitrogen mineralization in each of the treatments. In general, earthworms strongly increased mineralization of nitrogen but this effect was less pronounced in soil of the intermediate site (treatments without litter), which is ascribed to a depleted physically protected nitrogen and carbon pool. In contrast, their effect on the total amount of nitrogen mobilized from nettle litter was small. Earthworms significantly reduced CO2 production from soil of the intermediate site (treatments without litter) and it is concluded that earthworm activity contributes to the restoration of the depleted physically protected carbon pool at this site.  相似文献   

16.
A microcosm experiment was carried out for 56 days at 12 °C to evaluate the feeding effects of the endogeic geophagous earthworm species Aporrectodea caliginosa on the microbial use of 15N-labelled maize leaves (Zea mays) added as 5 mm particles equivalent to 1 mg C and 57 μg N g−1 soil. The dry weight of A. caliginosa biomass decreased in the no-maize treatment by 10% during the incubation and increased in the maize leaf treatments by 18%. Roughly 5% and 10% of the added maize leaf-C and leaf-N, respectively, were incorporated into the biomass of A. caliginosa. About 29% and 33% of the added maize leaf-C were mineralised to CO2 in the no-earthworm and earthworm treatments, respectively. The presence of A. caliginosa significantly increased soil-derived CO2 production by 90 μg g−1 soil in the no-maize and maize leaf treatments, but increased the maize-derived CO2 production only by 40 μg g−1 soil. About 10.5% of maize leaf-C and leaf-N was incorporated into the soil microbial biomass in the absence of earthworms, but only 6% of the maize leaf-C and 3% of the maize leaf-N in the presence of earthworms. A. caliginosa preferentially fed on N rich, maize leaf-colonizing microorganisms to meet its N demand. This led to a significantly increased C/N ratio of the unconsumed microbial biomass in soil. The ergosterol-to-microbial biomass C ratio was not significantly decreased by the presence of earthworms. A. caliginosa did not directly contribute to comminution of plant residues, as indicated by the absence of any effects on the contents of the different particulate organic matter fractions, but mainly to grazing of residue-colonizing microorganisms, increasing their turnover considerably.  相似文献   

17.
Soils from 38 German forest sites, dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of overlying organic layers. Microbial biomass N and C were measured by fumigation-extraction. The pH of the soils varied between 3.5 and 8.3, covering a wide range of cation exchange capacity, organic C, total N, and soil C:N values. Maximum biomass C and biomass N contents were 2116 g C m-2 and 347 g N m-2, while minimum contents were 317 and 30 g m-2, respectively. Microbial biomass N and C were closely correlated. Large variations in microbial biomass C:N ratios were observed (between 5.4 and 17.3, mean 7.7), indicating that no simple relationship exists between these two parameters. The frequency distribution of the parameters for C and N availability to the microflora divided the soils into two subgroups (with the exception of one soil): (1) microbial: organic C>12 mg g-1, microbial:total N>28 mg g-1 (n=23), a group with high C and N availability, and (2) microbial:organic C12 mg g-1, microbial:total N28 mg g-1 (n=14), a group with low C and N availability. With the exception of a periodically waterlogged soil, the pH of all soils belonging to subgroup 2 was below 5.0 and the soil C:N ratios were comparatively high. Within these two subgroups no significant correlation between the microbial C:N ratio and soil pH or any other parameter measured was found. The data suggest that above a certain threshold (pH 5.0) microbial C:N values vary within a very small range over a wide range of pH values. Below this threshold, in contrast, the range of microbial C:N values becomes very large.  相似文献   

18.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

19.
Here we studied the effects of gut transit through the earthworm Eudrilus eugeniae, on the physicochemical, biochemical, and microbial characteristics of pig slurry, by analyzing fresh casts. The reduction in the dissolved organic C contents in casts we recorded suggests that during digestion, earthworms assimilated labile organic C preferentially, which is a limiting growth factor for them. Furthermore, both microbial biomass and activity in pig slurry were significantly decreased by earthworm gut transit. It appears that E. eugeniae is able to digest microorganisms, although the addition of glucose to the food increased respiration, indicating that growth of microorganisms in casts could be limited by depletion of labile C. Despite reduced microbial biomass and activity, the metabolic diversity of microbial communities was greater in casts than in original pig slurry. Community level physiological profiles obtained from Biolog Ecoplate data revealed that, after earthworm gut transit, the microbial communities in casts and pig slurry were clearly differentiated by their physiological profiles. The results indicate that first stage in vermicomposting of pig slurry by E. eugeniae, i.e., casting, produced changes that will influence the dynamics of the organic matter degradation by reducing forms of N and C available to microorganisms, hence restricting their growth and multiplication. Nevertheless, the reduced microflora of casts was characterized by an increased catabolic potential that might lead to thorough degradation of pig slurry.  相似文献   

20.
We studied the effects of the terrestrial isopod Armadillidium vulgare on organic matter decomposition and stabilization in a long-term (65-week) laboratory experiment. We quantified the microbial activity in leaf litter (Acer pseudoplatanus) which did not come into contact with isopods, in A. vulgare feces produced from the same litter, and in unconsumed leftover of this litter. Freshly fallen leaf litter and up to 3 day old feces and leftover of litter were used. All materials were air dried immediately after collection and rewetted 1 day before use. Simultaneously, we measured how microbial activity in litter and feces are affected by fluctuations in humidity and temperature and by the addition of easily decomposed substances (starch and glucose).Microbial respiration was lower in feces than in litter or unconsumed leaf fragments. At the same time, moisture and temperature fluctuations and addition of glucose or starch increased respiration much more in litter than in feces. The results indicate that the processing of litter by A. vulgare reduces microbial respiration and reduces the sensitivity of microbial respiration to environmental fluctuations. 13C NMR spectra from feces indicated preferential loss of polysaccharide-carbon and accumulation of lignin with some modification to the aromatic-carbon. TMAH-Py-GC MS showed that lignin content was higher in feces than in litter and that lignin quality differed between the two substrates. Guaiacyl units were depleted in the feces, which indicated breakdown of guaiacyl associated with gut passage. As a conclusion, the results suggest that this common isopod greatly affects leaf litter decomposition. Decomposition of isopod feces in a long-term experiment is lower than litter decomposition which may support stabilization of organic matter in soil. This is caused mainly due to higher content of aromatic carbon in feces, which may cause its considerable resistance to bacterial degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号