首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The N requirement of rice crops is well known. To overcome acute N deficiency in rice soils, this element is usually supplied to the rice crop as the commercially available fertilizer urea. But unfortunately a substantial amount of the urea-N is lost through different mechanisms causing environmental pollution problems. Utilization of biological N fixation (BNF) technology can decrease the use of urea-N, reducing the environmental problems to a considerable extent. Different BNF systems have different potentials to provide a N supplement, and it is necessary to design appropriate strategies in order to use BNF systems for efficient N supply to a rice crop. Research has been conducted around the world to evaluate the potential of different BNF systems to supply N to rice crops. This paper reviews salient findings of these works to assess all the current information available. This review indicates that the aquatic biota Cyanobacteria and Azolla can supplement the N requirements of plants, replacing 30–50% of the required urea-N. BNF by some diazotrophic bacteria like Azotobacter, Clostridium, Azospirillum, Herbaspirillum and Burkholderia can substitute for urea-N, while Rhizobium can promote the growth physiology or improve the root morphology of the rice plant. Green manure crops can also fix substantial amounts of atmospheric N. Among the green manure crops, Sesbania rostrata has the highest atmospheric N2-fixing potential, and it has the potential to completely substitute for urea-N in rice cultivation.  相似文献   

2.
共生固氮在农牧业上的作用及影响因素研究进展   总被引:5,自引:1,他引:5  
共生固N是生物固N的主体部分,具有固N效率高、应用范围广等特点。叙述了主要豆科作物年固N量及固N量占豆科作物本身所吸收N的比例,阐述了豆科作物在与非豆科作物间套轮作中固定N素的转移及对非豆科作物的影响,并介绍了影响豆科作物-根瘤菌共生体共生固N效率的主要因素。开展豆科作物-根瘤菌共生体系方面的研究对农业可持续发展具有重要意义。  相似文献   

3.
黄河流域农业面源污染时空变化及因素分析   总被引:3,自引:2,他引:3  
为探究黄河流域农业面源污染特点及有效治理措施,基于两次全国污染源普查数据,通过补充计算,分析了黄河流域污染物排放总量以及农业面源污染排放量的时空分布特点,探究了流域内各省份影响农业源污染化肥施用量、秸秆产生量和畜禽养殖等因素的时空分布情况以及污染治理效率,讨论了黄河流域面源污染针对性的治理对策。与2006年相比,2017年黄河流域污染物排放总量显著减少,农业源产生的化学需氧量、氨氮污染量占总污染量的比例显著增加,2017年农业源产生的化学需氧量、氨氮、总氮、总磷污染物排放量分别为96.2、1.2、7.9和1.1万t,污染量输出最大的省份为内蒙古,但单位耕地面积污染输出最大的两个省份为河南省和山东省。2017年黄河流域畜禽养殖是化学需氧量排放量的最直接影响因素,化肥是氨氮、总氮及总磷排放量的最直接影响因素,不同污染物指标与主控因子之间呈现显著的线性相关关系。与2006年相比,2017年流域内基础因素典型变化包括内蒙古耕地面积增加30%、流域内秸秆产生量及畜禽养殖猪当量分别增加46%和减少27%。河南、陕西、山东省份的单位面积化肥施用量过大,河南省的污染治理效率需要迫切提升。黄河流域农业面源污染治理应当采取全面治理政策及针对性污染治理策略相结合的方法进行,典型针对性措施包括加强陕西、河南以及山东省瓜果蔬菜化肥减量措施、西部地区牛羊养殖以及中东部地区猪养殖污染治理。  相似文献   

4.
Soils and crops are particularly vulnerable to climate change and environmental stresses. In many agrosystems, soil biodiversity and ecosystem services provided by soils are under threat from a range of natural and human drivers. Agricultural soils are often subject to agronomic practices that disrupt soil trophic networks and make soils less productive in the long term. In this scenario, sustainable soil use aimed at improving plant/root status, growth and development plays a crucial role for enhancing the biological capacity of agricultural soils. This commentary paper is divided into the following four main sections: (i) the contentious nature of soil organic matter; (ii) soil biological quality/fertility; (iii) soil classification; and, (iv) which agricultural practices can be defined as sustainable? The published literature was analyzed within a holistic framework, with agrosystems considered as living systems where soil, vegetation, fauna and microorganisms co-evolve and are reciprocally influenced. Ultimately, this article will suggest a better stewardship of agricultural soils as a natural capital.  相似文献   

5.
亚热带农业小流域水体氮素及其稳定同位素分布特征   总被引:1,自引:0,他引:1  
为控制流域氮素养分流失、改善流域水体环境,以亚热带典型农业小流域脱甲河为研究对象,对表层水体铵态氮(NH_4~+-N)、硝态氮(NO_3--N)浓度和水体硝态氮δ~(15)N(δ~(15)N-NO_3-)、沉积物有机质δ~(15)N(δ~(15)N-Org)浓度进行了连续试验观测,分析氮素浓度及其稳定同位素值的时空特征,探讨影响氮素分布的环境因子及水体NO_3-和沉积物有机质氮素的可能来源。结果表明:水体NO_3--N浓度明显高于NH_4~+-N,均值分别为1.62 mg·L~(-1)和0.90mg·L~(-1),并且分别在6月、8月及冬季较高;城镇区和农田区水体NH_4~+-N浓度与其他类型区差异显著(P0.05),并且显著高于其他水体;NO_3--N浓度在城镇区、农田区及山间林地区较高,水库区较低。支流NH_4~+-N浓度高于干流,均表现为冬季春季夏季秋季;干流、支流NO_3--N浓度分别表现为冬季夏季秋季春季、秋季冬季夏季春季。源头和出口处水体均表现为NO_3--N浓度高于NH_4~+-N,源头处氮素浓度低于出口处。水体δ~(15)N-NO_3-及底泥δ~(15)N-Org值分布范围分别为-19.87‰~8.11‰和-0.69‰~6.51‰,水体δ~(15)N-NO_3-最高值在Ⅲ级河段,最低值出现于Ⅳ级河段,各级河段间水体δ~(15)N-NO_3-11月差异较小,而1、2月差异明显;河流底泥δ~(15)N-Org最高值也位于Ⅲ级河段,而最低值则在Ⅰ级河段,Ⅲ、Ⅳ级河段δ~(15)N-Org值随时间变化趋势较为一致,Ⅰ、Ⅱ级河段δ~(15)N-Org最小值出现于1月。总之,脱甲河水体存在氮素污染现象且以外源输入为主,水体氮素来源主要为土壤有机质、人工合成肥料及陆源有机质,开展流域氮素分布及来源研究对认识流域尺度氮污染物的源解析具有一定科学意义。  相似文献   

6.
Nodulating bacteria from the family Rhizobiaceae are common in the semi-arid tropics around the world. The Brazilian semi-arid region extends over 95 million hectares of which only 3% is suitable for irrigation, therefore leaving an immense dryland area to be exploited by peasant farmers, who often lack appropriate technologies for sustainable management. Cowpea is an important crop in this area, representing the staple protein source for human nutrition. This work aimed to identify rhizobial strains capable of guaranteeing sufficient nitrogen derived from biological fixation for cowpea cultivated in dryland areas, evaluating not just efficiency but also the ecological parameters of competitiveness and survival in the soil. Grain yield and nodulation parameters showed that strain BR 3267 is capable of establishing efficient nodulation, improving both yield and total N accumulated in grain. Cowpea inoculated with strain BR 3267 showed grain productivity similar to plants receiving 50 kg of N per hectare, which is the amount of fertilizer commonly used in the north-east region. These characteristics associated with previously determined ecological properties makes strain BR 3267 an important resource for the optimization of biological nitrogen fixation in cowpea in the dryland areas of the semi-arid tropics. Data on the dynamics of rhizobial populations in such areas have shown that (1) the naturalized rhizobium population is very small and, by themselves, do not promote proper nodulation and, (2) the inoculant rhizobia do not persist between crops. Such characteristics represent an opportunity for the introduction of superior rhizobia strains, such as BR 3267, during the cowpea crop.  相似文献   

7.
近年来设施辣椒连作障碍日益突出,其中氮肥的大量不合理施用和高残留是限制辣椒高产、优质栽培的主要因素之一。研究土著丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与间作体系强化蔬菜对不同形态氮(N)的利用并结合土壤菌丝密度、N形态及酶活性的反馈作用,可为设施土壤N素的高效利用和降低土壤N残留提供依据。本研究采用盆栽试验,设置辣椒||菜豆间作和各自单作种植模式,不同AMF处理[不接种(NM)、接种土著AMF]和不同形态N处理[不施N(N0)、无机氮(碳酸氢铵120mg·kg~(-1),ION)和有机氮(谷氨酰胺120 mg·kg~(-1),ON)],探讨了设施条件下接种土著AMF、施用不同形态N与间作对辣椒、菜豆根围土壤菌根建成、酶活性及N利用的影响。结果表明,与NM相比,接种土著AMF使设施辣椒、菜豆植株生物量及N吸收量显著增加(除菜豆单作-ON处理),显著降低土壤NH_4~+-N、NO_3~--N含量。无论施用何种形态N,均显著增加辣椒、菜豆植株生物量(除菜豆单作-AMF处理)及N吸收量,表现为ONION。与单作-ON-AMF处理相比,间作-ON-AMF处理下的辣椒N吸收量显著增加39.9%、菜豆N吸收量显著增加93.0%。对N利用影响因子的分析结果表明,间作协同接种土著AMF较大程度上增加了土壤有机质含量及蛋白酶、脲酶、硝酸还原酶活性。相关性分析显示,辣椒、菜豆植株N吸收量与AMF侵染率呈极显著正相关关系,而土壤NH_4~+-N和NO_3~--N含量则与AMF侵染率呈现一定的负相关关系。此外,土壤蛋白酶、脲酶和硝酸还原酶活性与辣椒、菜豆植株N吸收量呈正相关关系。可见,所有复合处理中,以间作体系接种土著AMF与施用适量有机氮的组合明显促进了设施辣椒、菜豆生长和N素利用。  相似文献   

8.
ABSTRACT

To research soil organic carbon (SOC) in a typical small karst basin of western Guizhou in southwest China, data from the second national soil resource survey (1980) and data analysed in the laboratory in 2015 were used. This paper examines the changes in soil organic carbon density (SOCD) and soil organic carbon stock (SOCS) in the topsoil (0–20 cm) over the past 35 years based on soil types, and the primary influencing factors are also discussed. The SOCD and SOCS slightly increased over this period. The SOCD increased from 4.91 kg m?2 to 5.13 kg m?2, and the SOCS increased from 368.27 × 103 t to 385.09 × 103 t. The basin sequestered a low level of carbon during this time. Paddy fields were the key contributor to the increases, and the SOCD and SOCS of paddy fields increased by 1.61 kg m?2 and 32.39 × 103 t, respectively. Generally, the SOCD and SOCS in the soils from the southern part of Houzhai Basin increased considerably, and those from the northern part of the basin decreased significantly. The spatial variation of SOCD in the Houzhai Basin was mainly due to natural factors. However, the temporal change of SOC was primary caused by human activities.  相似文献   

9.
黄土半干旱区油松苗木蒸腾特性与影响因子的关系   总被引:4,自引:0,他引:4  
 为分析土壤水分与气象因子对油松蒸腾作用的影响程度,提高造林成活率,并为林地水分管理提供科学依据。在2004年生长季典型晴天,采用盆栽试验,人为控制土壤水分,利用针叶Li-1600稳态气孔仪和BP-3400精密天平等仪器,对黄土半干旱区油松苗木的蒸腾特性及其影响因子的关系进行研究。结果表明:在不同的土壤水分条件下,油松蒸腾速率和气孔阻力的日变化曲线分别呈“双峰型”和“W”型;在典型晴天下,蒸腾速率与土壤含水量的关系呈三次曲线相关,7、8和10月份,油松叶片蒸腾速率达到最大值时所对应的土壤含水量分别为17.7%、19.8%和17.5%。蒸腾速率除自身生理特性的影响外,还受土壤水分和气象因子综合影响,当土壤水分充足时,蒸腾速率与气象因子相关性高;当土壤水分产生胁迫时,蒸腾速率与气象因子相关性降低。在严重土壤水分胁迫下,7和8月份气温对蒸腾作用的影响最大,10月份光合有效辐射的影响最大。在土壤充分供水的条件下,7月份空气相对湿度对蒸腾作用的影响最大,8月份是气温,10月份是叶温。  相似文献   

10.
Pinotage red wines were found to contain a reaction product of malvidin 3-glucoside and caffeic acid, the so-called pinotin A. A total of 50 Pinotage wines from the vintages 1996-2002 were analyzed for the content of pinotin A, malvidin 3-glucoside, caffeic acid, and caftaric acid. Statistical analyses were performed to reveal variations in the content of these compounds and to determine the factors that influence pinotin A formation during wine aging. An exponential increase of the concentration of this aging product was observed with prolonged storage time. The most rapid synthesis of pinotin A was observed in 2.5-4 year old wines, although at this age malvidin 3-glucoside is already degraded to a large extent. This phenomenon is explained by the increased ratio of caffeic acid/malvidin 3-glucoside, which strongly favors the formation of pinotin A and makes side reactions less likely. Pinotin A formation proceeds as long as a certain level of malvidin 3-glucoside is maintained in the wines. In wines >5-6 years old degradation or polymerization of pinotin A finally exceeds the rate of its de novo synthesis.  相似文献   

11.
Iron’s contribution to fixing heavy metals and metalloids in soils is very important. Iron compounds participating in redox processes control the behavior of siderophilic elements with variable oxidation degrees (Cr, As, and Sb). The behavior of heavy elements with permanent oxidation (Zn, Co, and Ni) indirectly depends on iron compounds. In organic soils, iron competes with heavy metals for active places in the functional groups of organic substances. Organic pollutants intensify the reduction of iron (hydr)oxides in an anaerobic environment, which influences the release of arsenic. Iron compounds are used as ameliorating agents and geochemical barriers for fixing heavy elements.  相似文献   

12.
Soil water conservation is critical to long-term crop production in dryland cropping areas in Northeast Australia. Many field studies have shown the benefits of controlled traffic and zero tillage in terms of runoff and soil erosion reduction, soil moisture retention and crop yield improvement. However, there is lack of understanding of the long-term effect of the combination of controlled traffic and zero tillage practices, as compared with other tillage and traffic management practices.In this study, a modeling approach was used to estimate the long-term effect of tillage, traffic, crop rotation and type, and soil management practices in a heavy clay soil. The PERFECT soil–crop simulation model was calibrated with data from a 5-year field experiment in Northeast Australia in terms of runoff, available soil water and crop yield; the procedure and outcomes of this calibration were given in a previous contribution. Three cropping systems with different tillage and traffic treatments were simulated with the model over a 44-year-period using archived weather data.Results showed higher runoff, and lower soil moisture and crop production with conventional tillage and accompanying field traffic than with controlled traffic and zero tillage. The effect of traffic is greater than the effect of tillage over the long-term. The best traffic, tillage and crop management system was controlled traffic zero tillage in a high crop intensity rotation, and the worst was conventional traffic and stubble mulch with continuous wheat. Increased water infiltration and reduced runoff under controlled traffic resulted in more available soil water and higher crop yield under opportunity cropping systems.  相似文献   

13.
This work assesses relationships between characteristic aggregate microstructures related to biological activity in soils under different long‐term land use and the distribution and extractability of metal pollutants. We selected two neighbouring soils contaminated with comparable metal loads by past atmospheric deposition. Currently, these soils contain similar stocks, but different distributions of zinc (Zn) and lead (Pb) concentrations with depth. One century of continuous land use as permanent pasture (PP) and conventional arable (CA) land, has led to the development of two soils with different macro‐ and micro‐morphological characteristics. We studied distributions of organic matter, characteristic micro‐structures and earthworm‐worked soil by optical microscopy in thin sections from A, B and C horizons. Concentrations and amounts of total and EDTA‐extractable Zn and Pb were determined on bulk samples from soil horizons and on size‐fractions obtained by physical fractionation in water. Large amounts of Zn and Pb were found in 2–20‐µm fractions, ascribed to stable organo‐mineral micro‐aggregates influenced by root and microbial activity, present in both soils. Unimodal distribution patterns of Zn, Pb and organic C in size‐fractions were found in horizons of the CA soil. In contrast, bimodal patterns were observed in the PP soil, because large amounts of Zn and Pb were also demonstrated in stable larger micro‐aggregates (50–100‐µm fractions). Such differing distribution patterns characterized all those horizons markedly influenced by earthworm activity. Larger earthworm activity coincided with larger metal EDTA‐extractability, particularly of Pb. Hence, land use‐related biological activity leads to specific soil microstructures affecting metal distribution and extractability, both in surface and subsurface horizons.  相似文献   

14.
J.C. Dijkerman 《Geoderma》1974,11(2):73-93
Pedology is defined as the science that studies the genesis, nature, distribution and use potentiality of soil resources. It uses an empirical scientific methodology, which is the topic of this paper. The role of systems, models, data and theories as key concepts of this scientific methodology is discussed within a pedological framework.Soil is an open system because it loses and receives material and energy at its boundaries. Examples are given of how the soil system may be subdivided into subsystems suited to various types of pedological research.The natural soil system is very complex. Therefore pedologists build models as convenient devices for scientific research. The complex natural system is replaced by a simpler or more abstract model, which can be more easily handled either manually or mentally. The nature, function and design of models are illustrated with several examples from the field of pedology.Data collection is a selective process. It requires selecting from the multitude of information, which is potentially available in the soil system, those data which we assume to be relevant for the solution of our problem. The selection of relevant data is guided by the existing body of pedological knowledge and involves procedures of definition, measurement and classification.Theories explain the interrelationship between data and make them predictable. The term theory includes hypotheses, scientific laws and formal theory, each of which is discussed within the context of pedology. Forms of scientific explanation in pedology are indicated.  相似文献   

15.
16.
17.
Genetic Resources and Crop Evolution - Stachys annua (L.) L., a melliferous archaeophyte plant became a dominant weed of the cereal stubbles of the Carpathian Basin in the medieval three-field...  相似文献   

18.
We studied the variation in the electrophoretic mobility of phaseolins of 202 individual seeds from thirty-eight wild populations of Lima beans (Phaseolus lunatus) in the Central Valley of Costa Rica. We found four main polypeptides or banding regions with molecular weights which ranged from 21.5 to 31 kDaltons. Two of these peptides were polymorphic, and their combination resulted in four distinct genotypes. The frequency of the different genotypes varies among populations, but two of them, namely B11C11, B22C22, were found in most of the populations studied (37 out of 38 populations examined). Overall, there was a lack of heterozygotes among the individuals examined, which strongly suggests that there is gametic disequilibrium for the encoding regions involved in the synthesis of these polypeptides. When we arranged the populations into eight groups according to their proximity and phenology, we found that the distribution of the peptides was also variable among them. The possible association between the distribution of the patterns of electrophoretic mobility observed and climatic factors, such as mean annual rainfall, mean annual temperature and mean annual relative humidity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号