首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cement-bonded particleboard with a mixture of wheat straw and poplar wood   总被引:1,自引:0,他引:1  
We investigated the hydration behavior and some physical/mechanical properties of cement-bonded particleboard (CBPB) containing particles of wheat straw and poplar wood at various usage ratios and bonded with Portland cement mixed with different levels of inorganic additives. We determined the setting time and compression strength of cement pastes containing different additives and particles, and studied the effects of these additives and particles on thickness swelling, internal bond strength and modulus of rupture of CBPB by using RSM (Response Surface Methodology). The mathematical model equations (second-order response functions) were derived to optimize properties of CBPB by computer simulation programming. Predicted values were in agreement with experimental values (R2 values of 0.93, 0.96 and 0.96 for TS, IB and MOR, respectively). RSM can be efficiently applied to model panel properties. The variables can affect the properties of panels. The cement composites with bending strength > 12.5 MPa and internal bond strength > 0.28 MPa can be made by using wheat straw as a reinforcing material. Straw particle usage up to 11.5% in the mixture satisfies the minimum requirements of International Standard, EN 312 (2003) for IB and MOR. The dose of 4.95% calcium chloride, by weight of cement, can improve mechanical properties of the panels at the minimum requirement of EN 312. By increasing straw content from 0 to 30%, TS was reduced by increasing straw particle usage up to 1.5% and with 5.54% calcium chloride in the mixture, TS satisfied the EN 312 standard.  相似文献   

2.
Abstract

The objective of this work was to evaluate the performance of particleboard manufactured from roselle (Hibiscus sabdariffa) stalks and eucalyptus (Eucalyptus camaldulensis) wood. The manufacturing parameters were various roselle (Hibiscus sabdariffa) ratios in the mixture (0, 25, 50, 75 and 100%) and press time (3, 5 and 7 min). Modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) strength values and thickness swelling (TS) after 24-hour water soaking of the panels were determined according to the procedure of European Union (EN) Standard. The results of the study demonstrate that roselle stalks can be an alternative raw material source for particleboard industry. With an increase of roselle particles from 0% to 100%, the TS was reduced, and the IB, MOR and MOE were increased. The highest MOE, MOR, IB strength and TS values of the samples were found as 2754.18, 16.81, 0.89 N/mm2 and 15.26% for the panels made using 100% roselle with a 7-min press time, respectively.  相似文献   

3.
采用响应面法(RSM),研究了单板厚度和涂胶量对桉木单板层积材(L、几)力学性能的影响。结果表明:单板厚度和涂胶量对桉木LVL的垂直加载和平行加载条件下的静曲强度(MOR┷、MOR//)和弹性模量(MOE┷、/dOE//)有显著影响。实验值与预测值的决定系数为0.72,0.79,0.59,0.69。本研究所获最佳工艺条件为:单板厚度2.0啪,涂胶量233g·m^-2在此工艺条件下压制的桉木单板层积材垂直加载条件下的静曲强度(MORJ和弹性模量(MOE上)分别为85MPa与15118MPa,平行加载条件下的静曲强度(MOR//)和弹性模量(MOE//)分别为87MPa与15288MPa,回归模型的预测值与实验值的相对误差最大为9%,最小为3%。实验产品的MOR和MOE分别达到结构用单板层积材国家标准的优等品和140E级别。  相似文献   

4.
Kenaf composite panels were developed using kenaf bast fiber-woven sheets as top and bottom surfaces, and kenaf core particles as core material. During board manufacture, no binder was added to the core particles, while methylene diphenyldiisocyanate resin was sprayed to the kenaf bast fiber-woven sheet at 50 g/m2 on a solids basis. The kenaf composite panels were made using a one-step steam-injection pressing method and a two-step pressing method (the particleboard is steam pressed first, followed by overlaying). Apart from the slightly higher thickness swelling (TS) values for the two-step panels when compared with the one-step panels, there was little difference in board properties between the two composite panel types. However, the two-step pressing operation is recommended when making high-density composite panels (>0.45 g/cm3) to avoid delamination. Compared with single-layer binderless particleboard, the bending strengths in dry and wet conditions, and the dimensional stability in the plane direction of composite panels were improved, especially at low densities. The kenaf composite panel recorded an internal bond strength (IB) value that was slightly low because of the decrease of core region density. The kenaf composite panel with a density of 0.45 g/cm3 (one-step) gave the mechanical properties of: dry modulus of rupture (MOR) 14.5 MPa, dry modulus of elasticity (MOE) 2.1 GPa, wet MOR 2.8 MPa, IB 0.27 MPa, TS 13.9%, and linear expansion 0.23%.  相似文献   

5.
Some of the properties of particleboard made from paulownia   总被引:3,自引:0,他引:3  
The objective of this study was to determine some of the properties of experimental particleboard panels made from low-quality paulownia (Paulownia tomentosa). Chemical properties including holocellulose, cellulose, lignin contents, water solubility, and pH level of the wood were also analyzed. Three-layer experimental panels were manufactured with two density levels using urea–formaldehyde as a binder. Modulus of elasticity (MOE), modulus of rupture (MOR), internal bond strength (IB), screw-holding strength, thickness swelling, and surface roughness of the specimens were evaluated. Panels with densities of 0.65 g/cm3 and manufactured using a 7-min press time resulted in higher mechanical properties than those of made with densities of 0.55 g/cm3 and press times of 5 min. Based on the initial findings of this study, it appears that higher values of solubility and lignin content of the raw material contributed to better physical and mechanical properties of the experimental panels. All types of strength characteristics of the samples manufactured from underutilized low-quality paulownia wood met the minimum strength requirements of the European Standards for general uses.  相似文献   

6.
The vibrational properties of a harp soundboard were investigated with respect to its multi-layered structure. The surfaces of harp soundboards are usually reinforced with veneer; however, this reduces the specific dynamic Young’s modulus (E′/ρ) and significantly increases the internal friction (Q ?1) of soundboards. Since smaller E′/ρ and greater Q ?1 values impart a smaller acoustic conversion efficiency, the attachment of veneer is predicted to reduce the amplitude of the sound produced, as suggested by harp makers. The vibrational properties of veneer-reinforced wood are elucidated using a multi-layered model comprising base wood, a glue layer, veneer and a varnish layer. The results of calculations suggest that a thinner veneer attached with minimal glue would increase the sound amplitude.  相似文献   

7.
ABSTRACT

A study to determine the quality of laminated veneer lumber (LVL) from samama wood (Anthocephalus macrophyllus) was carried out. Samama is a fast-growing endemic wood in eastern Indonesia. Factorial of three factors in RAL design was used to investigate the influence of veneer thickness, juvenile proportion and veneer lay-up to the quality of the resulted samama LVL. The veneer thicknesses were 1.5 and 3.0?mm. Juvenile proportions were arranged in five levels, which were 100% of juvenile veneer, 100% of mature veneer and combination of both juvenile and mature with juvenile proportion of 14%, 43% and 71%. Two veneer lay-up used in this study were loose side met loose side and tight side met loose side. The result of the study showed various specific gravity of LVL by different proportions of juvenile. This factor also affected the other physical traits. Shear strength of the LVL was equal to the solid wood, yet MOE and MOR were affected by juvenile proportion and veneer lay-up. LVL developed from 100% of mature veneer exhibited the highest MOE and MOR, yet no significant difference was noted in MOE and MOR between LVL 100% of juvenile and other tested juvenile proportions.  相似文献   

8.
竹木复合单板层积材制备工艺   总被引:8,自引:2,他引:8  
以浸渍酚醛树脂的杨木单板和竹帘为原料制备竹木复合单板层积材, 探讨制造工艺对复合材料性能的影响.结果表明,竹木复合材料的MOE及MOR均达到或超过了日本JAS标准的相关规定,尺寸稳定性良好; 单板厚度、树脂浓度、压缩率对MOE和MOR有显著影响;组坏方式对MOR影响显著;而吸水厚度膨胀率的影响作用比较复杂.  相似文献   

9.
The properties of medium-density fiberboard (MDF) panels as affected by wood fiber characteristics were investigated. Wood chips from three softwood and one hardwood species were refined under the same refining conditions to make four different types of fibers. The resulting fibers were characterized by fiber size distribution, bulk density, pH value, and buffering capacity. Using the same resin system and hot-pressing parameters, MDF panels were produced and evaluated for internal bonding (IB), modulus of rupture (MOR), modulus of elasticity (MOE), thickness swelling, and linear expansion. The pH values and alkaline buffering capacities of raw materials were reduced considerably after refining. IB was strongly related to the pH value of fibers. The mechanical properties increased with alkaline buffering capacity. IB, MOR, and MOE increased with the bulk density of fibers. Increased proportions of coarse fibers had negative effects on the panel mechanical properties.  相似文献   

10.
本研究是建立在我国资源和工业技术基础之上,探讨利用木纤维以半干法制造石膏纤维板(GFB)的生产工艺;提出了半干法石膏纤维板的工艺方案,并建立了密度、木膏比、水膏比与板材性能的数学模型。结果表明:密度(D)增加,板材力学性能显著提高,木膏比(W/G)、水膏比(H/G)有效强的交互影响。木膏比增大,板材反弹率和吸水厚度膨胀率(TS)增加,纤维形态,蒸煮工艺对板材静曲性能无显著影响,纤维形态对内结合强度  相似文献   

11.
初步探讨了实验室条件下烟秆/木材刨花板的生产工艺,研究了热压时间、施胶量、密度、木刨花加入量等因素对板材的静曲强度、内结合强度、吸水厚度膨胀率的影响.实验结果表明,烟秆/木材刨花板的静曲强度和吸水厚度膨胀率较纯烟秆刨花板有所提高,内结合强度相差不大.  相似文献   

12.
The effects of thermo-mechanical refining conditions on the properties of medium density fiberboard (MDF) made from black spruce (Picea mariana) bark were evaluated. The bark chips were refined in the MDF pilot plant of Forintek Canada Corporation under nine different refining conditions in which preheating retention time was adjusted from 3 to 5 to 7 min and steam pressure was set at either 0.6, 0.9 or 1.2 MPa. The resulting bark fibers were blended with 12% UF resin (based on oven-dry fiber weight) using a mechanical blender. The resinated fibers were manually formed into fiber mats and hot-pressed into MDF panels using consistent parameters. Two panels for each refining condition were produced, resulting in a total of 18 panels. Analysis of variance (ANOVA) was used to analyze the significance of factors. Regression coefficients and 3D contour plots were used to quantify the relationship between panel properties and the two test factors. The results from this study indicated that the preheating retention time was a significant factor for both modulus of rupture (MOR) and modulus of elasticity (MOE), the steam pressure was a significant factor for internal bond strength (IB), MOR and MOE, whereas both factors were insignificant for thickness swelling, water absorption and linear expansion. The properties of MDF panels were quadratic functions of retention time and steam pressure. Compared to the ANSI standard for 120-grade MDF, most panels with a nominal density of 950 kg/m3 had very high IB (>1 MPa) and acceptable MOR, MOE and dimension stabilities. These results suggest that black spruce bark residues can be considered as a potentially suitable raw material for manufacturing MDF products.  相似文献   

13.
以酚醛树脂为胶粘剂,以竹束和木单板为原料,制造出室外用重组竹和重组竹木复合材,探讨了热压温度和压力对板材的弹性模量、静曲强度以及吸水厚度膨胀率的影响规律。结果表明:随着热压温度的提高,重组竹和重组竹木复合材的静曲强度、弹性模量、尺寸稳定性显著增加;在本研究范围内,热压压力对板材力的学强度和吸水厚度膨胀率的影响不显著;重组竹的静曲强度和弹性模量均明显高于重组竹木复合材,但其尺寸稳定性无显著区别;重组竹和重组竹木复合材的优化热压温度与压力分别为170℃和4MPa。  相似文献   

14.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

15.
王正  高黎  郭文静 《林业科学》2006,42(3):48-53
以相思、桉树2树种的木材加工剩余物为原料,研究两步法刨花模压板的制造工艺以及各工艺参数与板材性能的关系.结果表明:以刨花预压制坯再进行热压模压的两步法刨花模压工艺,制备具有立体结构的刨花模压装饰板材的技术路线是可行的.相思和桉树2树种的对比试验研究结果表明:相思刨花模压制品性能优于桉树刨花模压制品.按选用工艺参数,相思原料的刨花模压制品性能完全达到相关国家标准.在工艺参数与板材性能相关性研究中,板材密度对模压板表观性能、内结合强度、静曲强度等板材性能具有显著性影响;热压模压温度和热压模压时间对板材吸水厚度膨胀率有较显著影响.施胶量增加,板材的各种物理力学性能都会提高,尤其对吸水厚度膨胀率影响最为显著.  相似文献   

16.
Summary The effect of the number and the location of glue lines in the cross section on the bending properties has been studied on plywood bonded with tannin-formaldehyde adhesive. The thickness of glue line has also been investigated. By comparing the theoretical equations with the empirical ones, we can get the thickness of the glue line of wattle tannin adhesive plywood to be 0.15 mm. As for Young's modulus in bending of the glue line in the plywood, it is calculated to be 219 800 kg/cm2 and is larger than that of the glue line of phenolic resin bonded plywood. In relation to the veneer, Young's modulus of the veneer under the condition of plywood assembly seems to be slightly larger than that of the veneer under the free condition.The author wishes to express his gratefulness to CSIRO of Australia for a Fellowship during the tenure of which this research was carried out. The direction and cooperation of Mr. K. F. Plomley, Dr. P. Grossman and Mr. P. Collins, CSIRO of Australia are gratefully acknowledged  相似文献   

17.
《Southern Forests》2013,75(3):223-234
The aims and objectives of this study were to investigate the potential to predict laminated veneer lumber (LVL) stiffness from wood properties measured on trees and logs, and determine variation in log, wood and veneer properties as a function of tree height and age. Log selections were made from trees in three stands that were planned for harvesting at 14, 20 and 21 years of age. Rotary peeled veneer recovery from the logs was on average 65%. After drying, Metriguard testing showed over 50% of the veneer had an estimated dynamic modulus of elasticity (MOEdyn) above 12 GPa, with 20% above 14 GPa, and that veneer from the second log by tree height had higher MOEdyn values. In visual assessment to the AS/NZS 2269.0:2012 Standard, no veneer could be utilised in a panels face or subface positions and the older-age stand provided almost four times the volume of usable veneer. Standing-tree acoustic wave velocity (AWV) explained a moderate amount of variance in log MOEdyn and Pearson correlation coefficients between the (Metriguard) veneer MOEdyn, log AWV, log MOEdyn and disc basic density were significant, positive and strong, with log AWV explaining most of the observed variance in log stiffness. A moderately strong and positive linear regression existed between log AWV and veneer MOEdyn, supporting the use of log AWV tools for the ranking of stiffness in fibre-grown plantation E. nitens logs. Mechanical strength testing of LVL studs extracted from panels manufactured from the trial’s veneer indicated they equalled, and for some tested parameters exceeded, the characteristic design strength values previously published by commercial LVL manufacturers for equivalent size pine products.  相似文献   

18.
就不同的细料(锯屑)掺入量对快速固化水泥刨花板的性能的影响作了探讨,结果表明:锯屑的掺入对水泥刨花板的密度、静曲强度、内结合强度和厚度膨胀率均有一定的影响,当锯屑的掺入量占木质原料总量的20% ~ 30%时,既可以改善板的性能,又可以提高木质原料的利用率.  相似文献   

19.
The objective of this study was to investigate the physical and mechanical performance of flakeboard reinforced with bamboo strips. The study investigated three different bamboo strip alignment patterns and an experimental control. All panels were tested in static bending both along parallel and perpendicular to the lengths of the bamboo strips. Internal bond strength (IB), thickness swelling (TS), linear expansion (LE), and water absorption (WA) were also examined. As expected, modulus of rupture (MOR) and modulus of elasticity (MOE) were substantially greater for all three experimental panel types as compared to the control group. LE was also improved for all three experimental panel groups. The bamboo strip alignment patterns had no significant effect on TS, WA and IB. The sample means for MOR, MOE and LE tested perpendicular to the bamboo strip lengths yielded slightly lower mean values than corresponding samples tested parallel to the bamboo strips lengths. This difference in mechanical properties is largely attributed to low panel density in the failure zones.  相似文献   

20.
Binderless particleboards were manufactured from sugi (Cryptomeria japonica D. Don) heartwood and sapwood by hot-pressing (pressure: 5 MPa; temperatures: 180°, 200°, and 220°C; times: 10, 20, and 30 min), and the board properties [internal bonding (IB), thickness swelling (TS), water absorption (WA)] were investigated to evaluate the self-bonding ability. The IB, TS, and WA of the boards from sugi heartwood were better than those of the boards from sugi sapwood at any hot-pressing condition. Therefore, it was suggested that the self-bonding ability of sugi heartwood was superior to that of sugi sapwood. Then, sugi heartwood and sapwood powder with grain size 10 βm were used as a binder for plywoods. Four kinds of plywood were manufactured from the combination of powder and veneer, both of which were prepared from sugi heartwood and sapwood under the same hot-pressing conditions as the binderless particleboard, and the adhesive shear strength and wood failure of the plywood were investigated. As a result, the plywood composed of sugi heartwood veneer met the second grade of JAS for plywood, when either powder was used as a binder, when they were pressed at 200°C for 20–30 min and 220°C for 10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号