首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This study was undertaken to test the hypothesis that oxidative stress is increased and neutrophil function is decreased in cats with diabetes mellitus (DM). Measures of oxidative stress and neutrophil function were evaluated in 20 control and 15 diabetic cats. Cats were then fed a diet designed specifically for feline diabetics (Purina DM Dietetic Management Feline Formula) for 8 weeks, after which all assays were repeated. Cats with DM had significantly less plasma superoxide dismutase (SOD) than control cats, consistent with a greater degree of oxidative stress in the DM group. Following 8 weeks of consuming a diabetes-specific diet glutathione peroxidase, an antioxidant enzyme increased significantly in both groups. Other parameters of oxidative stress, as well as neutrophil function, were similar between groups and did not change following dietary intervention. The DM cats were significantly older and heavier than the control cats, which may have contributed to differences in parameters of oxidative stress and levels of antioxidant enzymes between these groups, but the decreased level of SOD enzyme in the diabetic group would appear to support the continued development of targeted antioxidant supplementation for this cats with this disease.  相似文献   

2.
OBJECTIVE: To assess plasma viral RNA concentration in cats naturally infected with feline immunodeficiency virus (FIV). ANIMALS: 28 FIV-infected cats. PROCEDURE: Cats were categorized into 1 of the 3 following stages on the basis of clinical signs: asymptomatic (nonclinical) carrier (AC; n = 11), acquired immunodeficiency syndrome-related complex (ARC; 9), or acquired immunodeficiency syndrome (AIDS; 8). Concentration of viral RNA in plasma (copies per ml) was determined by use of a quantitative competitive polymerase chain reaction (QC-PCR) assay. Total lymphocyte count, CD4+ cell and CD8+ cell counts, and the CD4+ cell count-to-CD8+ cell count ratio were determined by use of flow cytometry. RESULTS: Plasma viral RNA concentration was significantly higher in cats in the AIDS stage, compared with cats in AC and ARC stages. Most (5/7) cats in the AIDS stage had low total lymphocyte, CD4+ cell, and CD8+ cell counts. CONCLUSIONS AND CLINICAL RELEVANCE: Concentration of plasma viral RNA is a good indicator of disease progression in FIV-infected cats, particularly as cats progress from the ARC to the AIDS stage. Determination of CD4+ and CD8+ cell counts can be used as supportive indicators of disease progression.  相似文献   

3.
Expression of CD4, CD8, IL-2 receptor alpha chain (IL-2R alpha), and MHC class II (MHC-II) on peripheral blood mononuclear cells were examined in cats infected with feline immunodeficiency virus (FIV). CD4/CD8 T cell ratio in FIV-infected cats was slightly decreased, as compared with that in specific-pathogen-free (SPF) cats. However, there was no statistical differences between them. The number of circulating IL-2R alpha+ cells in FIV-infected cats was higher than that in healthy cats, whereas induction of IL-2R alpha expression by concanavalin A (Con A) stimulation was depressed in FIV-infected cats. By using two-color cytofluorometry, Con A-induced enhancement of IL-2R alpha expression was found to be reduced in both CD4+ and CD8+ populations in PBMC from FIV-infected cats. The circulating MHC-II+ cells were also increased in FIV-infected cats. Furthermore, the induction of IL-2R alpha expression on PBMC after Con A-stimulation significantly depressed by FIV inoculation in vitro. These results suggest that FIV activates PBMC in vivo via direct and/or indirect mechanisms, leading to the unresponsive state of T cells to further stimuli in vitro.  相似文献   

4.
5.
Two hundred and twenty-six cats from the Veterinary Medical Teaching Hospital (VMTH), a cat shelter, and a purebred cattery were tested for chronic feline calicivirus (FCV), feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) infections. Chronic oral carriage of FCV was present in about one-fifth of the cats in each of the groups. FIV infection was not present in the purebred cattery, was moderately prevalent (8%) in the pet population of cats examined at the VMTH for various complaints and was rampant in the cat shelter (21%). Unexpectedly high FeLV infection rates were found in the hospital cat population (28%) and in the purebred cattery (36%), but not in the cat shelter (1.4%). FCV and FeLV infections tended to occur early in life, whereas FIV infections tended to occur in older animals. From 43 to 100% of the cats in these environments had oral cavity disease ranging from mild gingivitis (23-46%), proliferative gingivitis (18-20%), periodontitis (3-32%) and periodontitis with involvement of extra-gingival tissues (7-27%). Cats infected solely with FCV did not have a greater likelihood of oral lesions, or more severe oral disease, than cats that were totally virus free. This was also true for cats infected solely with FeLV, or for cats dually infected with FeLV and FCV. Cats infected solely with FIV appeared to have a greater prevalence of oral cavity infections and their oral cavity disease tended to be more severe than cats without FIV infection. FIV-infected cats that were coinfected with either FCV, or with FCV and FeLV, had the highest prevalence of oral cavity infections and the most severe oral lesions.  相似文献   

6.
Early events in the immunopathogenesis of feline retrovirus infections.   总被引:3,自引:0,他引:3  
Feline leukemia virus and feline immunodeficiency virus (FIV) are lymphotropic retroviruses that cause a wide range of diseases in domestic cats. Although it is known that both viruses are capable of infecting T lymphocytes and that infected cats are lymphopenic, it was not known how infection with either virus might alter specific lymphocyte subpopulations. Using a panel of monoclonal antibodies to feline lymphocyte subpopulations, we examined, by use of flow cytometric analysis, lymphocyte changes in cats naturally infected with FeLV or FIV and explored the early stages in the immunopathogenesis of experimentally induced infection with these viruses. Both groups of naturally infected cats had T-cell lymphopenia. In the FIV-infected cats, the T-cell decrease was principally attributable to loss of CD4+ cells, whereas CD8+ and B-cell numbers remained normal. This led to inversion of the CD4+ to CD8+ ratio in these cats. In contrast, the T-cell lymphopenia in FeLV-infected cats resulted from decrease in CD4+ and CD8+ cells, which led to a CD4+ to CD8+ ratio within normal limits. Experimentally induced infection with these 2 viruses supported these findings. Infection with FIV induced early (10 weeks after infection), chronic inversion of the CD4+ to CD8+ ratio. In contrast, infection with FeLV did not alter CD4+ to CD8+ ratio in the first 20 weeks after infection.  相似文献   

7.
In a previous experiment a group of 15 specified pathogen free (SPF) cats were experimentally infected with a Swiss isolate of feline immunodeficiency virus (FIV). A group of 15 SPF cats served as FIV negative controls. Nine cats of each group were vaccinated with a recombinant feline leukemia virus (FeLV) vaccine, six cats in each group with a placebo vaccine. All vaccinated cats developed high antibody titers to FeLV and were protected against subsequent FeLV challenge infection. In both control groups five of six cats became persistently infected with FeLV. Unexpectedly, the primary immune response to the vaccine antigen was significantly higher in the FIV positive group than in the FIV negative. The secondary response was stronger in the FIV negative cats. The goal of the present investigation was to further study the immune response in these 30 cats. They were immunized twice with the synthetic peptide L-tyrosine-L-glutamic acid-poly(DL-alanine)-poly(L-lysine) (TGAL) 21 days apart. Blood samples were collected on four occasions during the immunization process. They were tested for antibodies to TGAL, complete blood cell counts and CD4+, CD8+ and pan-T-lymphocyte counts. The following observations were made: (1) in contrast to the FeLV vaccine experiment, the primary immune response to TGAL was not significantly stronger in the FIV positive cats when tested by enzyme-linked immunosorbent assay (2). The absolute size of the CD4+ lymphocyte population was distinctly smaller in the FIV positive than in the FIV negative cats. The lowest CD4+ values were found in the dually FIV/FeLV infected cats. (3) A population of CD8+ lymphocytes was identified that was characterized by a distinctly weaker fluorescence. The size of this population increased in FIV positive and decreased in FIV negative cats during the TGAL immunization experiment. (4) The CD4+:CD8+ ratio increased in FIV negative cats during TGAL immunization from 1.9 to 2.3. In contrast, in FIV positive animals the CD4+:CD8+ ratio decreased significantly from 1.9 to 1.3 during the same period. From these and earlier data it was concluded that in short-term FIV infection the immune response to T-cell dependent antigens may be increased over that of the controls. Immune suppression develops gradually with duration of the infection. The significant drop of the CD4+:CD8+ ratio over a 5 week immunization period suggests that antigenic stimulation may accelerate the development of immune suppression in FIV positive cats. If this is a general feature, FIV infection may provide a particularly interesting model for studying the pathogenesis of AIDS.  相似文献   

8.
Oxidative stress and abnormal glutathione metabolism is thought to play an important role in various diseases of cats. However, current assays for the reduced form of glutathione (GSH) are time-consuming and semi-quantitative and do not allow assessment of GSH concentrations in individual cell populations. Therefore, we developed a flow cytometric assay for rapid determination of intracellular GSH concentrations in feline blood leukocytes. The assay was based on the ability of the non-fluorescent substrate monochlorobimane (mBCl) to form fluorescent adducts with GSH in a reaction catalyzed by the enzyme glutathione-S-transferase. Using flow cytometry, we found that mBCl was sensitive and specific for intracellular detection of the reduced form of GSH in feline leukocytes. Intracellular GSH concentrations were also stable for at least 24h in EDTA preserved whole blood samples stored at 4 degrees C. Neutrophils and monocytes from normal cats had significantly higher intracellular concentrations of GSH than T cells and B cells. The effects of FIV infection on intracellular GSH concentrations in cats were assessed using flow cytometry. We found that neutrophils from FIV-infected cats had significantly increased GSH concentrations, whereas intracellular GSH concentrations were significantly decreased in CD4(+) and CD8(+) lymphocytes from FIV-infected cats, compared to age-matched control animals. We conclude that a flow cytometric assay based on mBCl may be used to accurately and rapidly assess the effects of various disease states and treatments on GSH concentration in cat leukocytes and to help assess intracellular oxidative stress.  相似文献   

9.
Feline immunodeficiency virus infection in cats of Japan   总被引:27,自引:0,他引:27  
A seroepidemiologic survey for feline immunodeficiency virus (FIV) infection was conducted in Japan. Between June and December 1987, individual sera (n = 3,323) were submitted by veterinary practitioners from many parts of the country. Specimens were from 1,739 cats with clinical signs suggestive of FIV infection and from 1,584 healthy-appearing cats seen by the same practitioners. The overall FIV infection rate among cats in Japan was 960/3,323 cats (28.9%). The infection rate was more than 3 times higher in the clinically ill cats, compared with that in the healthy cats of the same cohort (43.9 vs 12.4%). Male cats were 1.5 times as likely to be infected as were females. Almost all FIV-infected cats were domestic cats (as opposed to purebred cats). Complete clinical history was available for 700 of 960 FIV-infected cats. Of these 700 FIV-infected cats, 626 (89.4%) were clinically ill, and the remainder did not have clinical signs of disease. The mean age at the time of FIV diagnosis for the 700 cats was 5.2 years, with younger mean age for males (4.9 years) than for females (5.8 years). Most of the infected cats (94.7%) were either allowed to run outdoors or had lived outdoors before being brought into homes. The mortality for FIV-infected cats during the 6 months after diagnosis was 14.7%, and the mean age at the time of death was 5.7 years. Concurrent FeLV infection was seen in 12.4% of the FIV-infected cats, but this was not much different from the historical incidence of FeLV infection in similar groups of cats not infected with FIV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Increased susceptibility to intracellular pathogens in HIV-infected individuals and FIV-infected cats is attributed to a defective T-helper 1 (Th1) immune response. However, little is known about specific cytokine responses to secondary pathogens. To address this question, control and FIV-infected cats were challenged with Toxoplasma gondii, and lymph node cells analyzed for cytokine mRNA expression. Twenty-four weeks post-FIV infection, prior to T. gondii challenge, IL2 and IL12 mRNAs were depressed, whereas IL10 and IFNgamma mRNAs were increased in CD4+ and CD8+ subsets. Following T. gondii challenge, control cats showed increased expression of IL2, IFNgamma, IL10, IL12, and IL6 mRNAs. In contrast, IL2, IL6, IFNgamma, and IL12 mRNAs were suppressed in FIV-T. gondii co-infected cats, whereas IL10 remained at the high prechallenge levels. IFNgamma and IL10 mRNAs were produced by both CD4+ and CD8+ cells in FIV-T. gondii cats. Elevated IL10 may suppress a Th1 cytokine response to T. gondii challenge.  相似文献   

11.
Feline immunodeficiency virus (FIV) infection of cats is an animal model for the pathogenesis of CD4+ lymphopenia and thymus dysfunction in HIV-infected humans. Recently, a monoclonal antibody (755) was reported to recognize the feline homologue to CD45RA, allowing the enumeration of na?ve T cells in cats. We tested the hypothesis that pediatric FIV infection would be associated with a selective loss of na?ve CD4+ lymphocytes by inoculating newborn cats with a pathogenic clone of FIV (JSY3) or a related clone with an inactive ORF-A gene (JSY3-DeltaORFA), and compared the data to age-matched uninfected control cats. Both FIV inocula were associated with a reduction in the CD4-CD8 ratio (p=0.01), which was attributable to a disproportionate loss of na?ve CD4+ cells (p=0.01) vs. na?ve CD8+ cells. Therefore, the reduced CD4:CD8 ratio in FIV-infected juvenile cats is associated with a selective depletion of na?ve CD4+ cells from the blood.  相似文献   

12.
Cell-free and cell-associated FIV effectively cross the mucosa of the feline female reproductive tract. To identify possible cellular targets of FIV and to characterize changes in mucosal immunity after infection, we examined the types and numbers of immune cells residing in the reproductive tracts of control and intravaginally FIV-infected cats. Sections of the vestibule, vagina, cervix, uterus, and ovaries, were examined by immunohistochemistry for CD4+ and CD8+ T lymphocytes, CD22+ B lymphocytes, CD1a+ dendritic cells, and CD14+ macrophages. The reproductive tract of uninfected cats contained substantial numbers of CD8+ T lymphocytes, CD4+ T lymphocytes and macrophages, as well as moderate numbers of CD1a+ dendritic cells, and few B lymphocytes. The most prominent change between FIV- and FIV+ cats was a marked decrease in the concentration of CD4+ T lymphocytes resulting in inverted CD4+:CD8+ ratios throughout the reproductive tract of infected cats. There was also a trend towards increasing numbers of CD1a+ dendritic cells in the intravaginally-infected FIV+ cats, and decreasing numbers of macrophages and CD22+ B lymphocytes. This study indicates that similar to the peripheral immune system, FIV infection is associated with CD4+ cell loss and reduced CD4+:CD8+ ratios in the female reproductive mucosal tissue.  相似文献   

13.
The hematological and virological effects of recombinant human granulocyte colony-stimulating factor (rHuG-CSF) were evaluated in feline immunodeficiency virus (FIV)-infected cats. Six age-matched, FIV-infected cats used in this cross-over study were injected subcutaneously with 5 microg/kg of rHuG-CSF daily for 3 weeks, while six control cats received a placebo. Five of six rHuG-CSF-treated cats had significant increases in neutrophil counts that peaked on days 11-21 of treatment. All rHuG-CSF-treated cats exhibited an increase in myeloid:erythroid ratios of the bone marrow cells without significant changes in lymphocyte, CD4 counts, CD4/CD8 ratios, RBC counts, FIV antibody titers, and FIV loads in peripheral blood, and without clinical and hematological toxicities. Five of six rHuG-CSF-treated cats developed antibodies to rHuG-CSF by 14-21 days of treatment, which correlated with decreasing neutrophil counts and increasing neutralizing antibodies to rHuG-CSF. Three cats re-treated with rHuG-CSF rapidly developed neutralizing antibodies to rHuG-CSF, while one cat also developed neutralizing antibodies to recombinant feline G-CSF (rFeG-CSF). Overall, rHuG-CSF treatment increased neutrophil counts in FIV-infected cats without affecting the infection status of cats. However, long-term use of rHuG-CSF is not recommended in cats because of the neutralizing antibody production to rHuG-CSF that affects the drug activity. In addition, a preliminary finding suggests that repeated treatment cycle can also induce cross-neutralizing antibodies to rFeG-CSF, which may potentially affect the homeostasis of endogenous FeG-CSF.  相似文献   

14.
Lesional skin of cats with allergic dermatitis has a cellular infiltrate and a CD4/CD8 ratio comparable to that in humans with atopic dermatitis. CD4+ helper T cells and in particular cells belonging to the Th2 subset play an important role in disease pathogenesis in humans. We investigated the cytokine pattern of CD4+ T cells in situ, with special emphasis on the putative presence of cells producing interleukin 4 (IL4), in cats with allergic dermatitis. Immunohistochemical procedures were used to determine that CD4+ T cells in lesional and nonlesional skin of cats with allergic dermatitis can produce IL4, as occurs in humans. Lesional and nonlesional skin of cats with allergic dermatitis had significantly more IL4+ T cells (P = 0.001) than did skin of healthy control cats. Double staining indicated that all IL4+ cells were positive for pan-T or CD4 markers. Double labeling for mast cell chymase and IL4 stained primarily different cells. Western blotting demonstrated cross-reactivity between the antibody against human IL4 and a feline recombinant IL4. These results indicate that IL4 is primarily produced by CD4+ T cells and is also present in clinically uninvolved skin, indicating a role in the pathogenesis of allergic dermatitis in cats.  相似文献   

15.
Feline immunodeficiency virus (FIV) infection leads to hypergammaglobulinemia through mechanisms that remain poorly understood. We investigated changes in plasma globulin level, B cells, and T cells with progression of the clinical stage of FIV-infected cats. We classified FIV-infected cats into the stage of Asymptomatic carrier (AC) and AIDS-related complex (ARC) based on the clinical symptoms, and measured the plasma globulin level, the CD4(+) T-cell counts, and analyzed surface markers of B cells. We investigated the relationship between the plasma globulin level and regulatory T cells (Tregs) using the Forkhead box P3 (FOXP3) mRNA expression level. In FIV-infected cats, the plasma globulin level and the surface immunoglobulin (sIg)(+) CD21(-) B-cell counts were increased, whereas the CD4(+) T-cell counts were decreased compared with specific-pathogen free (SPF) cats. The mRNA expression of Blimp-1 (master gene of plasma cells) was increased in peripheral blood, and the FOXP3 mRNA expression level was decreased in CD4(+) T-cells. These immunological changes were marked in the ARC stage. These data indicate that the decrease of Tregs and the increase of plasma cells lead to hypergammaglobulinemia.  相似文献   

16.
Recent evidence suggests that feline members of the genus Porphyromonas are of consequence in periodontal disease in cats. Several possible virulence factors from feline strains of Porphyromonas gingivalis have been described that have similarities to those of human P. gingivalis. Both human and feline strains of P. gingivalis produce superoxide dismutase (SOD) which has been proposed as modulator of the inflammatory response during infection. The objective of this study was to clone the superoxide dismutase gene of feline P. gingivalis, to compare the characteristics of its product with that of the native enzyme and to determine its immunoreactivity in cats with periodontal disease. The sod gene of the feline strain Veterinary Pathology and Bacteriology (VPB) 3457 of P. gingivalis was amplified by PCR and cloned in frame with the alpha-peptide of the LacZ gene of E. coli in plasmid pUC19. This construct expressed SOD activity in E. coli with characteristics similar to those of the native SOD enzyme of P. gingivalis human strain 381 and the parent feline strain VPB 3457. The recombinant SOD had an apparent molecular weight of 54,700+/-1300 (S.E.M.) and was inactivated by 5mM hydrogen peroxide but not by 2mM KCN. There was a significant association (P=0.005) between the immunoreactivity of cats to P. gingivalis VPB 3457 soluble whole cell proteins on immunoblots and their responsiveness to the SOD protein. This suggests that cats showing a marked serum responsiveness to P. gingivalis itself, react to the SOD enzyme and further supports the role of feline P. gingivalis in periodontal disease.  相似文献   

17.
Between 1988 and 1991, feline immunodeficiency virus (FIV) infection status was evaluated in 1,160 cats examined at an oncology referral and general practice in Los Angeles, California. Twenty-nine (2.5%) cats were FIV positive. Neoplasia was present in 18 of the 29 (62%) cats. Sampling for neoplasia was intentionally biased in the oncology referral group. However, 33% (6/18) of FIV-infected cats with neoplasia originated from the general practice. Three neoplastic processes were observed; myeloproliferative disease (MPD; 5/18), lymphoma (LSA; 5/18), and squamous cell carcinoma (SCC; 7/18). One cat had LSA and SCC. Extranodal sites of LSA were common (66%) in FIV-infected cats. Sites of LSA were submandibular and mesenteric lymph nodes, liver, kidneys, periorbital area, and diffuse (heart, pancreas, bladder). Sites of SCC were sublingual (n = 2), nasal planum (n = 3), nasal planum and eyelids (n = 1), and mandible (n = 2). Feline leukemia virus co-infection was observed in 17% (5/29) of FIV-infected cats. The FIV-infected cats with MPD were young (range, 8 months to 13 years; median, 4 years) and had short survival duration (2, 6, 21, 134, 249 days) even in response to aggressive treatment. The FIV-infected cats with LSA were older (median age, 8 years; range, 4 to 14 years) and survived 60 days if untreated. Cats administered chemotherapy survived 39, 45, 217, and 243 days; the latter 2 cats had partial remission of 2 months' duration. Older FIV-infected cats had SCC (median age, 12 years; remission range, 7 to 16 years) because of more frequent association of both diseases in older cats with outdoor environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The hemostatic function of 40 feline immunodeficiency virus (FlV) seropositive and 8 FIV and feline leukemia virus (FeLV) seropositive cats was evaluated and compared with reference values from 30 clinically healthy cats. The FIVpositive cats were divided into 3 groups: group I included asymptomatic carriers; group II comprised sick FIV-infected cats with illnesses not likely to influence the hemostatic system; and group III included FIV-positive cats with diseases potentially associated with coagulopathies. Platelet counts in FIV/FeLV-infected cats were significantly lower than in healthy cats (P < .003), whereas the differences in the 3 groups of FIV-positive cats were variable (group I, P= .009; II, P= .05; III, P= .09). Thrombocytopenia (< 145,000 platelets/μL) was present in 4 FIV-positive and 3 FIV/FeLV-positive cats. Platelet aggregation induced by collagen (0.5 and 0.25 μg/mL), adenosine diphosphate (ADP) (1 and 0.6 μmol/L), and thrombin (0.4 and 0.25 IU/mL) was not significantly different from that of healthy cats. The plasma coagulation system was evaluated by measuring one-stage prothrombin time (OSPT), activated partial thromboplastin time (APTT), thrombin time, fibrinogen concentration, coagulation factor assays, fibrinogen and fibrin degradation products (FDP), and plasma exchange test. The OSPT was similar in FlV-seropositive cats and in the healthy control group. Cats with FIV infection, however, had markedly shorter clotting times than healthy cats when using a modified test system (P < .05). In all groups of FIV-infected cats and in those with FIV/FeLV infection, APTT measured with 2 different commercially available tests, and a modified plasma assay was markedly prolonged compared with healthy cats (APTT1 and 2:3 modification: P < .01; APTT2: P < .05 except group III). In 22 of 40 cats with FIV and in 5 of 8 cats with FIV/FeLV infection, plasma samples were beyond the reference range. The thrombin time was also significantly prolonged in cats with FIV and FIV/FeLV infection (P < .01); values in 17 of 40 FIV-positive cats were above reference range. The mean fibrinogen concentration of cats with FIV and FIV/FeLV infection was higher than in the healthy control group (P < .001). Factor VIII activity of 4 cats with FIV infection was 1.5 times higher than that of healthy cats. Factor XII activity of 3 cats from a group of 20 cats with prolonged APTT was between 20% and 35%. Factor IX and XI activities ranged between 70% and 120%. The markedly prolonged APTT in 2 FIV-positive cats could be shortened considerably in a plasma exchange test using 20% feline pooled plasma. The alterations in the coagulogram of FIV-seropositive cats were not related to a clinical stage or concurrent diseases. A definite explanation of the distinct disorder within the intrinsic plasma coagulation system in FIV-infected cats was not found.  相似文献   

19.
Clinicopathologic and immunophenotypic characteristics of large granular lymphocyte (LGL) neoplasia in 21 cats were examined. All cats were domestic short (19) or long hair (2) with a mean age of 9.3 years at diagnosis. Increased peripheral blood LGL counts were present in 18/21 cats. Neutrophilia (12/21 cats) and increased serum liver enzymes (7/12), total and direct bilirubin (7/13), BUN (5/14), and creatinine (2/14) were observed. Cats usually presented with advanced disease and none survived longer than 84 days (mean 18.8 days) postdiagnosis. Cytologically, LGLs had a mature (6/21), immature (13/21), or mixed (2/21) morphology. Necropsy lesions consisted of neoplastic lymphoid infiltrates in the jejunum, ileum, and duodenum in decreasing order of frequency. In the small intestine, mucosal ulceration (9/13) and epitheliotropism of neoplastic cells (9/13) were common. Neoplastic infiltrates were also present in the mesenteric lymph nodes (13/13), liver (12/13), spleen (8/13), kidneys (5/7), and bone marrow (5/7). A T cell phenotype (CD3epsilon+) characterized LGL neoplasia in 19/21 cases. A CD8alphaalpha+ cytotoxic/suppressor phenotype was present in 12/19 T cell tumors, 2 had a CD4+CD8alphaalpha phenotype, 3 had a CD4-CD8- phenotype, and 2 were CD4+ helper T cells. CD8beta chain expression was not detected in any instance. In two cats, a B or T cell origin could not be established. CD103 was expressed by 11 of 19 (58%) of the lymphomas tested. The immunophenotypic features shared by neoplastic LGLs in the cat and feline intestinal intraepithelial lymphocytes (IELs) support a small intestinal IEL origin for feline LGL lymphoma.  相似文献   

20.
A significant elevation in the percentage of CD4+ and CD8+ T-lymphocytes expressing major histocompatibility complex (MHC) Class II antigens was observed in the blood of cats shortly after they were experimentally infected with feline immunodeficiency virus (FIV). In addition to an increase in the relative proportion of T-lymphocytes expressing Class II antigens, there was an increase in the density of Class II antigens on the cell surface. These elevations were still evident at the completion of the 5 month study. A second group of cats that had been infected with FIV for almost 5 years, and with either normal or abnormally low levels of CD4+ T-lymphocytes, had similar elevations in MHC II expression, suggesting that such abnormalities are lifelong. Cats with chronic (2 year) feline leukemia virus (FeLV) infection or dual FIV/FeLV infections also showed similar alterations in MHC II expression on CD4+ and CD8+ T-lymphocytes, suggesting that these alterations were not FIV specific. Feline T-lymphocytes expressed more MHC II antigen and interleukin-2 (IL-2) receptor following stimulation in vitro with conconavalin A and IL-2, demonstrating that feline T-lymphocytes respond to activation signals in a manner similar to T-lymphocytes of other species. However, changes in MHC II expression on T-cells of FIV infected cats were not explainable by viral induced T-cell activation alone, because FIV infected cats with elevated MHC II expression did not have coincident elevations in IL-2 receptor expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号