首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A continuum failure criterion applicable to wood   总被引:1,自引:0,他引:1  
The failure criterion is an essential part of all strength calculations of design. It was shown in the past that the tensor-polynomial equation could be regarded as a polynomial expansion of the real failure surface. Now it is shown that the third-degree polynomial is identical to the real failure criterion. It is also shown that the second-degree part of the polynomial is identical to the orthotropic extension of the von Mises criterion for initial yield. The third-degree polynomial hardening terms of the criterion are also shown to incorporate the earlier theoretical explained mixed-mode I-II fracture equation, showing hardening to be based on hindered microcrack extension. For uniaxial loading, the failure criterion can be resolved in factors, leading to the derivation of extended Hankinson equations. This allows the relations between the constants of the total failure criterion to be elucidated, which is necessary for data fitting of this criterion and providing a simple method to determine the constants by the simple uniaxial, oblique-grain compression and tension tests. Based on this, the numerical failure criterion is given with the simple lower bound criterion for practice and for the codes.  相似文献   

2.
ABSTRACT

The usage of hardwoods for engineered wood products, such as glulam, requires defined mechanical properties reflecting the actual tensile strength of the material. Currently, the European strength class system EN 338 only covers profiles for hardwoods tested in bending. In this study, the material properties of medium-density hardwoods are analysed with the focus on a total of 3663 European ash (Fraxinus excelsior) and European beech (Fagus sylvatica) specimens tested in different loading modes (tension, compression, bending, and shear). The relationships between the material propertiestensile strength, stiffness, and density—are analysed on grouped data of both graded and ungraded specimens. As a result, a tailored ratio of tensile strength to tensile MOE and density is given, which allows to utilize a higher tensile strength of hardwoods (ft,0,k over 30?N/mm²) compared to softwoods. Furthermore, the relationship of the test values and the derived values is checked. The equations for deriving the compression and bending strength from tensile strength are verified based on available data. For tensile and compression strength perpendicular to the grain and for shear strength of both beech and ash, higher strength values than the ones listed in EN 338 are possible. The relationship between the mechanical properties are combined to tensile strength profiles for hardwoods.  相似文献   

3.
Abstract

This article presents a study based on the Tsai–Wu failure criterion as well as Hankinson's formula that evaluates the off-axis strength of wood. For materials such as wood, the strengths are a function of the grain orientation and also are different in compression and tension for the same direction. By considering this anisotropic behaviour, the failure criterion of the Tsai–Wu was adopted in this work. To establish this criterion, the strengths were determined from compressive and tensile tests as well as shear and biaxial compressive tests. In addition, off-axis uniaxial tests were performed, and the experimental results were compared with those obtained by the discussed criteria. In these tests, specimens of Goupia glabra-Brazilian wood species were used. This study's most important conclusion was: the predictive ability of the Tsai–Wu criterion was close to that of Hankinson's formula and fits the experimental results of the compressive and tensile tests well.  相似文献   

4.
Abstract

The purpose of this review is to re-examine some of the existing knowledge on the ultrastructure of softwood fibres and modelling of the hygroelastic properties of these fibres. The motivation is that the ultrastructure of wood fibres has a strong influence on fibre properties such as stiffness and hygroexpansion. This structure–property relationship can be modelled with, for instance, composite mechanics to assess the influence of ultrastructure on the fibre properties that in turn control the engineering properties of wood fibre composites and other wood-based materials. Comprehensive information about the ultrastructure is presented that can be useful in modelling the hygroelastic behaviour of wood fibres. Many attempts to model ultrastructure–property relationships that have been carried out over the years are reviewed. Even though models suffer from limiting approximations at some level, they have been useful in revealing valuable insights that can help to clarify experimentally determined behaviour of wood fibres. Still, many modelling approaches in the literature are of limited applicability, not the least when it comes to geometry of the fibre structure. Therefore, an example of finite element modelling of geometrically well-characterized fibres is given. This approach is shown to be useful to asses the influence of the commonly neglected irregular shape on elastic behaviour and stress state in wood fibres. Comparison is also made with an analytical model which assumes cylindrical fibre shape. Predictions of the elastic properties made with analytical modelling of cylindrical fibres and with finite element modelling of geometrically characterized fibres are in concert, but the stress state and failure predictions only show qualitative similarity. It can be concluded that calculations on fibres with the irregular and more realistic geometry combined with experiments on single fibres are necessary for a better and more quantitative understanding of the hygroelastic behaviour and particularly failure of wood fibres. It is hoped that this paper can provide a foundation and an inspiration for modelling, in combination with experiments and microscopy, for better predictions of the mechanical behaviour of wood fibres and wood fibre composites.  相似文献   

5.
The total hardwood timber stock of German forests is fast growing. The lack of knowledge concerning test standards, product standards and sorting criteria makes it difficult to expand the processing and marketing of hardwoods into the field of construction usage. Strength and stiffness data derived from small, defect-free specimens do mostly exist, but in order to be able to insert hardwoods into building applications, data derived from real size specimens is needed. Subsequently, the results of these two different specimen categories need to be correlated and the so-called size effect needs to be quantified and qualified. This paper aims to analyze the size effect of defect-free compression, bending and tensile specimens for the six European hardwood species maple (Acer spp.), birch (Betula pendula), beech (Fagus sylvatica), ash (Fraxinus excelsior), oak (Quercus spp.) and lime (Tilia spp.). They are tested exclusively parallel to grain. Regarding the compression strength for maple, birch and ash, the specimen dimensions did not influence the compression strength value. For beech, oak and lime, it was observed that compression strength increased as the specimen volume was increased. The bending strength of all species decreased as the specimen dimensions increased. Concerning the tensile strength, a clear statement on whether dimensions influence the tensile strength value is not possible. Further research with adjusted specimen sizes, specimen shapes and machine set-ups is needed. Regarding the compression and bending MOE, in most cases, the dimensions did not influence the MOE values. In tensile testing, MOE values differed significantly for the different specimen sizes. Whether these differences were due to slightly different test set-ups in the different sizes or a true size effect could not be answered conclusively.  相似文献   

6.
Abstract

The main load-carrying component of the containment system of membrane gas carriers is made of plywood. One of the failure modes of the containment system due to violent liquid loading inside the tank is bending the plywood plate. A systematic study of the plywood bending failure is conducted by means of experiments and finite element (FE) methods. The objective is to propose an FE model that can replicate the nonlinear tests results of the plywood bending failure. The FE software ABAQUS has been utilized as a basis for this study. The material is modelled by linear elasticity combined with damage initiation using Hashin's theory. The brittle behaviour is indicated by linear softening. The softening is modelled by a fracture energy approach. The sensitivity study of the damage parameter on ultimate bending load is conducted. The numerical results from FE models are compared with the test results. A nonlinear material and FE model of plywood that could demonstrate the brittle failure is proposed.  相似文献   

7.
ABSTRACT

Drying takes the largest share of energy in plywood production, and varying moisture content of veneers necessitates re-drying that often leads to over-dry veneers with deactivated surfaces, which may promote imperfect bonding. In order to decrease the drying time, reduce the need for re-drying of veneers, and improve the quality of plywood, birch and spruce veneers were subjected to pre-treatment by cold compression, incision, or a combination of the two. The effects of pre-treatment on the veneer and plywood quality were assessed by standard tests. Compression had a beneficial effect on water removal of the wettest veneers (spruce sapwood (SW) and birch), but some thickness reduction was observed in the veneers as well as the finished birch plywood. Compression led to thickness reduction of spruce veneers, but had no effect on SW plywood thickness likely due to higher viscoelasticity. Both compression and the combination of incising and compression levelled the moisture variation within the compressed stacks. Incision improved the modulus of elasticity of birch plywood, shear strength of SW plywood, and both bending and shear strengths of heartwood plywood. Higher surface pressure decreased the drying time of spruce SW in both plain compression and combined incision and compression pre-treatment.  相似文献   

8.
Load sharing between the stringers in gravel-decked log bridges is an important design factor when small- diameter stringers are used with thin gravel decks. In order to estimate the load sharing between the stringers, it is necessary to consider the deflection of the stringers; therefore, accurate estimates of the apparent modulus of elasticity (MOE) for full-size log stringers are required. In this paper, load and displacement data from the full- size bending tests are used to demonstrate that taper near midspan has the greatest effect on the MOE used in common log bridge design methods, where the logs are assumed to have constant cross sections. This paper proposes a method to estimate a MOE that can be used in a constant cross-section model given the geometry of the particular log of interest, and the MOE from full-size bending tests calculated when considering actual log geometry.  相似文献   

9.
竹材是一种力学性能优异、可再生和环保的结构性材料,具有广阔的工程应用前景.准确掌握竹材各组分的力学性能参数对于竹材的工程应用具有重要意义.结合细观力学和材料力学方法得到了一种确定竹材纤维和基体材料力学性能参数的计算方法:首先通过竹材试件的准静态压缩、拉伸和弯曲试验,获得了竹材在不同加载条件下的宏观力学性能;然后结合细观...  相似文献   

10.
Abstract

To enable use of round Scots pine timber in structural frameworks it is necessary to estimate the mechanical properties of the material. This paper presents data on density, bending strength and modulus of elasticity (MOE) of 533 debarked Scots pine logs with diameter from 75 mm to 250 mm sampled from 10 sites in southern Norway. The results show that round timber can have high values of bending strength and MOE, depending on the sites from which the trees have been collected. Some of the variation in bending properties can be explained by visual characteristics, but since a significant proportion of the residual variance is related to sites, criteria for visual strength grading have to be conservative to be valid across all sites. The potential for machine grading based on measuring MOE is better since this model is more accurate and the random effect of site is smaller.  相似文献   

11.
We measured Young's modulus, proportional limit stress, and bending strength by the compression bending test and examined the applicability of the testing method by comparing it with conventional bending test methods. Long columns of todomatsu (Japanese fir,Abies sachalinensis Fr. Schmidt) with various length/thickness ratios were the specimens. A compressive load was axially applied to the specimen supported with pin ends. Young's modulus, the proportional limit stress, and the bending strength were obtained from the load-loading point displacement and load-strains at the outer surfaces until the occurrence of bending failure. Four-point bending tests were also conducted, and the bending properties obtained were compared with the corresponding properties obtained by the compression bending tests. Based on the experimental results, we believe that when the stress-strain relation is measured by the load-loading point displacement relation using specimens whose length/thickness ratio is large enough, the bending properties can be obtained properly using the compression bending test.  相似文献   

12.

In timber production, there is a need to select the right log for a given end - product. To achieve this objective, individual tree characteristics (total height, diameter at breast height and age) and external measurements made on the log shape were combined. In this study, three possible methods are analyzed to assess the number of annual rings for a given Picea abies (L.) Karst. log using modelling. The first method consists of finding a link between the number of rings and the size, the taper and the location of the log in the tree. The second one is based on the log location in the tree and the use of an height - age growth model. The third involves the whorl location inside the log and the use of an individual height - age growth model. The three methods are compared on the basis of the amount of data required by each and error analysis.  相似文献   

13.
The performance of plywood-sheathed shear walls is determined at the plywood-to-timber joints. In joints with dowel-type fasteners, such as nails and screws, the fastener is fractured under reversed cyclic loading (e.g., seismic force), reducing the ductility of the joint. The fracture is caused by low-cycle fatigue due to the reversed cyclic bending of the fastener. Therefore, evaluating the fatigue life is important for estimating the ultimate displacement. The main objective of this study is to estimate the ultimate displacement of the joints and to enable load–displacement calculation of single shear joints under reversed cyclic displacement when bending fatigue failure of the fastener occurs. Single shear tests were conducted under different loading protocols, and the damage performances of the fasteners were determined by subjecting them to reversed cyclic bending tests. Based on the results, the failure lifetimes of joints with dowel-type fasteners were estimated. In addition, the fracture mechanism of these dowel-type fasteners was elucidated. CN50-type nails and wood screws with dimensions of 4.1?×?38 and 4.5?×?50 mm were used as fasteners. The single shear tests showed that the smaller the displacements per cycle, the lower are the ultimate displacement and ductilities of the joints. Moreover, load–displacement relationship up to fastener failure can be approximately estimated by combining the yield model and failure lifetime.  相似文献   

14.
Abstract

The use of wood as structure-giving material may be an effective approach to reduce some barriers for producing high temperature ceramic especially carbon composites. The objective of this study was to develop a simple process for producing carbon–carbon (C–C) composite through porous template result from pyrolysing of wood. Walnut, known to be relatively permeable, was being heat treated under controlled atmosphere. The carbon-template formed was infiltrated with coal tar pitch. Morphological characterization of the resulting composite was carried out by scanning electron microscopy morphology and physical properties of sample were evaluated with determination of bulk density and open porosity. In addition mechanical properties of products were analysed with three-point bending test and Vickers micro hardness. Results showed that bulk density had an uprising trend with increasing the number of densification cycles and subsequently open porosity decreased. Moreover, from mechanical property's point of view, results had a good compatibility with increase in the densification cycles.  相似文献   

15.
Abstract

One of the major issues in a long-term perspective for the use of wood–plastic composites (WPCs) in outdoor applications is the moisture sensitivity of the wood component and the consequent dimensional instability and susceptibility to biological degradation of the composite. In this work, the effects of using an acetylated wood component and a cellulose ester as matrix on the micromorphology, mechanical performance and moisture uptake of injection-moulded WPCs have been studied. Composites based on unmodified and acetylated wood particles, specially designed with a length-to-width ratio of about 5–7, combined with both cellulose acetate propionate (CAP) and polypropylene (PP) matrices were studied. The size and shape of the wood particles were studied before and after the processing using light microscopy, and the micromorphology of the composites was studied using a newly developed surface preparation technique based on ultraviolet laser irradiation combined with low-vacuum scanning electron microscopy (LV-SEM). The water vapour sorption in the composites and the effect of accelerated weathering were measured using thin samples which were allowed to reach equilibrium moisture content (EMC). The length-to-diameter ratio was only slightly decreased for the acetylated particles after compounding and injection moulding, although both the unmodified and the acetylated particles were smaller in size after the processing steps. The tensile strength was about 40% higher for the composite based on acetylated wood than for the composite with unmodified wood using either CAP or PP as matrix, whereas the notched impact strength of the composite based on acetylated wood was about 20% lower than those of the corresponding unmodified composites. The sorption experiments showed that the EMC was 50% lower in the composites with an acetylated wood component than in the composites with an unmodified wood component. The choice of matrix material strongly affected the moisture absorptivity of the WPC. The composites with CAP as matrix gained moisture more rapidly than the composites with PP as matrix. It was also found that accelerated ageing in a Weather-Ometer® significantly increased the moisture sensitivity of the PP-based composites.  相似文献   

16.
We examined the bending and shear properties of compressed wood using small and clear specimens of Sitka spruce (Picea sitchensis Carr.). For measuring the bending properties, three-point bending tests were conducted under the span/depth ratio of 14, which is standardized in the American Society for Testing and Materials [ASTM D143-94 (2005a)] and Japanese Industrial Standards [JIS Z2101-94 (1994)]. In the bending test, the load, deflection at the midspan, and strain at the bottom of the midspan were simultaneously measured, and Young’s modulus and bending strength were obtained by elementary beam theory. For obtaining the shear modulus and shear strength, asymmetric four-point bending tests were conducted using the specimens with rectangular and side-grooved cross sections, respectively, and the influence of the compression ratio on the shear properties was examined. The results are summarized as follows: (1) Young’s modulus increased with increasing compression ratio when it was determined by the load–strain relation. Nevertheless, this tendency was rather obscured when Young’s modulus was determined by the load–deflection relation. Hence, it is preferable that Young’s modulus is measured from the load–strain relation. (2) The shear modulus in the longitudinal–tangential plane was maximum at the compression ratio of 50%, whereas that in the longitudinal–radial plane was minimum at the compression ratio of 50%. (3) The influence of the compression on the bending and shear strength ratio was not significant.  相似文献   

17.
Solid timber for structural applications has to be strength graded prior to its use. In order to remain economic the grading process usually focuses on the most important physical and mechanical properties: density, modulus of elasticity (MOE) and bending strength. Based on respective limits given in standards, the timber is assigned to strength classes. Additional mechanical properties such as tensile and compression strength parallel to the grain are derived from the basic property values by empirical relationships. The objective of this study was to review some of these property relationships based on recently compiled large data sets as a contribution for a future revision of the grading standards. Based on mechanical tests of Norway spruce structural timber with different cross-sections, the following characteristic values and property relationships were evaluated: (a) strength and MOE in bending, (b) in-grade characteristic values of bending strength, bending MOE and density, (c) relationship of characteristic values of tension and compression strength parallel to the grain with respect to the corresponding characteristic value of bending strength, (d) ratio of fifth percentiles and mean values of density and MOE, as well as (e) the ratio of MOE in bending, tension and compression. Mechanical tests were accompanied by measurements of density and ultrasonic wave speed. Resulting dynamic MOE was partly used as an indicator of timber quality.  相似文献   

18.
Summary The incidence of non-linearity with stress in the rheological behaviour of wood in bending was shown earlier to occur at an unexpectedly low stress. This has been further confirmed by the study of an additional species, alpine ash.Tests on hoop pine, one of the species previously studied in bending, have shown that in compression, non-linearity first occurs at stresses which are a much higher fraction of the ultimate stress than in bending, but in approximately the same range of actual stress. This suggests that the cause of non-linearity at such a low stress in bending lies in the fact that the compressive strength is considerably lower than the bending strength. The stress on the compression face of a beam reaches a high percentage of the ultimate compressive strength by the time the bending stress reaches the limit of proportionality in bending and the nonlinear effects in a beam are attributable mainly to stresses near the compression face.A marked effect of temperature on fractional total creep for hoop pine in compression was found even within the range 20 to 50° C, the creep increasing by a factor of about 2.5 in this range.The authors wish to thank Miss N. Ditchburne of the Division of Mathematical Statistics, C.S.I.R.O., for statistical advice and for carrying out statistical computations, and Mr. L. D. Armstrong for valuable discussion and suggestions.  相似文献   

19.
ABSTRACT

Innovative beech laminated veneer lumber (LVL) circular hollow sections for the use as temporary geotechnical soil nailing systems are currently being developed. Due to the permanent subsoil cement embedment, combined with high water saturation and permanent loading, the timber sections will lose strength and stiffness over time to a degree currently unknown. This paper presents the tensile and bending material properties of flat and curved beech LVL under various periods of immersion in a water–cement grout solution aiming at inducing both water saturation and long-term alkaline attack of the timber. In total, 824 and 279 samples were tested in tension and bending, respectively. Results show that samples manufactured from 3?mm thick veneers result in tensile strength and stiffness 17% and 24% higher, respectively, than samples manufactured from 2?mm thick veneers. A reduction in the initial bending and tensile strength of up to 70% was found after 90 days of water saturation and cement contact. Taking into account a duration of load factor for permanent loading of two years, it is recommended to reduce the short-term tensile and bending strength of beech circular hollow sections to be used as geotechnical anchors by 80%.  相似文献   

20.
Abstract

To study the effect of grain angle on the adhesive bond strength in wood, three-part Norway spruce wood specimens were bonded and tested in tension. The two axially orientated outer parts of the specimens were joined with the middle part by means of three adhesives typically used for load-bearing constructions, i.e. one-component polyurethane (PUR), melamine–urea–formaldehyde (MUF) and phenol–resorcinol–formaldehyde (PRF). The grain angle of the middle part was varied from 0° (end grain to end grain) to 90° (flat grain to end grain) in incremental steps of 10°. In general, PRF- and MUF-bonded samples exhibited highest tensile strength at end grain to end grain orientation of the three parts, while specimens bonded with PUR showed only 25% of the strength measured for PRF and MUF, respectively. At high grain angles (90°) all specimens showed similar strength values in the range of 30% of maximum strength of MUF- and PRF-bonded specimens. To explain the changing strength levels at different grain angle a composite failure criterion was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号