首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In a field experiment, the effect of animal slurry, (with and without the nitrification inhibitor dicyandiamide on total denitrification losses estimated by the C2H2 inhibition technique was measured over 2 years (1989–1990). During this period, four different plots (each with four replicates) were fertilized six times with 150 kg N ha-1 in the form of cattle-pig slurry or NH4NO3. Soil samples (0–20 cm) were analysed at regular intervals for NH inf4 sup+ and NO inf3 sup– concentrations. The soil water content was determined gravimetrically. During the first year (1989) total denitrification losses from unfertilized, mineral-fertilized, and animal slurry-amended plots (with or without dicyandiamide) were estimated as 0.2, 3.1, 0.7, and 0.6 kg N ha-1, respectively. During the second year (1990) the denitrification losses were 0.4, 1.3, 0.7, and 0.7 kg N ha-1, respectively. There was a clear relationship between the NO inf3 sup– concentration or soil water content and the denitrification rate. The results are siteund experiment-specific and cannot be generalized so far.  相似文献   

2.
Denitrification rates were studied using the C2H2 inhibition technique in a 2-year field experiment within plots of nodulated and non-nodulated faba beans, ryegrass, and cabbage. Denitrification rates ranged from 14.40 to 0.02 ng N2O–N g–1 soil dry weight h–1. Mean denitrification increased fourfold in plots of N2–fixing Vicia faba compared to non-nodulated V. faba mutant F48, Lolium perenne, and Brassica oleracea. The results with and without C2H2 treatment indicate that in the field the major part of this enhanced denitrification led to the endproduct N2 rather than to the ozone-degrading N2O. Higher denitrification rates of plots with N2–fixing plants in September seemed to be caused by an increase in soil NO inf3 sup- of about 20 kg ha–1 found between July and August. Soil NO inf3 sup- and soil moisture explained 67% of the variation in denitrification rates of the different soil samples over the growing seasons in the 2 years. Soil moisture explained 44% of the variation for soil planted with N2–fixing plants and 62% for soil planted with non-fixing plants. Positive exponential relationships were obtained between denitrification rates and soil nitrate (r=0.71) and soil moisture (r=0.82).  相似文献   

3.
This paper focuses on N balance in a paddy field planted with whole crop rice (Oryza sativa cv. Kusahonami). The experiment was conducted with two treatments during two rice-growing seasons: one was fertilized with N (160 kg N ha–1; 16N plot) and the other unfertilized (0N plot); both plots were fertilized with P and K. The N input from precipitation was 15 and 12 kg N ha–1 in 2002 and 2003, respectively. The N input from irrigation water reached as much as 123 and 69 kg N ha–1 in 2002 and 2003, respectively. This was because irrigation water contained higher NO3 concentrations ranging from 4 to 8 mg N l–1. The N uptake by rice plants was the major output: 118 and 240 kg N ha–1 in the 0N and 16N plots in 2002 and 103 and 238 kg N ha–1 in 2003, respectively. N losses by leaching were 4.8–5.3 and 6.5–7.3 kg N ha–1 in 2002 and in 2003, respectively. Laboratory experiments were carried out to estimate the amounts of N2 fixation and denitrification. Amount of N2 fixation was 43 and 0 kg N ha–1 in the 0N and 16N plots, respectively. Denitrification potential was quite high in both the plots, and 90% of the N input through irrigation water was lost through denitrification. Collectively, the total N inputs were relatively large due to irrigation water contaminated with NO3, but N outflow loading, expressed as leaching–(irrigation water + precipitation + fertilizer), showed large negative values, suggesting that the whole crop rice field might serve as a constructed wetland for decreasing N.  相似文献   

4.
Denitrification loss from a loam under a cut ryegrass sward receiving 0, 250 and 500 kg N ha?1 a?1 in four equal amounts was measured during 14 months using the acetylene-inhibition technique. The rate of denitrification responded rapidly to changes in soil water content as affected by rain. Mean rates of denitrification exceeded 0.2 kg N ha?1 day?1 only when the soil water content was >20% (w/w) and nitrate was >5μ N g?1 in the upper 20 cm of the profile and when soil temperature at 2 cm was >5–8°C. When the soil dried to a water content <20%, denitrification decreased to <0.05 kg N ha?1 day?1. Highest rates (up to 2.0 kg N ha?1 day?1) were observed following application of fertilizer to soil at a water content of about 30% (w/w) in early spring. Denitrification in the control plot during this period was generally about a hundredth of that in plots treated with ammonium nitrate. High rates of N2O loss (up to 0.30 kg N ha?1 day-1) were invariably associated with high rates of denitrification (> 0.2 kg N ha?1 day?1). However, within 2–3 weeks following application of fertilizer to the plot receiving 250 kg N ha?1 a?1 the soil acted as a sink for atmospheric N2O when its water content was >20% and its temperature >5–8°C. Annual N losses arising from denitrification were 1.6, 11.1 and 29.1 kg N ha?1 for the plots receiving 0, 250 and 500 kg N ha?1 a?1, respectively. More than 60% of the annual loss occurred during a period of 8 weeks when fertilizer was applied to soil with a water content >20%.  相似文献   

5.
Under semiarid subtropical field conditions, denitrification was measured from the arable soil layer of an irrigated wheat–maize cropping system fertilized with urea at 50 or 100 kg N ha–1 year–1 (U50 and U100, respectively), each applied in combination with 8 or 16 t ha–1 year–1 of farmyard manure (FYM) (F8 and F16, respectively). Denitrification was measured by acetylene inhibition/soil core incubation method, also taking into account the N2O entrapped in soil cores. Denitrification loss ranged from 3.7 to 5.7 kg N ha–1 during the growing season of wheat (150 days) and from 14.0 to 30.3 kg N ha–1 during the maize season (60 days). Most (up to 61%) of the loss occurred in a relatively short spell, after the presowing irrigation to maize, when the soil temperature was high and a considerable NO3-N had accumulated during the preceding 4-month fallow; during this irrigation cycle, the lowest denitrification rate was observed in the treatment receiving highest N input (U100+F16), mainly because of the lowest soil respiration rate. Data on soil respiration and denitrification potential revealed that by increasing the mineral N application rate, the organic matter decomposition was accelerated during the wheat-growing season, leaving a lower amount of available C during the following maize season. Denitrification was affected by soil moisture and by soil temperature, the influence of which was either direct, or indirect by controlling the NO3 availability and aerobic soil respiration. Results indicated a substantial denitrification loss from the irrigated wheat–maize cropping system under semiarid subtropical conditions, signifying the need of appropriate fertilizer management practices to reduce this loss.  相似文献   

6.
Drained and undrained grassland lysimeter plots were established in 1982 on a clay loam of the Hallsworth series at a long-term experimental site in south-west England. The plots were continuously grazed by beef cattle, and received fertilizer at either 200 or 400 kg N ha-1 per annum to the existing permanent sward, or at 400 kg N ha-1 to a new sward, reseeded to perennial ryegrass following cultivation. Drainage water was monitored at V-notch weirs and sampled daily for the analysis of nitrate-N. Seven years of data are presented (five years for the reseeded swards). On the drained plots a large proportion of the rainfall was routed preferentially down large pores to the mole drains, whilst on the undrained plots, drainage was mainly by surface runoff. The average quantities of nitrate N leached per year were 38.5, 133.8 and 55.7 kg ha-1 from the old sward that received 200 and 400 kg N ha-1, and from the reseed that received 400 kg N ha-1 fertilizer, respectively. Ploughing and reseeding resulted in a two-fold reduction in leaching, except during the first winter after ploughing, and twice as much leaching occurred after a hot, dry summer as after a cool, wet one. Nitrate concentrations in drainage from either drained or undrained plots were rather insensitive to rainfall intensity, such that concentration was a good predictor of nitrate load for a given drainage volume. The drainage volume determined the proportion of the leachable N that remained in the soil after the winter drainage period. Initial (peak) concentrations of nitrate N ranged, on average, from 55 mg dm-3 for the drained old sward that received 400 kg N ha-1 fertilizer, to 12 mg dm-3 for the undrained sward at 200 kg N ha-1 fertilizer input. Concentrations of nitrate N in drainage from similar, unfertilized plots rarely exceeded 1 mg dm-3. The results suggest that manipulating the nitrate supply can lessen leaching and that the route of water through soil to the watercourse determines the maximum nitrate concentration for a given load.  相似文献   

7.
Abstract

Soil cores were collected in and around an injection slit in each of two field plots on a coarse sandy soil. The plots received either raw or anaerobically digested liquid cattle manure at a rate of 240 kg NH4 +-N ha?1. During the three week period of the experiment, concentrations of dissolved organic carbon and NH4 + and the moisture content of cores from the injection slit were consistently above the background level in the soil. Denitrification activity was only registered in soil cores sampled in the injection slit. A dramatic increase occurred between Day 14 and Day 21, when the denitrification rate reached 3.5 kg N ha?1day?1 in cores from the plot treated with raw manure, while the rate was 20-fold lower in the plot treated with digested manure. Nitrate accumulated between Day 7 and Day 21, suggesting a coupling between nitrification and denitrification.  相似文献   

8.
In 1991, field experiments on loess (with winter wheat) and sandy soils (with summer barley) were conducted to study N dynamics in the microbial biomass and non-exchangeable NH inf4 sup+ . The measurements showed a mass change in microbial N, with a maximum increase of 100 kg N ha-1 30 cm-1 from March to July in the loess soil, and a change for only 1 month (May) in the sandy soil. Plots treated with conventional levels of N fertilizer (213 kg N ha-1 on a loess soil to winter wheat and 130 kg ha-1 on the sandy soil to summer barley), reduced levels of N (83% and 62% of the conventional N application), or no N showed no consistent fertilizer N effect on microbial biomass N. From March to July, non-exchangeable NH inf4 sup+ in loess soils under winter wheat decreased by 110 kg N ha-1 30 cm-1 in conventionally fertilized plots and by 200 kg N ha-1 30 cm-1 in a plot with no N fertilizer. After harvest, the pool of non-exchangeable NH inf4 sup+ increased due to increasing mineral N concentrations in the soil.  相似文献   

9.
Forested peatlands contain large pools of terrestrial carbon. As well as drainage, forest management such as fertilizer application can affect these pools. We studied the effect of wood ash (application rates 0, 5 and 15 t ha?1) on the heterotrophic soil respiration (CO2 efflux), cellulose decomposition, soil nutrients, biomass production and amount of C accumulated in a tree stand on a pine‐dominated drained mire in central Finland. The ash was spread 13 years before the respiration measurements. The annual CO2 efflux was statistically modelled using soil temperature as the driving variable. Wood ash application increased the amounts of mineral nutrients of peat substantially and increased soil pH in the uppermost 10 cm layer by 1.5–2 pH units. In the surface peat, the decomposition rate of cellulose in the ash plots was roughly double that in control plots. Annual CO2 efflux was least on the unfertilized site, 238 g CO2‐C m?2 year?1. The use of wood ash nearly doubled CO2 efflux to 420–475 g CO2‐Cm?2 year?1 on plots fertilized with 5–15 t ha?1 of ash, respectively. Furthermore, ash treatments resulted also in increased stand growth, and during the measurement year, the growing stand on ash plots accumulated carbon 11–12 times faster than the control plot. The difference between peat C emission and amount of C sequestered by trees on the ash plots was 43–58 g C m?2, while on the control plot it was 204 g C m?2. Our conclusion is that adding wood ash as a fertilizer increases more C sequestration in the tree stand than C efflux from the peat.  相似文献   

10.
This study characterized soil chemical and microbiological properties in hay production systems that received from 0 to 600 kg plant-available N (PAN) ha−1 year−1 from either swine lagoon effluent (SLE) or ammonium nitrate (AN) from 1999 to 2001. The forage systems contained plots planted with bermudagrass (Cynodon dactylon L.) or endophyte-free tall fescue (Festuca arundinaceae Schreb.). In March 2004, the plots were sampled for measurements of a suite of soil chemical and microbiological properties. Nitrogen fertilization rates were significantly correlated with soil pH and K2SO4-extractable soil C but not with total soil C, soil C/N ratio, electrical conductivity, or Mehlich-3-extractable nutrients. Soil supplied with SLE had significantly lower Mehlich-3-extractable nutrients than the soil supplied with AN. Two indicators of soil N-supplying capacity (potentially mineralizable N and amino sugar N) varied with plant species and the type of N fertilizer. However, they generally peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Soil microbial biomass C also peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Nitrification potential was significantly higher in soil supplied with AN than in the unfertilized control but was similar between SLE-fertilized and unfertilized soils. Our results indicated that an application rate as high as 600 kg PAN ha−1 year−1 did not benefit soil microbial biomass, microbial activity, and N transformation processes in these forage systems.  相似文献   

11.
High rates of cattle slurry application induce NO inf3 sup- leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO inf3 sup- leaching after heavy slurry applications on grassland.  相似文献   

12.
Abstract

Available soil mineral nitrogen (N) varies both temporally and spatially. These variations affect field‐scale N‐use efficiency. A field study was conducted for three years to investigate spatial variability in available soil mineral N within uniform research plots in relation to leaf greenness or chlorophyll content (plant N sufficiency) and yield. Variations within the plot in available soil mineral N sampled at the 6‐ligule stage was related to N fertility: the higher the fertilizer N levels, the higher the variability. The standard deviation for the 200 kg N ha‐1 treatment was up to five times higher than the unfertilized control treatment. The nitrate (NO3)‐N accounted for 70 to 80% of soil mineral N in fertilized plots compared to 50 to 60% in unfertilized control plots. The variability in grain yield of individual maize (Zea mays L.) plants within a plot was inversely related to soil N fertility: the higher the fertilizer N levels, the lower the yield variability (at 100 or 200 kg N ha‐1, yield ranged from 97 to 148 g plant1, or 10% CV within ayear compared to ranges from 0 to 82, or 50% CV in the same year at 0 kg N ha‐1). On an individual plant basis, chlorophyll content from the 6‐ligule stage through the growing season generally showed much smaller CV's, but had a similar trend to variations in yield. Leaf greenness from 6‐ligule stage to silking was significantly correlated with harvest yield (r>0.60, P<0.01), and both also correlated with available soil mineral N, though to a lesser degree (r>0.36). The number of fully expanded leaves prior to silking differentiated N treatments better than did single leaf chlorophyll measurements with higher yields associated with more rapid vegetative development. Our data suggest that multiple core samples are required to estimate available soil mineral N, particularly in fertilized plots that have greater spatial variability. Variability of plant‐based measures, such as chlorophyll content, could be used as an indicator of relative plant N sufficiency at early growth stages as spatial variability declined with higher soil N fertility.  相似文献   

13.
Nitrous oxide and methane fluxes from organic soils under agriculture   总被引:2,自引:0,他引:2  
Trace gas fluxes of N2O and CH4 were measured weekly over 12 months on cultivated peaty soils in southern Germany using a closed chamber technique. The aim was to quantify the effects of management intensity and of soil and climatic factors on the seasonal variation and the total annual exchange rates of these gases between the soil and the atmosphere. The four experimental sites had been drained for many decades and used as meadows (fertilized and unfertilized) and arable land (fertilized and unfertilized), respectively. Total annual N2O-N losses amounted to 4.2, 15.6, 19.8 and 56.4 kg ha–1 year–1 for the fertilized meadow, the fertilized field, the unfertilized meadow and the unfertilized field, respectively. Emission of N2O occurred mainly in the winter when the groundwater level was high. At all sites maximum emission rates were induced by frost. The largest annual N2O emission by far occurred from the unfertilized field where the soil pH was low (4.0). At this site 71% of the seasonal variation of N2O emission rates could be explained by changes in the groundwater level and soil nitrate content. A significant relationship between N2O emission rates and these factors was also obtained for the other sites, which had a soil pH between 5.1 and 5.8, though the relation was weak (R2 = 15–27%). All sites were net sinks for atmospheric methane. Up to 78% of the seasonal variation in CH4 flux rates could be explained by changes in the groundwater level. The total annual CH4-C uptake was significantly affected by agricultural land use with greater CH4 consumption occurring on the meadows (1043 and 833 g ha–1) and less on the cultivated fields (209 and 213 g ha–1).  相似文献   

14.
Denitrification losses from a horticultural soil as affected by mineral N-fertilization To investigate denitrification in the Ap-horizon from a horticultural cambisol as affected by mineral N-fertilization, measurements of N2O-release from the soil surface and N2O-production in the upper 10 cm soil layer were carried out. The acetylene inhibition technique was used. The loamy sand was amended with 86 and 186 kg N·ha?1 (ammonium nitratecalcium carbonate mixture). The field was cropped with celeriac (Apium graveolens L. var. rapaceum). Denitrification rates as well as soil temperature, moisture, nitrate and watersoluble carbon were measured from mid July until the end of October. In both N treatments denitrification rates were low, but higher rates could be measured in the higher N-treatment. They reached amounts of 0.6 to 134.3 g N2O-N·ha?1day?1. Estimated N-loss by denitrification totalled about 3.5 in the low and 4.9 kg N·ha?1 in the high N-treatment for the whole sampling period (107 days). Spatial variability of denitrification rates was high (39–283%). The relationship between soil temperature, moisture, nitrate content as well as watersoluble carbon and denitrification rate was shown by regression analysis.  相似文献   

15.
Long-term effects of mineral fertilization on microbial biomass C (MBC), basal respiration (R B), substrate-induced respiration (R S), β-glucosidase activity, and the rK-growth strategy of soil microflora were investigated using a field trial on grassland established in 1969. The experimental plots were fertilized at three rates of mineral N (0, 80, and 160 kg ha−1 year−1) with 32 kg P ha−1 year−1 and 100 kg K ha−1 year−1. No fertilizer was applied on the control plots (C). The application of a mineral fertilizer led to lower values of the MBC and R B, probably as a result of fast mineralization of available substrate after an input of the mineral fertilizer. The application of mineral N decreased the content of C extracted by 0.5 M K2SO4 (C ex). A positive correlation was found between pH and the proportion of active microflora (R S/MBC). The specific growth rate (μ) of soil heterotrophs was higher in the fertilized than in unfertilized soils, suggesting the stimulation of r-strategists, probably as the result of the presence of available P and rhizodepositions. The cessation of fertilization with 320 kg N ha−1 year−1 (NF) in 1989 also stimulated r-strategists compared to C soil, probably as the result of the higher content of available P in the NF soil than in the C soil.  相似文献   

16.
The leaching of nitrate-N under autumn-sown arable crops was measured using hydro-logically isolated plots, about 0.24 ha in area, from 1984–1988. Fluxes of water and nitrate moving over the soil surface (surface runoff), at the interface between topsoil and subsoil (interflow), and in the subsoil (drainflow) were monitored in plots with mole-and-pipe drain systems (drained plots); surface runoff and interflow only were monitored in ‘undrained’ plots. Half the drained and undrained plots were direct-drilled, and on the other half seedbeds were prepared by tillage to 200 mm. Tillage increased the total leaching loss of nitrate by 21 % compared with direct drilling in drained plots. About 95% or the nitrate moving from the soil was present in the water intercepted by the subsoil drains in these plots. In undrained plots less water and nitrate were collected in total; more of the nitrate was present in interflow on ploughed plots and in surface runoff in direct-drilled land. Losses of nitrate for the whole experiment from 1978-1988 were analysed. This showed that, between the harvest of one crop and the spring application of fertilizer to the next, loss of nitrate-N from ploughed land (Lp) was approximated by Lp=22+Fkg N ha?1, where F was the autumn fertilizer-N applied. After fertilizer was applied in spring, loss of nitrate-N depended on rainfall such that for 100 mm rainfall about 30% of the fertilizer-N was lost by leaching. About 18% more nitrate-N was lost from direct-drilled land than from ploughed land in spring, but the total loss was generally small compared to that over winter. The apparent net mineralization of organic-N was measured in 1988. In autumn and winter there was little effect of tillage treatment (26 and 31 kg N ha?1 on direct drilled and tilled plots respectively). However, over the year 83 kg N ha?1 were mineralized in tilled plots, and 67 kg N ha?1 in direct-drilled plots. Five factors governing the leaching of nitrate are assessed and this identified that fertilizer nitrogen application to the seedbed of winter sown crops and the mineralization of nitrogen from the residues of the previous crop are the most significant factors for nitrogen leaching in the UK.  相似文献   

17.
This paper describes a field study to assess the effect of increasing the frequency of split applications of N fertiliser on the pattern of plant uptake, soil N availability, and microbial biomass C and N. Measurements were taken during the growing season in different positions relative to young trees (Prunus avium L.) in an upland silvopastoral system in its first year after establishment. At fertiliser rates of 72 and 144 kg ha-1 N applied as NH4NO3, increasing the number of split applications increased N uptake by the pasture. Mineral forms of soil N measured 2 weeks after application indicated that residual NH inf4 sup+ -N and total mineral N were also greater in this treatment on certain dates. Soil NO inf3 sup- -N was positively correlated with the soil moisture content, and nitrification reached a maximum in early May and declined rapidly thereafter except within the herbicide-treated areas around the trees where soil moisture had been conserved. Results of the study suggest that high NO inf3 sup- -N in herbicide-treated areas was probably caused by mineralisation of grass residues and low uptake by the tree rather than by preferential urine excretion by sheep sheltering beside the trees. Mean microbial biomass C and N values of 894 and 213 kg ha-1, respectively, were obtained. Microbial C was slightly increased by the higher frequency of split applications at 144 kg ha-1 N and was probably related to the greater herbage production with this treatment. Microbial N was not significantly affected by the N treatments. Both microbial biomass C and N increased during the growing season, resulting in the net immobilisation of at least 45 kg ha-1 N which was later released during the autumn.  相似文献   

18.
Thiosulfate and CS2 inhibit nitrification. The effect of the addition of thiosulfate on the turnover of inorganic N compounds was tested in an Egyptian and a German arable soil under nitrifying and denitrifying conditions. For nitrification, the soils were amended with NH inf4 sup+ and incubated under aerobic conditions. For denitrification, the soils were amended with NO inf3 sup- and incubated under anaerobic conditions. In both cases, the thiosulfate decreased with time while tetrathionate accumulated to an intermediate extent. Both compounds disappeared completely after <25 days. Production of CS2 was not observed. Carbonyl sulfide was produced only in the Egyptian soil, but production decreased with increasing amounts of added thiosulfate. Under nitrifying conditions, the addition of increasing amounts of thiosulfate (25, 50, and 100 g S g-1 dry weight) resulted in decreasing rates of NH inf4 sup+ oxidation to NO inf3 sup- ; it also resulted in an increasing intermediate accumulation of NO inf2 sup- and NO, and in an increasing production of N2O. Under denitrifying conditions, the addition of increasing amounts of thiosulfate did not significantly affect the rate of NO inf3 sup- reduction, and resulted in an increasing intermediate accumulation of NO inf2 sup- and of NO only in the German soil in which the production of N2O was slightly inhibited by thiosulfate. These results demonstrate that the nitrification of NH inf4 sup+ and NO inf2 sup- was inhibited by increasing concentrations of thiosulfate and/or tetrathionate without involving the formation of volatile S compounds as potential nitrification inhibitors. Denitrification was not affected by the addition of thiosulfate.  相似文献   

19.
Summary Denitrification activities were measured over a 3-year period in a coarse sandy soil and a sandy loam soil. In all years the crops were spring barley in combination with Italian ryegrass as a catch crop. The denitrification loss was measured using the acetylene inhibition technique on soil cores. Furthermore, a simple model was developed, based on daily values of soil moisture and soil temperature, to calculate the denitrification loss. Soil temperatures for the model were measured, whereas soil moisture was derived from a water-balance model. Measurements of denitrification gave an annual loss of 0.6 kg N ha-1, and the model calculated a loss of 1–2 kg N ha-1 in the coarse sandy soil. In the sandy loam soil annual losses were measured as 1.5, 3.0, and 13.0 kg N ha-1 in 1988, 1989, and 1990, respectively. The corresponding values from the model simulation were 14, 9 and 14 kg N ha-1.  相似文献   

20.
Sustainable cropping systems rely on a minimum of external inputs. In these systems N is largely acquired in animal manures and leguminous green manures. Little is known of how these organic forms of N fertilizer influence the presence and activity of free-living N2-fixing bacteria. High concentrations of inorganic N in soil inhibit N2-fixation in cyanobacteria and Azotobacter spp. It is likely that manure and fertilizer applications would result in concentrations of inorganic N capable of inhibiting N2 fixation and, ultimately, the presence of these organisms. We investigated the effect of synthetic and organic N fertilizer sources on the populations and N2-fixation potential of free-living N2-fixing bacteria in the Farming Systems Trial at the Rodale Research Institute. Field plots received the following N treatments prior to corn (Zea mays L.) production: (1) Legume rotations and green manures supplying about 165 kg N ha-1; (2) beef cattle manure applied at a rate of 220 kg N ha-1 (plus 60 kg N ha-1 from 1994 hay plow-down); or (3) fertilizer N (urea and NH4NO3) applied at a rate of 145 kg N ha-1. Soil samples were collected at two depths from corn plots four times during the growing season, and analyzed for soil moisture, soil pH, numbers of N2-fixing cyanobacteria and Azotobacter spp., extractable NH inf4 sup+ and NO inf3 sup- , and potentially mineralizable N. Soil samples collected in mid-July were analyzed for nitrogenase activity (by C2H2 reduction) and total C and N. Populations of Azotobacter spp. and cyanobacteria were influenced only slightly by treatment; however, cyanobacteria species composition was notably influenced by treatment. Nitrogenase activity in surface soils was greatest in legume-N plots and in subsurface plots levels were greatest in fertilizer-N plots. Populations and activity of free-living N-fixing bacteria appeared to be somewhat reduced in all plots as a result of low soil pH levels and high concentrations of inorganic N across all treatments. Annual applications of N to all plots resulted in high levels of potentially mineralizable N that in turn may have reduced non-symbiotic N2-fixation in all plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号