首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five experiments were carried out in the years 1980-1983 and 1986 to study the effect of treating grass at ensiling with sulphuric acid (850 g kg?1) and formic acid (850 g kg?1) additives alone, and in mixtures with or without formalin on the preservation of grass, in vivo digestibility in sheep, in-silo loss, intake and performance of finishing cattle. Primary growth grass was ensiled in experiments 1 (3–4 June 1980), 2 (12-15 June 1981) and 3 (31 May-2 June 1982), primary regrowth grass in experiment 4 (1-2 August 1983) and secondary regrowth grass in experiment 5 (7-10 October 1986). During the ensiling period within each experiment, approximately 60 t of unwilted, double-chopped, additive-treated or untreated grass was packed into covered concrete-walled 60-t capacity silos. The dry matter (DM) contents of the ensiled grass in experiments 1, 2 and 5 ranged from 155-180 g kg?1 and were lower than those recorded in experiments 3 and 4 (214 g kg?1). With the exception of grass ensiled in experiment 2, where water-soluble carbohydrate (WSC) contents were low, at 104 g kg?1 DM, grass in all other experiments contained relatively high WSC contents ranging from 140-154 g kg?1 DM. In experiments 1, 3 and 4 all silages were well-preserved. However, in experiment 2 the 450 g kg?1 sulphuric acid-treated and formic acid-treated silages displayed significantly lower pH, buffering capacity (Bc) and ammonia nitrogen contents than the untreated silage. In experiment 5, the sulphuric acid-treated and formic acid-treated silages displayed significantly lower pH, Bc, ammonia nitrogen, butyrate and volatile fatty acid (VFA) contents than the untreated silage. Each of the silages was offered daily with various levels of a supplementary concentrate for approximately 70-d periods to twelve animals of mixed breed in experiments 1, 3, 4 and 5 and to fifteen animals in experiment 2. All animals weighed between 380-470 kg at the start of the experiments. In experiments 1, 2 and 3 there were no significant differences between silages for any of the intake or animal performance parameters. In experiment 4, cattle fed the formic acid-treated silage displayed significantly higher silage DM intakes and daily liveweight gains than those fed the sulphuric acid-treated and untreated silages; in experiment 5, cattle fed the formic acid-treated silage displayed significantly higher silage DM intakes than those fed the untreated silage. It was concluded that formic acid was a more effective silage additive than sulphuric acid. Increasing the level of supplementation significantly decreased silage DM intakes in cattle in experiments 3 and 4, and significantly increased daily liveweight gains and daily carcass in cattle in experiments 1, 3 and 4.  相似文献   

2.
An Italian ryegrass and hybrid ryegrass sward was harvested on 11 May 1994. The mean dry‐matter (DM) content of the herbage was 197 g kg–1 fresh matter (FM), and mean nitrogen and water‐soluble carbohydrate contents were 20 and 272 g kg–1 DM respectively. Approximately 72% of total nitrogen (TN) was in the form of protein‐nitrogen. The herbage was treated with either no additive, formic acid (3·3 l t–1) (Add‐F, BP) or inoculant (2·3 l t–1) (Live‐system, Genus) and ensiled in 100 t silos. Changes in effluent composition with time showed that silage fermentation and protein breakdown were delayed by treatment with formic acid. Formic acid and inoculant treatments also inhibited amino acid catabolism during ensilage. All silages were well fermented at opening with pH values < 4·0 and ammonia‐N concentrations of ≤ 50 g kg–1 TN after 120 d ensilage. Treatment had an effect on protein breakdown as measured by free amino acid concentration, with values of 21·5, 18·2 and 13·2 mol kg–1 N at opening (191 d) for untreated, formic acid‐treated and inoculated silages respectively. Amino acid catabolism occurred to the greatest extent in untreated silages with significant decreases in glutamic acid, lysine and arginine, and increases in gamma amino butyric acid and ornithine. The silages were offered ad libitum without concentrate supplementation to thirty‐six Charolais beef steers for a period of 69 d (mean live weight 401 kg). Silage dry‐matter intakes and liveweight gains were significantly (P < 0·05) higher on the treated silages. Silage dry‐matter intakes were 7·42, 8·41 and 8·23 kg d–1 (s.e.d. 0·27) with liveweight gains of 0·66, 0·94 and 0·89 kg d–1 (s.e.d. 0·058) for untreated, formic acid‐treated and inoculated silage‐fed cattle respectively. In conclusion, additives increased the intake of silage and liveweight gain by the beef steers, and it is suggested that this may be caused in part by the amino acid balance in these silages.  相似文献   

3.
A total of 1009 samples of silage made in bunker silos on commercial farms between 1972 and 1978 was analysed to investigate the effect of herbage water-soluble carbohydrate content (WSC) and weather conditions at ensilage on fermentation as measured by ammonia-N concentration and pH of first-cut grass silages.
Silage dry matter (DM) content had the major effect on fermentation. Factors influencing silage DM were rainfall and hours of sunshine during silage making, and DM content of the grass cut. WSC content of herbage ensiled also had a significant effect on subsequent fermentation. The major influences on herbage WSC were hours of sunshine and rainfall during the growing season.
The effect of chemical additives, albeit at poorly defined and often inadequate rates, was small in comparison to that of silage DM.
The minimum DM necessary to produce well-fermented silage without additive was approximately 260 g kg−1. Use of formic acid significantly reduced this requirement to 240 g kg−1 and to 252 g kg−1 for sulphuric add + formalin. The results indicate that the minimum herbage WSC necessary to prevent a clostridial fermentation developing in silage with a DM content of 230 g kg−1 is approximately 37 g kg−1 without additive and 30 g kg−1 with formic acid.
It is concluded that on commercial farms, weather conditions i.e. amount of rainfall and sunshine prior to and at ensilage, have a greater effect on subsequent silage fermentation than additive use.  相似文献   

4.
Effects of formic acid, formaldehyde and two levels of tannic acid on changes in the distribution of nitrogen (N) and plant enzymatic activity during ensilage of lucerne (Medicago sativa) were studied. Lucerne [300 g dry matter (DM) kg?1 forage] silages were prepared untreated (control) and with formic acid (4 g kg?1 DM), formaldehyde (1 g kg?1 DM) and two levels of tannic acid (20 and 50 g kg?1 DM) as additives. Inhibition of proteolysis by formic acid was more effective than the other additives during the first 7 d of ensiling. Tannic acid was as effective at inhibiting production of non‐protein‐N, ammonia‐N and free amino acid‐N as formic acid and formaldehyde. However, increased concentrations of non‐protein‐N and free amino acid‐N in silage from day 1 to 35 of ensiling were less with the higher level of tannic acid than that in the control and other additive‐treated silages. Carboxypeptidase lost its activity slowly with increasing time of ensiling. At day 2, it still had 0·79 of the original activity in the control silage. After 21 d of ensiling, high levels of carboxypeptidase activity, proportionately 0·41, 0·49, 0·10, 0·35 and 0·30 of the original activity, remained in the control silage, and silages made with formic acid, formaldehyde, and low and high levels of tannic acid respectively. There were higher levels of activity of acid proteinase in formic acid‐treated silage than in the control silage until day 2 of ensilage indicating that the reduction of proteolysis by formic acid was probably due to acidifying the forage below the pH optima of plant protease. Aminopeptidase activity in all silages declined rapidly after ensiling.  相似文献   

5.
Data from thirty-three experiments conducted at three ADAS Experimental Husbandry Farms were used to compare unwilted non-additive-treated silage with silage treated with formic acid, a formalin and formic-acid mixture, a calcium-formate and sodium-nitrite mixture, a formalin and sulphuric-acid mixture and wilted silage made without or with formic acid or a formalin and formic-acid mixture.
Formic acid significantly reduced pH and wilting significantly increased silage pH compared with other treatments. Formalin-acid mixtures significantly reduced pH compared with untreated silage. Formic acid in conjunction with formalin or wilting significantly increased water-soluble carbohydrate in silage compared with other treatments except wilting. Formic acid either alone or combined with either formalin or wilting significantly reduced silage butyric acid content compared with other treatments. Formic acid treatment either alone or combined with formalin significantly increased lactic acid as a proportion of total silage acids compared with other treatments except sulphuric acid-formalin.
All treatments significantly increased silage dry matter (DM) intake compared with untreated silage and intakes of wilted silage were significantly greater than of unwilted silage. Daily liveweight gains on all treatments were significantly higher than on untreated silage.
Herbage water-soluble carbohydrate necessary for successful preservation as silage without additive use was approximately 30 g (kg DM)−1 and with additives containing formic acid it was approximately 25 g (kg DM)−1.
It is suggested that formic acid application to unwilted silage either alone or in conjuction with formalin was the best treatment for improving subsequent preservation as silage, and that animal performance was enhanced by addition of acid-formalin additives to unwilted herbage or formic-acid application to unwilted or wilted herbage.  相似文献   

6.
Data from twenty experiments, conducted at ADAS Research Centres in England and Wales during 1986–92, were used to determine effluent production from additive-treated grass silages made in large-scale bunker silos. The additives compared were formic acid at 4·0 l t–1, rolled barley at 44·0 kg t–1, dried molassed sugar beet feed at 40·0 kg t–1 and liquid inoculants at 2·2 l t–1 together with a non-additive-treated control. The silages were made from herbage with an average dry-matter (DM) content of 177 (s.e. 3·8) g kg–1 and water-soluble carbohydrate content of 140 g kg–1 DM. Average silage toluene DM content was 213 (s.e. 3·8) g kg–1. The formic acid and sugar beet feed silages were both well fermented, whereas the other silages were less well fermented. Effluent produced was determined as either effluent production (l t–1 grass ensiled) during the 52-d period in which it was measured or peak flow (l h–1) during the first 2 d of ensilage. Compared with non-additive-treated silage, dried molassed sugar beet feed significantly reduced both effluent production (27%) and peak flow (36%). Formic acid significantly increased peak flow (51%), but had little effect upon effluent production, and significantly reduced effluent N and lactic acid content. Barley and inoculant treatment had no significant effect upon effluent production. In general, poor relationships were found between DM content and effluent production. Nevertheless for silages, except those treated with absorbents or formic acid, a significant (P < 0·001) negative relationship between silage effluent production (l t–1 grass ensiled) and the DM (g kg–1) content of the ensiled grass was found.  相似文献   

7.
Four grass silages, all made in mid-July from second-harvest perennial ryegrass swards, were compared in a 16-week feeding experiment with twelve Ayrshire cows. Two silages were unwilted and two wilted. All the silages received formic acid ('Add-F') at the rate of 3 litres t-1 either with formalin at the rate of 1 litre t-1 or without formalin. The unwilted and wilted silages had mean dry matter (DM) concentrations of 200 and 243 g kg-1, and in vitro D-values of 0·293 and 0·272 respectively. The silages were offered ad libitum plus 6 kg concentrates per cow per day. The daily intakes of unwilted and wilted silage DM were 10·2 and 9·2 kg per cow respectively on the formic acid treatment, and 10·2 and 9·2 kg on the formic acid + formalin treatment. The mean daily milk yield on the unwilted silage treatments was 19·2 kg per cow which was significantly higher than the yield of 17·2 kg per cow on the wilted silage treatments. The formalin had no significant effect on milk yield. The four silage treatments had small and non-significant effects on milk composition. It is concluded that the unwilted silages, which had excellent fermentation characteristics, were superior to the wilted silages as a feed for dairy cows.  相似文献   

8.
Three silages were prepared from perennial ryegrass; unwilted without additive (UW), unwilted treated with 3·5 litres commercial (85%) formic acid (UWA) and prewilted without additive (WN) with dry matter (DM) concentrations of 189, 209 and 328 g kg−1 respectively. The three silages were offered ad libitum in a 348-d feeding experiment to three groups of eight Belgian white-blue bulls with an initial live weight (LW) of 277 kg. The concentrate (47 g digestible crude protein (CP) kg−1) supplementation was 7·5 g (kg LW)−1. Acid treatment (UWA) slightly improved digestibility of all silage nutrients except CP, whereas wilting generally slightly decreased digestibility of the nutrients except DM and ether extract. The daily LW gain averaged 912 g and was not significantly different on the three different treatments. DM intake per (kg LW)0.75 was higher with the UWA silage, 69·3 g, and with the WN silage, 71·6 g, than with the UW silage, 65·8 g. However, this difference in DM intake was not reflected in either daily LW or carcase gain. The DM of UW silage was more efficiently utilized than DM of UWA or WN silage.  相似文献   

9.
Silages were prepared in late September from a mixed crop of perennial ryegrass and white clover with low dry matter and high nitrogen content. Six different treatments were used during ensiling; addition of either molassed sugar beet pulp or rolled barley, at 50 kg and 25 kg (t fresh grass)?1, formic acid at 51 t?1 and no additive (control). All silages were well fermented with low levels of ammonia and pH. The addition of rolled barley or sugar beet pulp increased the dry matter content of the silages incrementally and appeared to assist the retention of nitrogen in the silage. Dry matter intakes of silages with 50 kg of barley or sugar beet pulp tonne?1 were similar to the control silage when fed to wether sheep but at 25 kg t?1, dry matter intake increased by 0·15 with barley and 0·04 with sugar beet pulp compared to the control. The digestibility of dry matter (DM) and organic matter (OM) were significantly higher than the control for silages treated with formic acid or high levels of barley and sugar beet pulp whereas neutral-detergent fibre (NDF) digestibility did not appear to be significantly affected. All treated silages had a significantly higher metabolizable energy (ME) content than the control, and additions of barley or sugar beet increased the ME content. The ME intakes of all treated silages were also significantly greater than those of the control, and the formic acid-treated and low barley silages were the highest. This appeared to be associated with significantly higher energy digestibility and DM intake. Addition of rolled barley during ensilage resulted in greater nitrogen intake, availability and retention compared to additions of sugar beet pulp. The higher retention with barley silages was associated with a significantly lower proportional loss of absorbed nitrogen in urine, which indicated a more efficient utilization of nitrogen. These differences require further study to determine the mechanisms involved in the interactions between the energy source and herbage protein, both during fermentation and in the rumen.  相似文献   

10.
A perennial ryegrass sward was cut at a leafy stage of growth and harvested with different harvesters to produce silages differing in chop length to evaluate the effect of silage chop length on silage intake and on the performance of store Iambs when silage was fed as the sole diet. The silage was harvested in late May either as long silage (L), single-chopped (S). double-chopped (D). long precision-chopped (LP) or medium precision-chopped (MP) silage with (he appropriate machinery. The silages were treated with formic acid at 2.5 1 t?1. were well preserved (pH 3.7–3.8) and were of high dry-matter digestibility [749–810 g DMD kg?1 dry-matter (DM)]. The silages were fed ad libitum as the sole diet to Suffolk crossbred store lambs over a period of 11 weeks. Silage intake and lamb performance progressively increased as silage chop length declined from 32.4 cm (L) to 6.8 cm (MP). Silage intakes were 572, 661, 750, 893 and 1129 (± 21) g DM d?1 for silages L, S, D, LP and MP respectively. The corresponding daily liveweight gains were -3, 40, 53, 85 and 151 (± 7.6) g d?l. Similar increases in empty body weight gain and carcass weight gain were obtained as silage chop length declined. Rumen retention time (RRT), estimated from the rumen contents of the lambs at slaughter and their silage intake in the week before slaughter, was much shorter for silages LP and MP compared with silages L or S. Silage intake was negatively related to RRT(b= -24.5 ± 6.1 gDM h?l RRT). The results of this study showed that high intakes of grass silage and liveweight gains were achieved when grass was cut at a leafy stage of growth and harvested with a precision-chop harvester set to produce a moderate chop length (7 cm). The feeding of long or flail-chopped silages resulted in lower intakes and lower liveweight gains.  相似文献   

11.
First-harvest direct-cut, double-chopped grass (190 and 164g DMkg?1 in Experiments 1 and 2 resptectively) was ensiled without an additive or, in Experiment 1, with 30 kg t?1 grass of an absorbent additive based on sugar beet pulp (Sweet ‘n’ Dry) or with 3·441 t?1 grass of formic acid and, in Experiment 2, with 30, 50 and 70 kg t?1 grass of Sweet ‘n’ Dry or with 50kg t?1 grass of unmolassed sugar beet pulp. The preservation and nutritive value of the silage, in-silo losses (including silage effluent production), silage intake and animal performance of adult and growing cattle were examined. In Experiment 1 all three silages were well preserved, although the formic acid-treated silage displayed significantly lower pH, ammonia nitrogen (NH3N) [g kg?1 total nitrogen (TN)] and volatile fatty acids (VFAs) than the other two silages. In Experiment 2 absorbent-treated silages displayed significantly lower pH, buffer capacity (Bc), NH3N (gkg?1 TN), CP, modified acid detergent fibre (MADF) and VFAs than untreated silage. Treatment of grass with the absorbent additives at ensiling resulted in reduced effluent production. In Experiment 1 each kilogram of Sweet ‘n’ Dry retained approximately 11 effluent, and in Experiment 2 silages made with Sweet ‘n’ Dry applied at 70kgt?1 and sugar beet pulp applied at 50 kg t?1 produced similar volumes of effluent and each kilogram of absorbent retained 1·0 and 1·31 of effluent respectively. In Experiment 1 sixty beef cattle [mean initial live weight (LW) 460 kg] were grouped according to LW and allocated to treatment at random. For untreated silage (unsupplemented or with 1 or 2 kg supplement head?1 day?1), absorbent-treated silage (unsupplemented or with 1 or 2 kg supplement head?1 day?1) and formic acid-treated silage (1 kg supplement head?1 day?1) the daily silage DM intakes were 6·12, 6·21, 6·40, 7·65, 7·45, 7·11 and 7·85 (s.e. 0·280) kg respectively, the daily liveweight gains were 0·22, 0·56, 0·81, 0·59, 0·74, 0·81 and 0·75 (s.e. 0·071) kg respectively and daily carcass gains were 0·31, 0·47, 0·67, 0·47, 0·61, 0·70 and 0·57 (s.e. 0·043) kg respectively throughout a 75-day feeding period. In Experiment 2, fifty-six growing cattle (mean initial weight 312 kg) were grouped according to LW and allocated to treatment at random. For untreated silage (unsupplemented or with 1·5 kg Sweet ‘n’ Dry or 1·5 kg commercial concentrates head?1 day?1), silage treated with Sweet ‘n’ Dry at 30, 50 and 70 kg t?1 grass and silage treated with 50kg sugar beet pulp t?1 grass the daily silage DM intakes were 5·46, 5·28, 5·33, 6·21, 6·27, 6·60 and 6·62 (s.e. 0·154) kg respectively and daily liveweight gains were 0·39, 0·75, 0·81, 0·63, 0·76, 0·94 and 1·75 (s.e. 0·052) kg respectively throughout a 122-day feeding period. In this experiment 360g kg?1 more absorbent was required when it was included at ensiling rather than offered as a supplement to untreated silage to achieve the same individual animal performance.  相似文献   

12.
Three silages were prepared from herbage treated with either an inoculant (Ecosyl, Imperial Chemical Industries plc) at 3.21 t?1, formic acid (850 g kg?1, Add F BP Chemicals International Ltd) at 2·3 1 t?1, or no additive (control). The herbage used was the first regrowth from perennial ryegrass swards. It was ensiled unwilted, and had mean dry matter and water soluble carbohydrate concentrations at ensiling of 154 and 24·1 g kg?1 respectively. Time course studies showed only minor effects of additive treatment on fermentation patterns within the silo and all three silages had good fermentations. Over an 88 d feeding period, commencing on day 7 of lactation, forty-eight British Friesian cows were used to evaluate the silages in a three-treatment, randomized-block design experiment. The animals were stalled individually, offered the silages ad libitum, and in addition received 5 kg d?1 of a supplement containing 196 g kg?1 crude protein. On the basis of the data recorded during the final 28 d on treatment the animals receiving the inoculant-treated silage consumed 12 and 10% more silage dry matter and produced 2·1 and 2·3 kg d?1 more milk than those given the control and formic acid-treated silages respectively. Over the total experimental period the milk yields were 1957, 1894 and 2094 (±41·3) kg for animals receiving the control, formic acid- and inoculant-treated silages respectively. Animals offered the formic acid treated silage produced milk of significantly higher fat concentration than those given the other two silages. Total ration digestibility studies, conducted with three cows per treatment, indicated no significant differences in digestibility coefficients, nitrogen utilization or metabolizable energy concentrations of the three treatment diets. It is concluded that the higher milk yield recorded with the inoculant-treated silage, and the higher milk fat concentration with the formic acid-treated silage, over that obtained with the control silage, were due to the increases in ME intake of 5 and 16 MJ d?1 for the formic acid and inoculant-treated silages respectively.  相似文献   

13.
Herbage from the first regrowth of perennial ryegrass-based swards was directly ensiled after treatment with a bacterial inoculant/enzyme preparation (SIL-ALL, Alltech UK) at 3·0 1 t?1, formic acid (850 g kg?1) at 2·59 1 t?1 or no additive (Control). The mean dry matter (DM) and water-soluble carbohydrate concentrations of the grass were 185 and 24·0 g kg?1 (fresh basis) respectively. Lactic acid concentrations after ensiling increased at a lower rate in formic acid-treated herbage than with the other treatments. All silages were well preserved and formic acid-treated silage had a lower ultimate concentration of lactic acid and higher concentration of water-soluble carbohydrate. Effluent output was increased on a proportional basis by ?0·06 with formic treatment, whereas the inoculant reduced effluent output by 0·05 in comparison with the mean effluent production of the control silage. The in vivo digestibilities of the silages were determined using sheep. The digestibilities of DM, organic matter and energy were significantly higher with inoculant-treated silage than with formic acid treatment, whereas values for the control silage were intermediate. The three silages were offered ad libitum to forty dairy cows with individual recording of daily intakes for a 10-week period in a randomized block experiment with four treatments. Sixteen animals were offered the control silage with half of these offered 3 kg concentrates per day (C3) and the other half offered 7 kg concentrates per day (C7). Twelve animals were allocated to each of the additive-treated silages, with concentrates offered at 5 kg d?1. Treatment effects on animal performance were measured in weeks 7–10. To compare animal performance for the treated silages with the control, an estimate of performance at 5 kg concentrates per day was obtained by regression using values obtained at 3 and 7 kg concentrates. In comparison with estimated silage intake for the control silage with 5 kg d?1 concentrates, inoculant and formic acid treatment of the silages increased dry matter intake by 0·04 (P > 0·05) and 0·13 (P > 0·01) respectively. In comparison with estimated milk production and yield of fat plus protein for the control treatment with 5 kg d?1 concentrates, neither inoculant treatment nor formic acid treatment produced any significant differences.  相似文献   

14.
Data from six experiments conducted at two Agricultural Development and Advisory Service Experimental Husbandry Farms during 1980–83 were used to compare low dry matter (DM, 160 g kg-1), low water soluble carbohydrate (WSC, 15 g kg-1), non-additive treated silage with silage treated with commercial inoculants or formic acid with or without added formalin (formic acid ± formalin). Formic acid ± formalin significantly decreased silage pH and ammonia-N and significantly increased silage residual WSC compared with inoculant or untreated silage. Formic acid ± formalin significantly increased oven DM and significantly reduced DM loss during ensiling compared with untreated silage. Formic acid ± formalin treatment significantly increased both silage DM and total DM intake compared with untreated silage. Daily liveweight gains of cattle offered formic acid ± formalin were significantly higher than those given inoculant or untreated silage.
It is suggested from the results that formic acid ± formalin additives can be used successfully to prevent a clostridial fermentation developing when crops contain 15 g WSC kg-1.  相似文献   

15.
RESEARCH NOTE     
Data from twenty-two experiments conducted at tour ADAS Research Centres during 1980–92 were used to compare untreated silages with silages treated with formic acid, with or without added formalin, commercial inoculants or molasses. The sillages were made from herbage whose dry-matter (DM) and water-soluble carbohydrate (WSC) contents were 277 (s.e. 0.46) g DM kg−1 and 36 (s.e. 8.1) g kg−1 respectively. Inoculant use significantly decreased silage pH and ammonia-N, significantly increased lactic acid and total acid content, and decreased butyric acid and total short-chain fatty acids. Formic acid use significantly increased silage lactic acid and total acid content, and decreased butyric acid content, whereas formic acid+formalin significantly decreased silage ammonia-N level. Molasses had little effect upon silage fermentation. Improvements in silage fermentation, however, produced little benefit in terms of either silage DM intake or liveweight gain when the silages were offered to growing lambs.
It is suggested from the results that inoculant- and formic acid-based additives can be used to improve the fermentation of big-bale silages.  相似文献   

16.
A total of 1713 samples of silage from commercial farm silos were analysed to investigate the effect of dry matter (DM) content and chemical additives on fermentation as measured by ammonia-N concentration and pH, Increasing DM content without additive use had a major beneficial influence upon fermentation. When silage DM contents were greater than 260 g kg-1 83% of silages were well fermented, with average ammonia-N concentrations of 94 g (kg total N)-1 and pH 4.36. With diminishing DM concentration the proportion of well fermented silages declined. In the DM range 220-260 g kg-1 67% of silages were well fermented with ammonia-N concentrations of 125 g (kg total N)-1 and pH 4.30, in the DM range 180-220 g kg-1 48% were well fermented with ammonia-N at 151 g (kg total N)-1 and pH 4.38 and with DM below 180 g kg-1 no silages were well fermented with ammonia-N concentration of 252 g (kg total N)-1 and pH 4.84. The benefit of chemical additives, albeit at poorly defined and often inadequate rates, was small in comparison to that of increased DM concentration. Below DM concentrations of 180 and 220 g kg-1, the only benefit was that formic acid decreased ammonia-N to 151 g (kg total N)-1 and pH to 4.32 compared with 163 g (kg total N)-1 and pH 4.43 for untreated silages. Within the DM range 220-260 g kg-1 formic acid decreased ammonia-N level to 104 g (kg total N)-1 and pH to 4.07, and there was a slight benefit from using sulphuric acid/formalin which decreased ammonia-N to 117 g (kg total N)-1 and pH to 4.23 compared with 125 g (kg total N)-1 and pH 4.27 for untreated silages. Above 260 g DM kg-1 both formic acid and sulphuric acid/formalin provided a small but consistent decrease in ammonia-N and pH compared with untreated silages. Chemical additive use conferred no other benefit when compared with untreated silage. Calcium formate/sodium nitrite mixtures and acid mixture use provided no benefit in fermentation compared with untreated herbage.  相似文献   

17.
An experiment is described in which three silages were prepared from herbage treated with either a bacterial inoculant (Ecosyl, Imperial Chemical Industries plc) at 2-71 t?1, formic acid (850 g kg?1, Add-F, BP Chemicals International Ltd.) at 2-21 t?1, or no additive (control). The herbage (second regrowth from perennial ryegrass swards), was ensiled unwilted, and had mean dry matter (DM) and water-soluble carbohydrate concentrations at ensiling of 186 and 34-1 g kg?1 respectively. The resulting silages were all well preserved and had only minor chemical differences. Thirty lactating British Friesian cows were subjected to a 21 d standardization period and were then offered the three silages for 21 d in a randomized-block design experiment. The animals were stalled individually, offered the silages ad libitum and in addition received 5 kg d?1 of a supplement containing 198 g crude protein kg DM?1. The mean silage DM intake, milk yields and milk fat concentrations during the final 7 d on treatment were 8-44, 8-62 and 887 kg d?1; 238, 230 and 25-1 kg d?1; and 368, 400 and 366 g kg?1 for the control, formic acid- and inoculant-treated silages respectively. Following the feeding trial, six cows per treatment were subdivided to provide three animals which were offered silage alone, and three offered silage plus 5 kg d-’supplement. Rumen samples taken after 21 d on these treatments indicated no effect of the inoculant on ruman volatile fatty acid proportions, whereas the use of formic acid resulted in increases in both acetate and butyrate concentrations. The results from this study support that of the earlier work that this particular inoculant, when used at ensiling, can considerably improve animal performance over that achieved with both untreated and formic acid-treated silages.  相似文献   

18.
Eight grass silages were made from two contrasting varieties of perennial ryegrass, four silages each from a late-cut early-maturing (high dry matter, HDM) variety and from an early-cut, late-maturing (low dry matter, LDM) variety. The grass was ensiled without additive (untreated), or with formic acid, or with one of two enzyme mixtures of hemicellulases and cellulases (enzyme 1 and enzyme 2) for a period of 130 d.
Formic acid-treated silage had lower levels of lactic acid at both levels of dry matter than the other silages. Enzyme treatment of grass prior to ensilage resulted in reduced levels of cellulose, acid-detergent fibre and neutral-detergent fibre in LDM silages and lower acid-detergent fibre and neutral-detergent fibre in the HDM silages compared with the corresponding untreated and formic acid-treated silages. Voluntary intakes (g DM d−1) of untreated and enzyme-treated silages were significantly ( P <0·01) lower at both digestibilities compared with formic acid-treated silages (LDM: untreated, 982; formic, 1069; enzyme 1, 868; enzyme 2, 937; HDM: untreated, 931; formic, 1027; enzyme 1, 943; enzyme 2, 914). The organic matter, carbohydrate and nitrogen digestibility coefficients of LDM silages were significantly ( P <0·001) higher than those of HDM silages. There were no significant differences in any component digestibility related to silage additive.
Comparison of digestibility coefficients for constituents of the LDM silages fed to sheep or steers showed no differences between species.  相似文献   

19.
The fermentation characteristics and chemical composition of 57 first-cut and 30 second-cut samples of grass silages, made in bunker silos on commercial dairy farms in Wales in 1990, and treated with a nominal 61 t−1 of an acid salt-type additive at ensilage, is described. Typical chemical composition of grass cut for ensilage was 156 g kg−1 dry matter (DM) and 28 g kg−1 water soluble carbohydrate (WSC), with 181 g (kg DM) −1 crude protein (CP) and 232 g (kg DM) −1 modified acid detergent fibre (MADF). The effect of additive use was to produce silages with DM 230 g kg−1 pH 3·93, ammonia N 70 g kg−1 total N, with residual WSC 35 g (kg DM) −1, lactic acid 83 g (kg DM) −1, total acids 118 g (kg DM) −1 and butyric acid 0·7 g (kg DM) −1. No significant differences were found between first- and second-cut silages. Silage fermentation was restricted (i.e. lactic acid less than 60 g kg DM−1) in only 20% of the samples.
It is suggested that on commercial farms the application rate achieved may be insufficient to produce a restricted fermentation.  相似文献   

20.
An experiment was carried out to examine silage fermentation, effluent production and aerobic stability in unwilted grass silage, which was either ensiled without additive or with a commercially available blend of ammonium hexamethanoate, ammonium hexapropionate and octanoic acid (6 l t?1, Maxgrass, BP Chemicals Ltd., Northwich, UK) and to determine alternative approaches to obtaining the same performance in finishing beef cattle. Seventy‐two Limousin × Friesian and Charolais × Friesian steers (mean initial live weight 424 kg s.d. 28·3) were blocked into groups of nine according to live weight and previous performance and offered silage, either with or without the additive, and supplemented with 0, 1·5, 3·0 or 4·5 kg d?1 of a concentrate with a crude protein content of 150 g kg?1 DM or allocated to a pre‐experimental slaughter group to enable calculation of daily carcass gain. Daily silage intakes were recorded for 112 days. At the end of the experiment, all cattle were slaughtered and daily carcass gain, omental, mesenteric, perinephric and retroperitoneal fat depots [kidney‐knob and channel fat (KKCF)], fatness, conformation, subcutaneous fat depth over M. longissimus dorsi muscle and carcass fat, protein and bone contents were assessed. Across all levels of supplementation, cattle offered the silage with the additive showed significantly (P < 0·001) higher daily DM intakes than those offered the silage without additive. Cattle offered the silage with the additive but unsupplemented had significantly (P < 0·001) higher daily carcass gains than those offered the silage without additive and unsupplemented. The response in carcass gain was 76 and 35 g kg?1 additional concentrate for the silages with and without the additive respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号