首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

Change in the colour of silver birch wood is a serious problem in the mechanical wood industry. Here, colour was correlated with microscopic characteristics of wood, such as cell types and dimensions, by drying processes. In conventional drying, with lower temperature than in vacuum drying used here, the most important factor causing darkened wood was wide latewood. In vacuum drying, thickness of the vessel walls affected wood darkening, as did broad rays and large amount of axial parenchyma. Axial and terminal parenchyma cells contained very small amounts of phenolics, but after drying at elevated temperature, a thin dark layer could be observed on the innerside of their walls. Phenolics were abundant in ray parenchyma; these compounds darkened at elevated temperatures, less in conventional drying than in vacuum drying. Phenolics were observed only inside cells, mainly in the parenchyma, but in vacuum-dried wood also in fibres and vessels. Anatomical characteristics are known to be affected by both environmental and genetic factors. Thus it might be possible to influence the colour reaction of birch wood during the drying process by choosing wood according to growing-site conditions, or by choosing the seed source for birch plantations according to given anatomical characteristics.  相似文献   

2.
Abstract

The aim of the present work was to examine an advanced image-processing algorithm for moisture content (mc) calculation and also to use this algorithm to analyse moisture loss data for low temperature drying. Since wood starts to shrink below the fibre saturation point during drying, the geometrical shape of the wood piece will change. The dry wood image was thoroughly transformed to the shape of the wet wood image prior to calculating the dry weight mc. The results show that the algorithm for the dry weight mc on density data from the CT-scanning during low-temperature drying in the climate chamber is a powerful tool for analysing the moisture loss inside the wood piece. This method can make it possible to get a higher quality on the product.  相似文献   

3.
Abstract

Wood drying experiments were conducted in which the temperature and the drying rate were controlled independently. The mechanical properties of dried wood in radial loading were analysed in relation to drying parameters. Mass loss, due to thermal degradation of the wood structural components, occurred predominantly in slow high-temperature drying processes. Despite the higher mass loss, slowly dried wood showed similar radial strength and stiffness to rapidly dried wood. The formation of irreversible hydrogen bonds (hornification) within the wood structure may compete with the effects of mass loss on the radial mechanical behaviour of wood. However, both the mass loss and the hornification resulted in wood specimens with lower hygroscopicity. Application of slow high-temperature drying to reduce microscopic cell-wall damage, caused by anisotropic shrinkage of cell-wall layers, did not seem to affect the radial mechanical properties of wood. The effects of stress relaxation within the wood cell wall on the mechanical behaviour of wood may be offset by the degradation of structural components along with drying. Radial mechanical properties may be improved by rapid high-temperature drying up to high final dryness.  相似文献   

4.
Abstract

Plantation wood from tropical climate has been introduced rapidly in the national market; however, there is lack of knowledge about the process. The main objective of this study was to investigate the kiln drying behavior of 10 plantation-grown wood species from natural forest in Costa Rica using the recommended drying schedule. Initial moisture content (MCi), final moisture content (MCf), drying rate, drying time, and drying defects were evaluated. The drying schedule applied produced the following results: (1) high MCi (over 110%) in four species and lower values in two species. (2) The largest drying time was found in species with high MCi, and the shortest drying time in species with lower MCi. (3) Significant variations of target MCf were found in some species, despite equalization and conditioning. (4) Exponential relationship MC=a*??t*b was used to establish a moisture content (MC) decrease model, which is not a good indicator of drying time for fives species. (5) High incidence of drying defects was found in Alnus acuminata and Vochysia guatemalensis. According to the above results, it is necessary to test other drying schedule oriented to improve lumber quality and to decrease variability of MC in wood from plantation trees.  相似文献   

5.
Abstract

Black alder wood has a great potential for more wide-spread use in the woodworking industry. This study describes the colour changes that appeared the first few hours after cutting thin veneer sheets from fresh, unseasoned black alder wood. CIELab coordinates were recorded for 50 spots at time intervals from 0 to 140 minutes exposure of the fresh-cut surfaces. The most pronounced change was increased lightness developing from 20 to 60 minutes after cutting. A model for total colour change as function of exposure time was developed. Redness of veneer sheets increased only slightly, i.e. the expected transfer to orange discoloration of the surface did not occur. The reason for this was probably that part of the free water in the wood was squeezed out during veneer production. The findings of this study give useful information about the colour change that appeared directly after veneer cutting, advising to avoid excess water on wood surface and ensuring quick surface drying.  相似文献   

6.
Abstract

Scots pine log specimens were given three different surface treatments and two different orientations of large cracks, and subjected to cyclic wetting and drying. Individual fitting of a mechanistic growth model was used to study the shape of absorption and accumulation curves and the final drying curve. Two parameters from this model (increase/decrease rate and maximum/minimum weight gain) were used for statistical analysis. The results indicate that wood tar results in less accumulated moisture over time than solvent-borne or water-borne coating or no treatment at all. An incipient attack by a white-rot fungus on parts of the material during storage affected water uptake greatly, often overriding surface treatment.  相似文献   

7.
Abstract

Siberian larch (Larix sibirica Ledeb.) timber is suitable for many uses in the mechanical wood industry. Drying it without any decrease in value, however, is difficult and slow. The purpose of this research was to compare the drying quality of Siberian larch timber dried with three different conventional schedules taking into account the density and annual growth of wood. Five drying tests were performed. The final moisture content (MC), MC gradient, cracks, deformations (bow, crook, twist and cup) and case hardening were measured from the dried timber. The basic density particularly affected the MC, as shown in the differences regarding dried wood, with the denser wood having higher final MC and MC gradient. It was also found that large annual growth increased some deformations. Most of the measured factors were best after drying at the highest temperatures used; however, a slightly different trend was observed for bow, twist and cup. MC factors and twisting were the most problematic properties in drying according to this study. Sorting Siberian larch timber, particularly according to density, would improve the MC properties of dried timber by ensuring sufficient drying time, as economically as possible, for each timber piece.  相似文献   

8.
Abstract

In this study, mould growth on wood was investigated by image analysis. The studied parameters were drying and heat-treatment temperatures (20–210°C), original and resawn surface and different wood species (spruce and larch). Small specimens—some of which were inoculated with a spore suspension—were stored under humid conditions and photographed once a week. Mould growth was assessed by image analysis. In general, results found in earlier studies regarding the influence of several parameters could be confirmed. Image analysis was found to be a useful method to quantify mould growth in an objective and reproducible way.  相似文献   

9.
HUAJun 《林业研究》2005,16(2):155-157
A newly drying technology, intermittent-contact drying of veneer with flexible screen belt (ICD-fbs), was invented and used in poplar veneer drying. Productive test was carried out for validating the practical use of this drying method. The test result shows that to dispose flexible screen belts on the two sides of hot board could help steam discharge remarkably. The veneer dried using ICD-fsb method had smooth and level surface, less deformation and warping, even moisture content, and high utilization rate. The time for opening hot board to discharge steam,which, early or late, is a key to obtain good drying result, was determined at the time when the core‘s temperature of veneer reaches 100℃ (vaporization). Using ICD-fsb method, the shrinking rates in tangent of veneer were from 1.90% to 2.26% for veneer of 0.4 mm in thickness,2.49% to 4.50% for veneer of 1 mm in thickness and 1.34% to 3.30% for veneer of 1.7 mm in thickness, which are much lower than the results obtained by other drying methods. The method of ICD-fsb offers a reliable technological guarantee for solving the deformation problem of veneer drying, especially the deformation of wood from quick-growing plantation.  相似文献   

10.
11.
Microcracks produced in an Acacia hybrid (Acacia mangium × Acacia auriculiformis) and Melia azedarach during drying were visualized in situ using confocal laser scanning microscopy (CLSM); the morphological differences were compared. In the Acacia hybrid, numerous microcracks were found between the wood fiber and ray parenchyma, which propagated toward both the pith and bark. The microcracks closed with further drying, but persisted until the last stage of drying. In Melia azedarach, however, few microcracks formed between the wood fiber and ray parenchyma in the latewood region; they also propagated toward both the pith and bark. Because the microcracks subsequently closed, some could not be detected by CLSM. These morphological characteristics resulted from differences in the wood structure and we conclude that the interface zone between the wood fiber and ray parenchyma is one type of weak point on the transverse surface that is susceptible to checking.  相似文献   

12.
The knowledge of the convective heat and mass transfer coefficients is required for the characterization of the boundary conditions of the heat and mass transfer equations of a wood drying model based on water potential. A new experimental method for the determination of the convective mass transfer coefficient is presented. This method is based on the measurement of the moisture content, and indirectly the water potential, at the surface of a wood specimen at different drying times. Drying experiments were performed on red pine (Pinus resinosa Ait.) sapwood from nearly saturated to dry conditions at 56 °C, 52% relative humidity and air velocities of 1.0, 2.5 and 5.0 m s−1. The results show that the convective mass transfer coefficient is constant until the wood surface moisture content reaches about 80% and then decreases more or less gradually as the moisture content decreases further. The convective mass transfer coefficient increases with air velocity. A regression analysis shows that there is no significant improvement in considering the water potential gradient near the wood surface when the difference in water potential between the surface and the surrounding air (ψs − ψ) is used to determine the convective mass flux at the surface. Also, ψs − ψ is more appropriate than the water vapour pressure difference (pvs − pv) as the responsible driving force of the moisture flux leaving the wood surface. The convective heat transfer coefficient was determined during the same experiments. A plateau is observed at high values of moisture content corresponding to the constant drying rate period. Received 27 February 1998  相似文献   

13.
A nondestructive technique for swiftly measuring the stress level of the surface of wood is proposed, which is important for process control in timber drying. Partial least squares (PLS) regression models for predicting surface-released strain (ε) were developed using NIR spectra obtained from Sugi (Cryptomeria japonica D. Don) samples during drying. The predictive ability of the models was evaluated by PLS analysis and by comparing NIR-predicted ε with laboratory-measured values. The PLS regression model using the NIR spectra pre-processed by MSC and second derivatives with a wavelength range of 2,000–2,220 nm showed good agreement with the measurement (R 2 = 0.72). PLS analysis identified the wavelengths around 2,035 nm as making significant contributions to the prediction of ε. Orthogonal signal correction (OSC) was an effective pre-processing technique to reduce the number of factors required for the model using the wavelength range 1,300–2,500 nm. However, the predictive ability of the OSC-corrected model was not improved. Elapsed times to reach the maximum tensile stress (T max) and the stress reversal point (T rev) at the wood surface during drying were detected correctly for 75 % of the samples. The results show that NIR spectroscopy has potential to predict the drying stress level of the timber surface and to detect critical periods in drying, such as T max and T rev.  相似文献   

14.

The effects of felling season, log storage and kiln drying on stemwood discoloration of sixty mature silver birches ( Betula pendula ) were studied and provided with CIEL*a*b* colour coordinates. The colour differences were expressed as j E* including split up of j L*, j a* and j b*. The results showed that fresh wood colour depends on the felling season: light and pale colours were recorded for samples taken from autumn- and winter-felled trees, whereas the colour of fresh wood was considerably darker if the felling took place in the spring or summer. After storage, notable changes in colour were observed. After drying, all samples showed low lightness, moderate redness and relatively high yellowness under the drying conditions used in the study regardless of the felling season or duration of storage. The main colour component responsible for the discoloration was lightness, while chroma values redness and yellowness played a minor role.  相似文献   

15.
Abstract

Progressive (semi-continuous) kilns for softwood drying are very common in Finland and Sweden and are used in some other countries too. A simulation program has been developed that covers all three types of this kiln. The program calculates the climate in the length direction of the kiln and moisture content, moisture profile, wood temperature, slicing test gap and stress development. Energy consumption and drying costs may also be determined. The temperature level is the most important parameter regarding kiln efficiency. Two-zone progressive kilns are found to be more efficient than single-zone kilns. Progressive kilns have lower energy consumption and drying costs than batch kilns. Experimental full-scale tests show that the timber quality from a progressive kiln is comparable to, or in some cases even better than, timber dried in batch kilns.  相似文献   

16.
In conventional drying, sawn birch (Betula sp.) timber darkens and reddens from the inside while the layer a few millimetres under the yellowish surface remains light in color. Lack of information concerning the chemical basis of the discoloration hinders the development of a reliable solution for this problem. In this study, the role of soluble proanthocyanidins in discoloration of birch wood was investigated because the polymerization and oxidation of these compounds are known to yield insoluble reddish compounds. Different periods of log storage affected the synthesis of soluble proanthocyanidins during conventional drying. Concentration of proanthocyanidins also correlated with changes in the color of birch wood. Discoloration appeared differently in conventionally dried and vacuum-dried wood, which indicates that the discoloration mechanism in these drying methods may differ chemically, and/or the compounds that take part in discoloration may be different at different drying temperatures.  相似文献   

17.
木材干燥过程中,介质循环速度是一个影响木材干燥的重要工艺参数.在木材各含水率阶段,通过试验分析研究不同介质循环速度对木材干燥速度的影响.结果表明,介质循环速度对干燥速度的影响显著,但其影响随木材含水率(MC)的降低而减弱.在低介质循环速度条件下,试件MC大于45%时,表现为木材干燥速度和木材含水率偏差(△MC)随循环风速的增加而增加,呈显著正相关关系;试件MC介于35% ~ 45%之间时,正相关关系存在但不显著;试件MC小于35%时,干燥室内循环风速的大小不影响木材的干燥速度和木材含水率偏差(△MC).对试件表层含水率分析,试件表层含水率大于25%时,试件表面循环风速对试件表层含水率的影响显著;试件表层含水率小于25%时,试件表面循环风速对试件表层含水率的影响很小,不同循环风速下试件表层含水率基本一样.  相似文献   

18.
Abstract

Existing European standards for finger-jointing of load-bearing lumber require the wood to be dried before gluing. This article presents a study on the properties of green-glued finger joints, wet wood being bonded prior to drying. Issues to consider, in comparison to finger-jointing of dry wood, are mechanical performance of the joint, absorption of the polymer by the wood in its natural/wet state, and the chemical reactions of the adhesive on contact with water. Finger-jointed samples were tested in bending, and the glue joints analysed by optical microscopy, scanning electron microscopy and microdensitometry. A patented one-component polyurethane adhesive developed for gluing-green wood which has a moisture content usually higher than 70% was used in the study. The resulting green-glued joints showed improved strength properties in comparison to dry-jointed joints. The results confirm that green-glued joints provide a wide, continuous wood/adhesive interface from one substrate to the other. The adhesive penetrates several cells deep and the density of the wood adjacent to the joint surfaces is increased. The results also indicate that the patented adhesive forms covalent bonds to the wood substrate.  相似文献   

19.
Abstract

In this study, two different methods were used to produce thermally modified wood. One was carried out in a typical kiln drying chamber using superheated steam (SS) and the other used pressurized steam in an autoclave cylinder (PS). Overall, both processes followed the same principles and the wood was not treated with any chemicals. Two wood species were studied, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Treatments in the autoclave were carried out under pressure using temperatures of 160°C, 170°C and 180°C. Temperatures of 190°C and 212°C were used in treatments in the chamber at normal air pressure. The colour was measured using L*C*H colour space. Results for both species showed that similar L* (lightness) can be reached at lower (20–30°C) temperatures using PS compared with SS treatment. The hue angle of PS-treated wood was smaller than that of SS-treated wood. No significant difference in C* (chroma) was detected. The difference in E value between PS- and SS-treated wood was smaller for Norway spruce than for Scots pine. The residual moisture content was about 10% higher in wood treated by the PS process compared with the SS process.  相似文献   

20.
The mechanism responsible for unusual hygro-mechanical properties of tension wood containing the gelatinous layer (G-layer) was investigated. Tension and normal wood specimens were sampled from the leaning stems of a 75- and a 40-year-old Kunugi oak (Quercus acutissima) tree, and the moisture dependencies of the longitudinal Young’s modulus and longitudinal dimensions were measured. The results, which were analyzed in relation to the anatomical properties of the specimens, revealed that the ratio of increase in the longitudinal Young’s modulus with drying was higher in the G-layer than in the lignified layer (L-layer); the longitudinal drying shrinkage displayed a similar pattern. It was found that the lattice distance of the [200] plane in the cellulose crystallite increased with drying, moreover, the half-width of the [200] diffraction peak increased with drying, which was remarkable in the tension wood. Those results suggest that in the green state, the polysaccharide matrix in the G-layer behaves like a water-swollen gel; however, it is transformed into a condensed and hard-packed structure by strong surface tension during moisture desorption, which is a form of xero-gelation. However, in the L-layer, condensation and subsequent xero-gelation of the polysaccharide matrix was prevented by the hydrophobic lignin that mechanically reinforces the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号