首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root morphology under well-watered conditions sampled on two occasions and under low-moisture stress was studied in a randomly chosen subset of 56 doubled haploid lines derived from a cross between IR64 and Azucena at two growth stages during the vegetative stage. A molecular map of the same population served as the basis for locating QTLs controlling root morphology and associated traits. The region flanking the RFLP markers RZ730 and RZ801 on chromosome 1 were associated with plant height in all three sampling environments. This position corresponds to sd-1 a semi-dwarfing gene. A total of 15 QTL were detected at the two developmental stages, of which only three QTL were common. Region flanked by RG157 and RZ318 (chromosome 2) contained QTL for root thickness under two different developmental stages. In total, 21 QTL for different traits were detected under low-moisture stress condition. While two QTL for plant height on chromosomes 1 and 3 were common, none of the loci for root morphological traits was common between the two different moisture regimes. The chromosomal segment between RG171 and RG157 contained QTL controlling tiller number per plant, total root length, root volume and total root number per plant. Absence of common QTL for root traits between two developmental stages and two moisture regimes suggests the existence of parallel genetic pathways operating at different growth stages and moisture regimes. Root volume and total root number per plant decreased significantly under stress, whereas maximum root length and plant height exhibited non-significant increases under stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Increasing crop productivity is one of the prime goals of crop breeding research. Rice grain yield is a complex quantitative trait governed by polygenes. Although several QTLs governing grain yield traits have been reported and limited attempts have been made to map QTLs for grain yield parameters in Basmati rice. A population from the cross Sonasal and Pusa Basmati 1121 comprising 352 RILs was generated through the single seed descent method. A total of 12 QTLs governing yield and yield-related traits were mapped on six chromosomes, namely, 1, 2, 3, 7, 8 and 9, of which five QTLs were novel. We identified a novel and robust epistatic QTL (qPH1.1 and qPL1.1) governing plant height and panicle length, flanked by the markers RM5336-RM1 on chromosome 1. The gene encoding brassinosteroid insensitive 1-associated receptor kinase 1 precursor is the putative candidate gene underlying this epistatic QTL. Another novel QTL, qNT3.1, governing tiller number was bracketed to a region of .77 Mb between the markers RM15247 and RM15281 on chromosome 3. Of the 57 annotated gene models, Os03g0437600 encoding alpha/beta-fold hydrolase, a homologous to AtKai2 is a putative candidate gene underlying the novel QTL qNT3.1. The other QTLs such as qDFF1.1 governing days to 50% flowering co-localizes with the gene Ghd7, QTL for plant height qPH1.2 co-localizes with the gene sd1, the QTLs for panicle length co-localizes with FUWA and DEP2, the QTL for tiller number co-localizes with OsRLCK57 and QTLs for thousand-grain weight co-localize with the major gene GS3. The QTLs identified in the current study can be effectively used in marker-assisted selection for developing Basmati rice varieties with a higher yield.  相似文献   

3.
Whitebacked planthopper (WBPH) is an important insect pest of rice. In this study, we report quantitative trait loci (QTL) associated with resistance to WBPH using a doubled‐haploid (DH) mapping population derived from the cross IR64/Azucena. We evaluated a set of 91 DH lines using various screening tests which measure seedling resistance, antibiosis and tolerance to WBPH. QTL analysis involving a RFLP map of 175 markers detected a significant QTL on chromosome 7 (RG511‐RG477) associated with seedling resistance to WBPH. In addition, QTL analysis involving available defence related candidate genes as markers on a sub set of 60 DH lines showed significant association of genomic regions on chromosome 1 (W1‐pMRF1), 2 (XLRfrI7‐RG157) and 7 (RG711‐CDO418) with resistance to WBPH. Several suggestive QTL were detected on chromosomes 2, 3, 6, 7, 8 and 11 showing the possibility of their association with resistance to WBPH. The phenotypic contribution of the QTL ranged from 8.4% to 32.1%. Some of the WBPH resistance QTL detected in this study showed similar map positions with the QTL reported for resistance to brown planthopper (BPH) in the same mapping population. These results would be useful for attempts to trace the genes associated with resistance to planthoppers in rice.  相似文献   

4.
A recombinant inbred line (RIL) population consisting of 153 lines derived from a cross between indica ‘Zhongyouzao8’ and japonica ‘Toyonishiki’ rice was used to detect stable quantitative trait loci (QTL) for rapid visco analyser (RVA) characteristics under four environmental conditions. We identified 93 QTL for RVA profiles, and four pleiotropic regions harbouring stably expressed QTL were detected on chromosomes 2, 6, 7 and 11. These newly identified and stable QTL will facilitate further research into the genetic mechanism regulating RVA profiles. Amylose content (AC) was correlated with RVA traits. AC and RVA traits were unaffected by indica–japonica subspecies differentiation, suggesting that RVA profiles were mainly influenced by the Wx gene. The RIL population was divided into two subpopulations according to Wx genotypes. A total of 106 QTL associated with RVA profiles were detected in the subpopulations. These QTL differed from those detected in the whole population in terms of their genomic location, number, logarithm of odds values and amount of phenotypic variance explained. Using this strategy, we detected QTL with minor effects and eliminated false due to the Wx gene.  相似文献   

5.
Drought is a major constraint to the productivity of rice in upland ecosystems. The rice root system plays an important role in the regulation of water uptake and extraction from deep soil layers. The aim of this research was to study the variation in root morphology and the genetic diversity in upland rice accessions. Thirty-three upland rice accessions originated from Vietnam along with 13 selected upland rice lines from several other countries were used in this study. Variation in root morphology was observed in most of the investigated root traits such as maximum root length, total root dry weight, deep root to shoot ratio, and total root to shoot ratio. Most of the traits showed significant correlation and appeared interrelated. Genetic diversity among upland rice accessions was studied with microsatellite markers. Forty-one alleles were detected with 14 rice microsatellite primer pairs among all the rice accessions. Two dendrograms have been created based on 35 microsatellite alleles and 10 morphological traits data for 38 accessions and compared. These results provided useful information for the selection of suitable cross combinations for mapping quantitative trait loci (QTLs) related to drought resistance in upland rice.  相似文献   

6.
7.
Terminal heat stress has the potential negative impact on wheat production across the world, especially in South Asia. Under the threat of terminal heat stress, wheat genotypes with stay green trait would suffer from high temperature stress during their long grain filling duration (GFD). The genotypes with short GFD would be advantageous. To identify quantitative trait loci (QTL) for heat tolerance, a RIL population of K 7903 (heat tolerant) and RAJ 4014 (heat sensitive) wheat genotypes was investigated under timely and late‐sown conditions. Heat susceptibility index of GFD, yield components and traits under late‐sown condition were used as phenotypic data for QTL identification. Stable QTLs associated with these traits were identified on chromosomes 1B, 2B, 3B, 5A and 6B. The LOD value ranged from 2.9 to 5.0 and the corresponding phenotyping variation explained ranged from 12.0–22%. QTL for heat susceptibility index for the grain filling duration were colocalized with QTL for productive tillers under late sown and GFD under late‐sown condition on chromosomes 1B and 5A, respectively. These genomic regions could be exploited for molecular wheat breeding programmes targeting heat tolerance.  相似文献   

8.
A doubled haploid (DH) population of 125lines derived from IR64 × Azucena, an indicajaponica cross were grown in three different locations in India during the wet season of 1995. The parents of mapping population had diverse phenotypic values for the eleven traits observed. The DH lines exhibited considerable amount of variation for all the traits. Transgressive segregants were observed. Interval analysis with threshold LOD > 3.00 detected a total of thirty four quantitative trait loci (QTL) for eleven traits across three locations. The maximum number of twenty QTL were detected at Punjab location of North India. A total of seven QTL were identified for panicle length followed by six QTL for plant height. Eight QTL were identified on three chromosomes which were common across locations. A maximum of seven QTL were identified for panicle length with the peak LOD score of 6.01 and variance of 26.80%. The major QTL for plant height was located on Chromosome 1 with peak LOD score of 16.06 flanked by RZ730-RZ801 markers. Plant height had the maximum number of common QTL across environment at the same marker interval. One QTL was identified for grain yield per plant and four QTL for thousand grain weight. Clustering of QTL for different traits at the same marker intervals was observed for plant height, panicle exsertion, panicle number, panicle length and biomass production. This suggests that pleiotropism and or tight linkage of different traits could be the plausible reason for the congruence of several QTL. Common QTL identified across locations and environment provide an excellent opportunity for selecting stable chromosomal regions contributing to yield and yield components to develop QTL introgressed lines that can be deployed in rice breeding program. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Evaluation for root morphology and related characters at three different stages and different moisture regimes was made using 9backcross populations obtained by crossing selected doubled haploid lines derived fromIR64 × Azucena with IR64. Marked genotypic differences were observed for all the characters across three samplings. In samplings at 80 days after sowing, significant reductions in mean root and shoot dry weights were noticed from well-watered to severely-stressed conditions, but higher root to shoot dry weight ratios were observed under severe stress condition. In the samplings at maturity, significant increases in mean values of all characters except shoot dry weight and root number, were observed from both well watered to stress conditions. However, individual backcross populations varied with respect to root and shoot dry weights across the moisture regimes. Estimates of heritability were reduced from the 1st to 3rd samplings as well as from WW to SS conditions. In the third sampling, root volume, root thickness and maximum root length were found to be interrelated. The experimental materials were classified into two distinct groups by dendrogram based on 175 markers. This classification was fairly similar to phenotypic classification based on root morphology with IR64 and Azucena falling into the respective main groups. Correlations of marker heterozygosity with hybrid performance and heterosis differed markedly between the 2nd and 3rdsamplings as well as between well watered and severe stress conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
In maize, high grain moisture (GM) at harvest causes problems in harvesting, threshing, artificial drying, storage, transportation and processing. Understanding the genetic basis of GM will be useful for breeding low‐GM varieties. A quantitative genetics approach was used to identify quantitative trait loci (QTL) related to GM at harvest in field‐grown maize. The GM of a double haploid population consisting of 240 lines derived from Xianyu335 was evaluated in three planting seasons and a high‐density genetic linkage map covering 1546.4 cM was constructed. The broad‐sense heritability of GM at harvest was 71.0%. Using composite interval mapping, six QTL for GM at harvest were identified on five chromosomes (Chr). Two QTL located on Chr1, qgm1‐1 and qgm1‐2, explained 5.0% and 10.8% of the phenotypic variation in GM at harvest, respectively. The QTL qgm2, qgm3, qgm4 and qgm5 accounted for 3.3%, 8.3%, 5.4% and 11.0% of the mean phenotypic variation, respectively. Because of their consistent detection over multiple planting seasons, the detected QTL appear to be robust and reliable for the breeding of low‐GM varieties.  相似文献   

11.
Rice black‐streaked dwarf virus disease (RBSDVD), transmitted by small brown planthopper (SBPH, Laodelphax striatellus), causes serious loss in rice production. Breeding resistant cultivars are one of the most effective strategies to control the virus disease and its vector. By both natural inoculations in the field and modified seedling‐box screening test in the glasshouse, an indica variety WR24 showed high resistance to RBSDVD and SBPH. An F2:3 population consisting of 153 lines derived from a cross between WR24 and a susceptible japonica variety Suyunuo was used for quantitative trait loci (QTL) analysis of RBSDVD and SBPH resistance. The linkage map consisting of 130 SSR markers was constructed with an average marker interval of 13.90 cM, spanning a total of 1890.9 cM. Totally, five QTLs for RBSDV resistance, viz. qRBSDV3WR24, qRBSDV6WR24, qRBSDV7WR24, qRBSDV9WR24 and qRBSDV11WR24, were detected on chromosomes 3, 6, 7, 9 and 11, with LOD scores of 2.7, 3.08, 3.13, 5.28 and 3.7, respectively. Meanwhile, three QTLs for SBPH resistance, including qSBPH5WR24, qSBPH7WR24 and qSBPH10WR24, were mapped on chromosomes 5, 7 and 10, with LOD scores of 2.18, 3.5 and 3.57, respectively. All resistant alleles were from WR24. Among these QTLs, qRBSDV7WR24, qSBPH5WR24 and qSBPH10WR24 were newly reported, and qSBPH10WR24 showed major effect that explained 17.9% of total phenotypic variance. The RBSDVD and SBPH resistance QTLs and the tightly linked DNA markers can be utilized in RBSDV and SBPH resistance breeding in rice.  相似文献   

12.
Summary Factors favouring callus proliferation and subsequent regeneration of plants from pollen grains of rice anthers (Oryza sativa L., cvx. Bahia, Girona, Balilla × Sollana and Sequial) were determined. Cultivar differences in response were found, such as a high rate of haploid plant regeneration.In addition, isolated pollen grain culture was used to induce tissue proliferation outside the anther walls. The frequency of callus formation from isolated pollen grains was very low. It was necessary to preculture the anthers before pollen grain separation, in order to accomplish a successful development later. Root differentiation was observed in some of the obtained callus.  相似文献   

13.
Submergence-induced suppression of seedling vigor is a serious constraint particularly in the direct seeding rice cultivation system. To identify quantitative trait loci (QTLs) associated with seedling vigor in rice under submergence, a mapping population of 98 Backcross Inbred Lines derived from a cross of Nipponbare/Kasalath//Nipponbare was used. Phenotypic evaluation of seedling vigor under submergence was based on shoot length (SHL), root length (RTL) and shoot fresh weight (SFW) using a test tube bioassay method. Thirty-two putative QTLs were detected among which 7 were for SHL, 11 for RTL and 14 for SFW. Phenotypic evaluation was also made of the parental lines and a set of 54 chromosome segment substitution lines in which Nipponbare segments were substituted for by their homologous Kasalath segments covering the entire rice genome. Two QTLs with more than 10 % contribution to the total phenotypic variance were verified for SHL, and at least one for RTL and six for SFW on chromosomes 1, 3, 4, 6 and 7 at the 1 % significance level. Among these, all but two showed reductions in one, two or all three traits. Our present and previous results suggest that the Nipponbare genome has a potential to improve seedling vigor under submergence and that japonica germplasms can be used to breed for this important trait in indica rice.  相似文献   

14.
Breeding efforts to improve grain yield, seed protein concentration and early maturity in pea (Pisum sativum L.) have proven to be difficult. The use of molecular markers will improve our understanding of the genetic factors conditioning these traits and is expected to assist in selection of superior genotypes. This study was conducted to identify genetic loci associated with grain yield, seed protein concentration and early maturity in pea. A population of 88 recombinant inbred lines (RILs) that was developed from a cross between 'Carneval' and 'MP1401' was evaluated at 13 environments across the provinces of Alberta, Manitoba and Saskatchewan, Canada in 1998, 1999 and 2000. A linkage map consisting of 193 AFLPs (amplified fragment length polymorphism), 13 RAPDs (random amplified polymorphic DNA) and one STS (sequence tagged site) marker was used to identify putative quantitative trait loci (QTL) for grain yield, seed protein concentration and early maturity. Four QTL were identified each for grain yield and days to maturity, and three QTL were identified for seed protein concentration. A multiple QTL model for each trait showed that these genomic regions accounted for 39%, 45% and 35% of the total phenotypic variation for grain yield, seed protein concentration and days to maturity, respectively. The consistency of these QTL across environments and their potential for marker-assisted selection are discussed in this report.  相似文献   

15.
Using the advanced backcross quantitative trait loci (AB‐QTL) strategy, we successfully transferred and mapped valuable allelic variants from the high β‐glucan (BG) accession IAH611 (PI 502955), into the genome of cultivar ‘Iltis’. By backcrossing one BC1F1 plant to ‘Iltis’, we developed two BC2F2‐6 populations A and B, comprising 98 and 72 F2‐individuals, respectively. Genotyping of BC2F2 individuals with predominantly AFLP markers resulted in 12 linkage groups with a map size of 455.4 cM for Population A and 11 linkage groups with a map size of 313.5 cM for Population B. Both populations were grown at three sites in Germany over a three‐year period. Individuals were then phenotyped for 13 traits including grain yield (YD) and β‐glucan content (BG). QTL analysis via stepwise regression detected a total of 33 QTLs, most of which were clustered in three linkage groups. Two dense linkage groups A1 and B13 were found to be putatively homologous to groups KO_6 and KO_11 of the ‘Kanota’/‘Ogle’ map, respectively.  相似文献   

16.
Takayuki Kashiwagi 《Euphytica》2014,198(3):353-367
Bending-type lodging is one of the most important factors affecting the yield and grain quality of rice. This study identified quantitative trait loci (QTLs) for physical strength of the upper culms, and evaluated QTL effects on lodging resistance. In 2010 and 2011, QTLs for breaking strength, length, and diameter of the top three internodes were identified by analyzing chromosomal segment substitution lines (CSSLs) developed from ‘Koshihikari’ and ‘Kasalath’. The QTL analysis indicated that ‘Kasalath’ had two types of QTLs: one to strengthen specific internodes and one to simultaneously improve the physical strengths of plural internodes or the top three internodes. A QTL for breaking strengths of the top three internodes (bsuc11) was detected on chromosome 11 in both years. This QTL did not overlap with that for internode length. To evaluate the effects of bsuc11 on lodging resistance, this study selected three CSSLs with bsuc11 and analyzed the breaking strengths of the top three internodes after heading and the pushing resistance of the lower part. Internodes of ‘Koshihikari’ showed decreased breaking strengths after grain filling, while those of CSSLs with bsuc11 did not show this decrease in breaking strength. The pushing resistance of the lower part at the fully ripe stage was the same in ‘Koshihikari’ and CSSLs with bsuc11. These results suggested that bsuc11 could be a target to improve the physical strength of the upper culms to resist bending-type lodging, and that the physical strengths of upper and lower parts are controlled by different genetic factors in rice.  相似文献   

17.
The timing of flag leaf senescence (FLS) is an important determinant of yield under stress and optimal environments. A doubled haploid population derived from crossing the photo period-sensitive variety Beaver,with the photo period-insensitive variety Soissons, varied significantly for this trait, measured as the percent green flag leaf area remaining at 14 days and 35 days after anthesis. This trait also showed a significantly positive correlation with yield under variable environmental regimes. QTL analysis based on a genetic map derived from 48 doubled haploid lines using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers, revealed the genetic control of this trait. The coincidence of QTL for senescence on chromosomes 2B and 2D under drought-stressed and optimal environments, respectively, indicate a complex genetic mechanism of this trait involving the re-mobilisation of resources from the source to the sink during senescence. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
越冬栽培稻是一类能越过自然冷冬季节并在第2年春季萌芽、正常开花结实、收获稻谷的水稻品种。本文通过对越冬栽培稻产量性状QTL分析,明确产量相关性状的遗传规律,旨在进一步解析越冬栽培稻产量性状的遗传机制,为育种创新利用提供理论依据。以3份越冬栽培稻构建的3个半同胞F2群体为材料。各考察15个产量相关性状,利用Excel 2003、GraphPad Prism 5.0和QTL IciMapping 4.10软件分析数据、绘制遗传图谱、定位QTL和联合分析。结果表明,产量性状表型值在3群体中呈连续正态分布,表现为数量性状遗传。共检测到37个QTL和26对上位性QTL,贡献率分别介于2.32%~36.31%和1.04%~2.05%;检测到9个同时影响2个及以上产量性状(一因多效)QTL标记区间;以联合分析检测到13个产量性状相关QTL,其中4个QTL区间与单群体检测QTL区间重叠;越冬栽培稻产量相关性状QTL以加–显性效应遗传为主、上位性遗传效应为辅。本研究将为越冬栽培稻产量相关基因挖掘及育种创新利用奠定基础。  相似文献   

19.
Plant architecture is an accessible approach to achieving high-yield potential. The DENSE AND ERECT PANICLE 1 (DEP1) gene regulating panicle morphology, grain number per panicle, and nitrogen uptake and metabolism has been widely used for the breeding of high-yield rice in northern Chinese japonica varieties. However, there has been no consensus on the genetic effects of dep1 on grain yield and quality under different genetic backgrounds and growing environments. In the present study, we developed two sets of near-isogenic lines (NILs) of DEP1 (AKI-dep1, AKI-DEP1, LG5-dep1 and LG5-DEP1), each carrying the DEP1 region from either 'Liaogeng5' (LG5) or 'Akitakomachi' (AKI) in the AKI and LG5 backgrounds. Our results demonstrated that AKI-dep1/LG5-dep1 exhibited erect panicle and enhanced grain number per panicle, thereby consequently increasing grain yield, whereas they possessed inferior grain appearance compared with AKI-DEP1/LG5-DEP1 in the same background. However, the effects of dep1 on grain processing quality and eating and cooking quality varied with the background. These results provide useful information for high-yield erect panicle rice breeding by marker-assisted selection.  相似文献   

20.
In order to gain a better understanding of the complex root traits observed in previous studies using a mapping population derived from a Bala × Azucena cross, an experiment was conducted growing plants in agar-filled Perspex chambers with the aim of identifying quantitative trait loci (QTLs) for both seminal root morphology (SRM) and gravitropic response. A total of four main effect QTLs were detected for SRM (a measurement of the degree of a wavy/curly seminal root phenotype); two were located on chromosome 2, one at the top of chromosome 3 and one on chromosome 11. Two main effect QTLs were detected for the gravitropic response (the degree of bending of the growing seminal root when subjected to a 90° rotation); one on chromosome 6 and 1 on chromosome 11. As well as main effect QTLs, an epistatic interaction was observed for each of the traits. For SRM an interaction was detected between the top and the bottom of chromosome 4. For the gravitropic response an interaction was observed between a location on chromosome 6 and 11. Both these interactions were confirmed by analysis of variance using marker classes and the epistatic gravitropic response was also confirmed using a pair of near isogenic lines. All the SRM QTLs detected in this experiment co-localise with root growth QTLs (root penetration or morphology) detected previously in the mapping population. This information could prove valuable in attempts to identify candidate genes for these potentially valuable QTLs because we could postulate that the underlying genes should be involved in the pathway of gravity detection, signal transduction or the growth response to gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号