首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Euryale ferox seed is consumed medicinally or for food in China. The present study revealed it to contain significant antioxidant activity, which may be associated with its medical applications as a proteinuria inhibitor of diabetic nephropathy. This study resulted in the identification of 3 new sesquineolignans, named euryalins A-C (1-3), and 16 known compounds, which were all first isolated from this plant apart from 5,7,4-trihydroxy-flavanone. The antioxidant potential of the partial isolates was evaluated using the DPPH radical scavenging assay and mesangial cellular assay. Compounds 2, rel-(2α,3β)-7-O-methylcedrusin (4), syringylglycerol-8-O-4-(sinapyl alcohol) ether (5), and (+)-syringaresinol (7) were found to be most active on DPPH assay, whereas compounds 2, 4, 7, (1R,2R,5R,6S)-2-(3,4-dimethoxyphenyl)-6-(3,4-dihydroxyphenyl)-3,7-dioxabicyclo[3.3.0]octane, and buddlenol E could significantly inhibit high glucose-stimulated reactive oxygen species production in mesangial cells. The results suggested that E. ferox seed could be considered as an excellent source of natural antioxidants and is useful in the prevention of diabetic nephropathy.  相似文献   

2.
Sesamin and sesaminol triglucoside in sesame seeds are major lignans that display an abundance of biological activities. Although their antioxidative activity in vitro is weak, they have been reported to suppress oxidative stress in vivo. We investigated the production of new antioxidative lignans from sesame lignans by culturing with the genus Aspergillus to enhance the function of food materials. Media containing sesamin or sesaminol triglucoside increased antioxidative activity for DPPH radical scavenging by culturing with Aspergillus usamii mut. shirousamii RIB2503. The antioxidative lignans in sesamin medium were identified as sesamin 2,6-dicatechol and episesamin 2,6-dicatechol. Those in sesaminol triglucoside medium were identified as sesaminol 6-catechol and episesaminol 6-catechol, which are novel antioxidative lignans. It is suggested that they may exhibit higher antioxidative activity than sesamin and sesaminol triglucoside because they have the catechol functional moiety.  相似文献   

3.
Aspergillus alliaceus UI315 was examined for its potential to catalyze biotransformation reactions of chalcones that mimic plant biosynthetic processes. 3-(4' '-Hydroxyphenyl)-1-(2',4'-dihydroxyphenyl)propenone (4,2',4'-trihydroxychalcone, isoliquiritigein) (1) was efficiently transformed to two major metabolites that were isolated chromatographically and identified by spectroscopic methods as 3-(3' ',4' '-dihydroxyphenyl)-1-(2',4'-dihydroxyphenyl)propenone (butein) (7) and 2-[(3,4-dihydroxyphenyl)methylene]-6-hydroxy-3(2H)benzofuranone (7,3',4'-trihydroxyaurone, sulfuretin) (10). Inhibition experiments suggested that initial C-3 hydroxylation of 1 to 7 was catalyzed by a cytochrome P450 enzyme system. A second A. alliaceus enzyme, partially purified and identified as a catechol oxidase, catalyzed the oxidation of the catechol butein (7) likely through an ortho-quinone (8) that cyclized to the aurone product 10. This work showed that A. alliaceus UI315 contains oxidative enzyme systems capable of converting phenolic chalcones such as 1 into aurones such as 10 in a process that mimics plant biosynthetic pathways.  相似文献   

4.
A total of 19 naturally occurring bromophenols, with six new and 13 known structures, were isolated and identified from the methanolic extract of the marine red alga Rhodomela confervoides. The new compounds were identified by spectroscopic methods as 3,4-dibromo-5-((methylsulfonyl)methyl)benzene-1,2-diol (1), 3,4-dibromo-5-((2,3-dihydroxypropoxy)methyl)benzene-1,2-diol (2), 5-(aminomethyl)-3,4-dibromobenzene-1,2-diol (3), 2-(2,3-dibromo-4,5-dihydroxyphenyl)acetic acid (4), 2-methoxy-3-bromo-5-hydroxymethylphenol (5), and (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one (6). Each compound was evaluated for free radical scavenging activity against DPPH (α,α-diphenyl-β-dipicrylhydrazyl) and ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt] radicals. Most of them exhibited potent activities stronger than or comparable to the positive controls butylated hydroxytoluene (BHT) and ascorbic acid. The results from this study suggest that R. confervoides is an excellent source of natural antioxidants, and inclusion of these antioxidant-rich algal components would likely help prevent the oxidative deterioration of food.  相似文献   

5.
The decarboxylated noradrenaline metabolite 3,4-dihydroxymandelic acid [DHMA, 2-(3,4-dihydroxyphenyl)-2-hydroxyacetic acid] occurs in different mammalian tissues, especially in the heart. To elucidate the physiological function of DHMA, the antioxidative and radical scavenging activity was determined by physicochemical and cell-based test systems. In the 2,2-diphenyl-1-picrylhydrazyl assay it shows a 4-fold higher radical scavenging activity compared to the standard antioxidants ascorbic acid, tocopherol, and butylated hydroxytoluene. DHMA is also a very potent superoxide radical scavenger and shows a 5-fold smaller IC(50) value compared to standard ascorbic acid. Again, in most cases the antioxidative power of DHMA against bulk lipid oxidation determined by accelerated autoxidation of oils is much higher than for the standard antioxidants. In soybean oil and squalene a DHMA/alpha-tocopherol mixture (1:1 w/w) shows a synergistic effect. Last but not least, 0.001 and 0.0005% levels of DHMA protect human primary fibroblasts against H(2)O(2)-induced oxidative stress as determined by the 2',7'-dichlorofluorescein assay.  相似文献   

6.
After intravenous administration of (-)-epicatechin gallate to Wistar male rats, its biliary metabolites were examined. Deconjugated forms of (-)-epicatechin gallate metabolites were prepared by beta-glucuronidase/sulfatase treatment and purified by HPLC. Five compounds were subjected to FAB-MS and NMR analyses. These metabolites were shown to be (-)-epicatechin gallate, 3'-O-methyl-(-)-epicatechin gallate, 4'-O-methyl-(-)-epicatechin gallate, 4' '-O-methyl-(-)-epicatechin gallate, and 3',4' '-di-O-methyl-(-)-epicatechin gallate. After oral administration, five major metabolites excreted in rat urine were purified in their deconjugated forms and their chemical structures identified. They were degradation products from (-)-epicatechin gallate, pyrogallol, 5-(3,4-dihydroxyphenyl)-gamma-valerolactone, 4-hydroxy-5-(3,4-dihydroxyphenyl)valeric acid, 3-(3-hydroxyphenyl)propionic acid, and m-coumaric acid. Time course analysis of the identified (-)-epicatechin gallate metabolites showed that (-)-epicatechin gallate and its conjugate appeared in the plasma with their highest levels 0.5 h after oral administration; their levels rapidly decreased, and then they disappeared by 6 h. The degradation products, mainly in their conjugated forms, emerged at 6 h, peaked at 24 h, and disappeared by 48 h. In urine samples, (-)-epicatechin gallate and its methylated metabolites were hardly detected and the degradation products began to be excreted in the 6-24 h period, peaked in the 24-48 h period, and then began to disappear. The most abundant metabolite in both the plasma and the urine was found to be the conjugated form of pyrogallol. On the basis of these results, a possible metabolic route of (-)-epicatechin gallate orally administered to the rat is proposed.  相似文献   

7.
Peroxidase extracted from Momordica charantia was used for the oligomerization of trans-resveratrol and ferulic acid on a preparative scale. One new heterocoupling oligomer, trans-3 E-3-[(4-hydroxy-3-methoxyphenyl)methylene]-4-(3,5-dihydroxyphenyl)-5-(4-hydroxyphenyl)tetrahydro-2-franone (6), and six resveratrol dimers, leachianol G (1), restrytisol B (2), parthenostilbenins A (3) and B (5), 7- O-acetylated leachianol G (4), and resveratrol trans-dehydrodimer (8), and one known ferulic acid dehydrodimer, (3alpha,3aalpha,6alpha,6aalpha)tetrahydro-3,6-bis(4-hydroxy-3-methoxyphenyl)-1 H,4 H-furo[3,4-c]furan-1,4-dione (7) were obtained. Bioactive experiments showed that compounds 6- 8 have strong free radical scavenging effects and also have protective effects on doxorubicin-induced cardiac cell injury when tested in vitro.  相似文献   

8.
Identification of new compounds especially those with new skeletons from plant kingdom has long been a vital aspect for understanding phytochemistry, plant metabolisms and discovering new bioactive compounds. In this study, we identified and isolated three novel polyphenolic compounds, origanine A-C, from a well-researched plant Origanum vulgare L. using the hyphenated LC-DAD-SPE-NMR/MS methods. Based on the combined information from UV-visible, accurate mass and 2D NMR spectra together with computational calculations, we found that these compounds all had a novel skeleton of cyclohexenetetracarboxylic acids attached with some well-known bioactive moieties including 3,4-dihydroxyphenyl, 4-(β-d-glucopyranosyloxy)benzyl alcohol (gastrodin), and 3-(3,4-dihydroxyphenyl)lactic acid (danshensu) residues. These findings provided crucial information to fill the gaps in our knowledge in terms of the plant secondary metabolism. This study also indicated the necessity for further research in plant secondary metabolism for even well-studied plants and demonstrated the powerfulness of the hyphenated LC-DAD-SPE-NMR/MS methods for comprehensive analysis of plant metabolites in particular for discovering new natural compounds.  相似文献   

9.
Sesame lignans (sesamin, sesamolin) and their metabolites (enterodiol, ED; enterolactone, EL; and sesamol) have been evaluated for their estrogenic activities. ED and EL have been indicated to have estrogenic/antiestrogenic properties on human breast cancer cells; however the estrogenic activities of sesamin, sesamolin and sesamol have not been reported. In the present study, estrogenic potencies of sesame lignans and their metabolites were determined by estrogen responsive element (ERE) luciferase reporter assay in T47D cells stably transfected with ERE-luc (T47D-KBluc cells) and quantifying pS2 and progesterone receptor gene expression in T47D cells. All tested compounds except ED possessed ability of ERE activation with a very low potency compared to estradiol (E2). These effects were abolished by coincubating tested compounds with 1 μM ICI 182?780, suggesting that estrogen receptors were directly involved in their ERE activations. Among tested compounds, sesamol showed the highest ability in ERE induction. The coincubation of increasing concentration of E2 (10(-12)-10(-6) M) with 10 μM of tested compounds resulted in a downward shift of E2-ERE dose-response curves. In contrast, at the low concentration of E2 (10(-12) M), sesamin and sesamol significantly exhibited additive effects on the E2 responses. The inhibitory effect in a dose-dependent manner was also observed when 1-100 μM sesamol was coincubated with 1 nM E2. Sesamin, sesamol and EL significantly induced pS2 gene expression whereas only sesamol could significantly induce progesterone receptor gene. The data obtained in this study suggested that sesame lignans and their metabolites possess weak estrogenic/antiestrogenic activity.  相似文献   

10.
The protective effects of hen egg yolk phosvitin phosphopeptides (PPPs) against hydrogen peroxide (H2O2)-induced oxidative stress were evaluated in an in vitro assay using human intestinal epithelial cells. Caco-2 cells were stimulated with 1 mM H2O2 for 6 h, and the secretion of IL-8, a proinflammatory mediator, was determined by ELISA as a biomarker of oxidative stress. The inhibition of H2O2-induced IL-8 secretion from Caco-2 cells was observed by pretreatment for 2 h with PPPs, but not with phosvitin. PPPs also suppressed the formation of malondialdehyde in H2O2-treated Caco-2 cells. Furthermore, intracellular glutathione levels and glutathione reductase activity were elevated by the addition of PPPs. The protective effects of PPPs against H2O2-induced oxidative stress were almost the same as that of glutathione, and PPPs with a high content of phosphorus exhibited higher protective activity than PPPs without phosphorus; however, phosphoserine itself did not show any significant antioxidative stress activity. These findings suggest that oligophosphopeptides from hen egg yolk phosvitin possess novel antioxidative activity against oxidative stress in intestinal epithelial cells and that phosphorus and peptide structure seem to have a key role in the activity.  相似文献   

11.
The major in vivo metabolites of (S)-(-)-pulegone in humans using a metabolism of ingestion-correlated amounts (MICA) experiment were newly identified as 2-(2-hydroxy-1-methylethyl)-5-methylcyclohexanone (8-hydroxymenthone, M1), 3-hydroxy-3-methyl-6-(1-methylethyl)cyclohexanone (1-hydroxymenthone, M2), 3-methyl-6-(1-methylethyl)cyclohexanol (menthol), and E-2-(2-hydroxy-1-methylethylidene)-5-methylcyclohexanone (10-hydroxypulegone, M4) on the basis of mass spectrometric analysis in combination with syntheses and NMR experiments. Minor metabolites were be identified as 3-methyl-6-(1-methylethyl)-2-cyclohexenone (piperitone, M5) and alpha,alpha,4-trimethyl-1-cyclohexene-1-methanol (3-p-menthen-8-ol, M6). Menthofuran was not a major metabolite of pulegone and is most probably an artifact formed during workup from known (M4) and/or unknown precursors. The differences in toxicity between (S)-(-)- and (R)-(+)-pulegone can be explained by the strongly diminished ability for enzymatic reduction of the double bond in (R)-(+)-pulegone. This might lead to further oxidative metabolism of 10-hydroxypulegone (M4) and the formation of further currently undetected metabolites that might account for the observed hepatotoxic and pneumotoxic activity in humans.  相似文献   

12.
The methanol extract of sesame (Sesamum indicum) seeds was fractionated and purified with the assistance of conventional column chromatography to afford 29 compounds including seven furofuran lignans. Among these isolates, (+)-samin (1) was obtained from the natural source for the first time. In addition, (-)-asarinin (30) and sesamol (31) were generated by oxidative derivation from (+)-sesamolin (2) and (+)-sesamin (3), two abundant lignans found in sesame seeds. To evaluate their in vitro antioxidant potential, the seven isolated lignans (1-7) and the two derivatives (30 and 31) were examined for the scavenging activities on DPPH free radicals and superoxide anions. Moreover, the capability of chelating ferrous ions and reducing power of these sesame lignans were also measured. The results suggest that, besides the well-known sesamolin and sesamin, the minor sesame lignans (+)-(7S,8'R,8R)-acuminatolide (5), (-)-piperitol (6), and (+)-pinoresinol (7) are also adequate active ingredients and may be potential sources for nutritional and pharmacological utilization.  相似文献   

13.
The isolation and identification of a phytocomplex from olive mill waste waters (OMWW) was achieved. The isolated phytocomplex is made up of the following three phenolic compounds: hydroxytyrosol (3,4-DHPEA), tyrosol (p-HPEA) and the dialdehydic form of decarboxymethyl elenolic acid, linked with (3,4-dihydroxyphenyl)ethanol (3,4-DHPEA-EDA). The purification of this phytocomplex was reached by partial dehydration of the OMWW, followed by liquid-liquid extraction with ethyl acetate and middle pressure liquid chromatography (MPLC) on a Sephadex LH-20 column. The phytocomplex accounted for 6% of the total phenolic content of the OMWW. The phytocomplex and individual compounds were tested for antioxidant capacity by the oxygen radical absorbance capacity (ORAC) method. The ORAC phytocomplex produced 10,000 ORAC units/g dry weight, whereas the cellular antioxidant activity, measured by the cellular antioxidant activity in red blood cell (CAA-RBC) method, demonstrated that the phytocomplex and all of the components are able to permeate the cell membrane thus exhibiting antioxidant activity inside the red blood cells. Our phytocomplex could be employed in the formulation of fortified foods and nutraceuticals, with the goal to obtain substantial health protective effects due to the suitable combination of the component molecules.  相似文献   

14.
A monoclonal antibody was generated toward the beta-adrenergic agonist ractopamine hydrochloride ?(1R,3R),(1R, 3S)-4-hydroxy-alpha-[[[3-(4-hydroxyphenyl)-1-methylpropyl]amino]methy l]benzenemethanol hydrochloride?. Ractopamine-glutarate-keyhole limpet hemocyanin (KLH) was used as the antigen for antibody generation in mice. Clone 5G10, secreted antibody with isotype IgG1kappa, was used for the development of an immunoassay. The selected antibody was specific for racemic ractopamine with an IC(50) of 2.69 +/- 0.36 ng/mL (n = 15). Antibody binding toward ractopamine was stereoselective with (1R,3R)-ractopamine having an IC(50) of 0.55 +/- 0.09 ng/mL (n = 3). IC(50) values for the (1S, 3R)-, (1S,3S)-, and (1R,3S)-ractopamine stereoisomers were 2.00 +/- 0.37, 140 +/- 23, and 291+/- 32 ng/mL (n = 3), respectively. Phenethanolamine beta-agonists showed low cross-reactivity. Studies using a series of ractopamine metabolites and ractopamine analogues demonstrated structural requirements for the antibody binding. A free phenolic group on the N-butylphenol moiety was required for high-affinity binding because methoxylated analogues and metabolites glucuronidated at this phenol generally had IC(50) values greater than 200 ng/mL. Ractopamine analogues methoxylated or glucuronidated at the ethanolamine phenol had IC(50) values of 0.7-2.6 ng/mL. Lack of a benzylic hydroxyl group was of less importance to antibody binding than was the correct stereochemical orientation (3R) of ractopamine's N-phenylalkyl group. In conclusion, a highly specific monoclonal antibody to ractopamine hydrochloride was developed that could be of potential utility in screening assays.  相似文献   

15.
Analysis of a methanolic extract of marc from Boronia megastigma (Nees) using LC-MS (APCI, nominal mass) provided strong evidence for the presence of both glycosides and malonyl glycosides of methyl cucurbates, C13 norisoprenoids including megastigmanes, and monoterpene alcohols. Subsequent fractionation of an extract from the marc using XAD-2 and LH 20 chromatography followed by LC-UV/MS-SPE-NMR and accurate mass LC-MS resulted in the isolation and identification of (1R,4R,5R)-3,3,5-trimethyl-4-[(1E)-3-oxobut-1-en-1-yl]cyclohexyl β-D-glucopyranoside (3-hydroxy-5,6-dihydro-β-ionone-β-D-glucopyranoside); 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-β-D-glucopyranoside; and a methyl {(1R)-3-(β-D-glucopyranosyloxy)-2-[(2Z)-pent-2-en-1-yl]cyclopentyl}acetate stereoisomer (a methyl cucurbate-β-D-glucopyranoside); and provided evidence for 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-(6'-O-malonyl)-β-D-glucopyranoside in boronia flowers.  相似文献   

16.
Eriodictyol [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-2,3-dihydrochromen-4-one] is a flavonoid with anti-inflammatory and antioxidant activities. Because inflammation and oxidative stress play critical roles in the pathogenesis of diabetes mellitus, the present study was designed to explore whether eriodictyol has therapeutic potential for the treatment of type 2 diabetes. The results show that eriodictyol increased insulin-stimulated glucose uptake in both human hepatocellular liver carcinoma cells (HepG2) and differentiated 3T3-L1 adipocytes under high-glucose conditions. Eriodictyol also up-regulated the mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) and adipocyte-specific fatty acid-binding protein (aP2) as well as the protein levels of PPARγ2 in differentiated 3T3-L1 adipocytes. Furthermore, it reactivated Akt in HepG2 cells with high-glucose-induced insulin resistance. This response was strongly inhibited by pretreatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, indicating that eriodictyol increased Akt phosphorylation by activating the PI3K/Akt pathway. These results imply that eriodictyol can increase glucose uptake and improve insulin resistance, suggesting that it may possess antidiabetic properties.  相似文献   

17.
A chicken model for studying the effects of antioxidants in the diet on oxidative status was set up. Chickens fed a semi-synthetic diet low in antioxidants showed a remarkable decrease in erythrocyte stability toward H(2)O(2) or 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), but increases in catalase activity in liver, carbonyls in insoluble muscle proteins, and enhanced lipid oxidation in heat-treated liver samples compared to that of conventionally fed chickens. Thus, this chicken model proved to be more susceptible to oxidative changes than conventionally fed chickens, reflecting a low antioxidative defense. Supplementing this low antioxidant diet with 10% apple/broccoli mixture counteracted these changes, except for activity of catalase in the liver and AAPH-induced lysis of erythrocytes. Supplementation with 10% sweet corn only reduced the carbonyl content in insoluble proteins. However, neither low antioxidant diet nor vegetable supplements affected selected antioxidative enzymes or oxidative stability of lipids in heat-treated muscle tissue.  相似文献   

18.
The soy isoflavones daidzein and genistein are found in high concentrations in human plasma and urine after soy consumption. However, in vitro and in vivo data regarding the oxidative metabolism of isoflavones in humans are scarce. Therefore, we have studied the oxidative metabolites of these compounds formed in human liver microsomes and excreted in urine of male and female humans ingesting soy products for 2 days. Human liver microsomes transformed the soy isoflavone daidzein to three monohydroxylated and three dihydroxylated metabolites according to GC/MS analysis. On the basis of a previous study with rat liver microsomes and with the help of reference substances, these metabolites were identified as 6,7,4'-trihydroxyisoflavone, 7,3',4'-trihydroxyisoflavone, 7,8,4'-trihydroxyisoflavone, 7,8,3',4'-tetrahydroxyisoflavone, 6,7,8,4'-tetrahydroxyisoflavone, and 6,7,3',4'-tetrahydroxyisoflavone. Significant amounts of the same metabolites except 6,7,8,4'-tetrahydroxyisoflavone were also found in urine of female and male volunteers after soy intake. Genistein was metabolized by human liver microsomes to six hydroxylation products. The main metabolites were the three aromatic monohydroxylated products 5,6,7,4'-tetrahydroxyisoflavone, 5,7,8,4'-tetrahydroxyisoflavone and 5,7,3',4'-tetrahydroxyisoflavone. The aliphatic monohydroxylated metabolite 2,5,7,4'-tetrahydroxyisoflavone and two aromatic dihydroxylated metabolites, 5,7,8,3',4'-pentahydroxyisoflavone and 5,6,7,3',4'-pentahydroxyisoflavone, were formed in trace amounts. The same hydroxylated genistein metabolites except the aliphatic hydroxylated one could also be detected in human urine samples. Methylated forms of the catechol metabolites, which were generated by incubations with catechol-O-methyltransferase in vitro could be detected only in trace amounts in the urine samples. This implies that this reaction does not play a major role in the biotransformation of the hydroxylated daidzein and genistein metabolites in vivo. Most of these oxidative metabolites are described as human in vivo metabolites for the first time. Their biological significance remains to be established.  相似文献   

19.
This study presents the optimization and validation of a rapid protocol for quantifying alkyresorcinol (AR) metabolites 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA) in plasma, using high-performance liquid chromatography (HPLC) coupled with a coulometric electrode array detector. Syringic acid (SyrA) serves as the internal standard. The new method is simple and could be used in large epidemiological studies. The summed AR metabolite concentrations measured in plasma correlate significantly with the summed urinary AR metabolite concentrations (R = 0.613; p < 0.001) and with the summed intact AR (C17:0-C25:0) concentrations in plasma (R = 0.686; p < 0.001). Additional investigation is needed to clarify whether the two plasma AR metabolites are useful as biomarkers of whole-grain intake and helpful in the exploration of the association between whole-grain cereal intake and human diseases.  相似文献   

20.
DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity of protocatechuic acid and its structural analogues (methyl protocatechuate, 3',4'-dihydroxyacetophenone, 3,4-dihydroxybenzaldehyde, and 3,4-dihydroxybenzonitrile) were examined in aprotic and protic solvents. In aprotic acetonitrile, all test compounds scavenged two radicals. In protic methanol, however, these compounds rapidly scavenged five radicals except for protocatechuic acid, which consumed only two radicals. The result indicated that higher radical scavenging activity in methanol than in acetonitrile was due to a nucleophilic addition of the methanol molecule on the oxidized quinones, which led to a regeneration of catechol structures. To investigate the importance of the nucleophilic addition on the quinones for the high radical scavenging activity, DPPH radical scavenging activity of protocatechuic acid and its analogues was examined in the presence of a variety of nucleophiles. The addition of a strong nucleophile such as a cysteine derivative significantly increased the radical scavenging equivalence. Furthermore, thiol adducts at C-2 and C-2,5 of protocatechuic acid and its analogues were isolated from the reaction mixtures. These results strongly suggest that the quinone of protocatechuic acid and its analogues undergo a nucleophilic attack at C-2 to yield 2-substituted-3,4-diols. Then, a regenerated catechol moiety of adducts scavenge two additional radicals by reoxidation into quinones, which undergo the second nucleophilic attack at the C-5. This mechanism demonstrates a possibility of synergistic effects of various nucleophiles on the radical scavenging ability of plant polyphenols containing a 3,4-dihydroxy substructure like protocatechuic acid and its analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号