首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
In the present study, durability of untreated and thermally modified sapwood and heartwood of Scots pine and Norway spruce was examined using a modified double layer test. Base layer samples were partly on contact with ground where exposure conditions were harder than that in a double layer test above the ground. The base layer on ground contact gave results already after one year of exposure in Finnish climate, but the top layer of a double layer test element simulated more the situation of decking exposure.

Significant differences in durability and moisture content (MC) between the wood materials were detected after six years of exposure in the field. Thermally modified pine heartwood performed very well in all layers of the test element and only minor signs of decay were found in some of the base samples. Both sapwood and heartwood of thermally modified spruce were suffering only slight amounts of decay while thermally modified pine sapwood was slightly or moderately decayed. Untreated sapwood samples of pine and spruce were severely decayed or reached failure rating after six years in the field. Untreated heartwood samples performed clearly better. The highest MCs were measured from untreated and thermally modified pine samples. Thermal modification increased significantly the durability and decreased the MC values of all wood materials.  相似文献   

2.
Abstract

One of the main objectives of thermal modification is to increase the biological durability of wood. In this study the fungal resistance of Norway spruce and Scots pine, thermally modified at 195°C and 210°C, was studied with a lap-joint field test. Untreated pine and spruce and pine impregnated with tributyl tin oxide (TBTO) and copper, chromium and arsenic (CCA) were selected as reference materials. The evaluations were carried out after 1, 2 and 9 years of exposure. After 1 and 2 years of exposure mainly discoloration was detected. Only the untreated pine was slightly affected by decay fungi. There were significant differences in the decay ratings of untreated and thermally modified wood materials after 9 years in the field. While the untreated wood materials were severely attacked by decay fungi or reached failure rating, only small areas of incipient decay were detected in the thermally modified samples. Thermally modified pine was slightly more decayed than thermally modified spruce. The only wood material without any signs of decay was CCA-treated pine, since some of the TBTO-treated pine samples were also moderately attacked by fungal decay. The results of the lap-joint test had a good correlation with mass losses in a laboratory test with brown-rot fungi.  相似文献   

3.
Abstract

Thermal modification at elevated temperatures changes the chemical, biological and physical properties of wood. In this study, the effects of the level of thermal modification and the decay exposure (natural durability against soft-rot microfungi) on the modulus of elasticity (MOE) and modulus of rupture (MOR) of the sapwood and heartwood of Scots pine and Norway spruce were investigated with a static bending test using a central loading method in accordance with EN 408 (1995). The results were compared with four reference wood species: Siberian larch, bangkirai, merbau and western red cedar. In general, both the thermal modification and the decay exposure decreased the strength properties. On average, the higher the thermal modification temperature, the more MOE and MOR decreased with unexposed samples and increased with decayed samples, compared with the unmodified reference samples. The strength of bangkirai was least reduced in the group of the reference wood species. On average, untreated wood material will be stronger than thermally modified wood material until wood is exposed to decaying fungi. Thermal modification at high temperatures over 210°C very effectively prevents wood from decay; however, strength properties are then affected by thermal modification itself.  相似文献   

4.
Abstract

Untreated Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) samples were exposed above ground in a durability test for 6 years. The samples consisted of three pieces of wood, 22×95×500 mm, screwed together; two pieces lengthwise with a third piece overlapping. Weight was measured, to calculate moisture content (MC), and samples checked regularly for cracks and fungal growth. Parameters investigated were heartwood/sapwood (pine), annual ring orientation (spruce), stand site, annual ring width and density. Stand site, annual ring width and density had no influence on MC or fungal growth for either pine or spruce. Spruce samples with vertical annual rings had fewer cracks than samples with horizontal annual rings. Pine sapwood samples had a high MC and a large amount of rot fungi, while heartwood had a lower MC and no rot. Most spruce samples were similar to pine heartwood, except from a few samples that had high MC and fungal growth. Those were all sawn from the outer part of the log. Therefore, it can be stated that spruce sawn from the inner part has almost the same properties as pine heartwood, while spruce from the outer part of the log has similar properties to pine sapwood.  相似文献   

5.
We developed individual tree height growth models for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in Norway based on national forest inventory data. Potential height growth is based on existing dominant height growth models and reduced due to competition by functions developed in this study. Three spatially explicit and two spatially non-explicit competition indices were tested. Distance effects and diameter ratio effects were estimated from the data simultaneously with parameters of the potential modifier functions. Large height measurement errors in the national forest inventory data caused large residual variation of the models. However, the effects of competition on height growth were significant and plausible. The potential modifier functions show that height growth of dominant trees is largely unaffected by competition. Only at higher levels of competition, height growth is reduced as a consequence of competition. However, Scots pine also reduced height growth at very low levels of competition. Distance effects in the spatially explicit competition indices indicated that the closest neighbors are most important for height growth. However, for Scots pine also competitors at larger distance affected height growth. The five competition indices tested in this study explained similar proportions of the variation in relative height growth. Given that unbiased predictions can only be expected for the same plot size, we recommend a spatially explicit index, which describes the distance function with a negative exponential, for use in growth simulators.  相似文献   

6.
Due to the increasing demand for Norway spruce as prime raw material for high-yield pulping, recent interest has focused on Scots pine as an alternative. However, the intrinsic properties of Scots pine, particularly the high amounts of extractives and the fiber properties, have been considered a disadvantage for thermomechanical pulping. A study was therefore conducted on the variations in the spatial distribution and redistribution of lipophilic extractives in spruce and pine wood and thermomechanical pulp (TMP) using cytochemical staining methods and chemical analysis. Chemical analyses showed chips from pine thinnings and sawmill slabs to contain three to five and two to three times, respectively, more extractives than found in spruce; in particular, the amount of triglycerides differed significantly. Results from staining techniques on the abundance and distribution of extractives (i.e., fats) between pine and spruce correlated with amounts detected by Fourier transform infrared spectroscopy and gel permeation chromatography. Cytochemical observations revealed information pertaining to species-specific distribution and redistribution of extractives among TMP fines and fibers and indicated the presence of a molecular film of extractives. Results indicate that the high concentrations of extractives in pine ray parenchyma are released during TMP processing and are redistributed onto the surfaces of the pulps, negatively affecting energy usage during primary refining.  相似文献   

7.
Abstract

In this study, two different methods were used to produce thermally modified wood. One was carried out in a typical kiln drying chamber using superheated steam (SS) and the other used pressurized steam in an autoclave cylinder (PS). Overall, both processes followed the same principles and the wood was not treated with any chemicals. Two wood species were studied, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Treatments in the autoclave were carried out under pressure using temperatures of 160°C, 170°C and 180°C. Temperatures of 190°C and 212°C were used in treatments in the chamber at normal air pressure. The colour was measured using L*C*H colour space. Results for both species showed that similar L* (lightness) can be reached at lower (20–30°C) temperatures using PS compared with SS treatment. The hue angle of PS-treated wood was smaller than that of SS-treated wood. No significant difference in C* (chroma) was detected. The difference in E value between PS- and SS-treated wood was smaller for Norway spruce than for Scots pine. The residual moisture content was about 10% higher in wood treated by the PS process compared with the SS process.  相似文献   

8.
This research investigates wood defects, particularly the formation of surface cracks, during the production of thermally modified wood and its exposure to cyclic moisture changes. Boards of Norway spruce and Scots pine originating from different steps within the production of ThermoWood® were collected and wood defects were investigated at macroscopic and microscopic scale. Subsequently, the wood was exposed to capillary wetting cycles to record its sensitivity towards cracking. After the modification process, typical anatomical defects of conventional kiln-drying became more frequent and severe, with the magnitude being to some extent depending on the presence of defects in the raw material. At microscopic scale, damages to ray parenchyma and epithelial cells as well as longitudinal cracks within the cell walls of earlywood tracheids were evident in thermally modified wood. Despite a lower water uptake and higher dimensional stability, thermally modified wood was more sensitive to surface cracking during wetting cycles than unmodified wood, i.e. at the outside face of outer boards (near bark). For limiting surface cracking of thermally modified wood during service life, the use of high-quality raw material, the exposure of the inside face of the boards (near pith) and the application of a surface coating are considered beneficial.  相似文献   

9.
Abstract

The choice of species in forestry is important, and a real issue as large areas of wind-damaged forest land in southern Sweden need to be regenerated. To compare the growth potential between the most common tree species in Sweden, ratios between site quality derived from site index values determined with site properties were used. A regression function to determine site index for birch from site properties was used to complement the known relationships between site properties and site index for spruce and pine. In large regions of Sweden the distribution of site quality classes was calculated to compare the special characteristics and demands of the three species. On average, the growth difference for pine compared to spruce was about 60% in southern Sweden and 95% in northern Sweden. Corresponding figures between birch and spruce were 40% and 60%. Birch was expected to produce around 60% of pine in northern Sweden and about 70% in southern Sweden. However, it must be stressed that the comparison is based on survey data encompassing mainly naturally regenerated birch, whereas spruce and pine are mainly planted.  相似文献   

10.
Wood modification, of which thermal modification is one of the best-known methods, offers possible improvement in wood properties without imposing undue strain on the environment. This study investigates improvement of the properties of heat-treated solid wood. Scots pine (Pinus sylvestris) was modified in two stages: impregnation with modifiers followed by heat treatment at different temperatures. The impregnation was done with water glass, melamine, silicone, and tall oil. The heat treatment was performed at the temperatures of 180°C and 212°C for three hours. The modified samples were analyzed using performance indicators and scanning electron microscope micrographs. The mechanical and physical properties were determined with water absorption, swelling, bending strength, and impact strength tests. All the modifiers penetrated better into sapwood than hardwood; however, there were significant differences in the impregnation behavior of the modifiers. As regards the effect of heat treatment, generally the moisture properties were improved and mechanical strengths impaired with increasing treatment temperature. In contrast to previous studies, the bending strength increased after melamine impregnation and mild heat treatment. It is concluded that the properties of impregnated wood can be enhanced by moderate heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号