首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
单板层积材具有结构均匀、强度高等优点,材料、结构、制造工艺等差异对其性能影响显著。以13层22 mm厚全顺纹、2层及3层横纹其余顺纹混合组坯的杨木单板层积材为对象,通过电测法、三点弯曲及拉伸实验,对其主要弹性常数及力学性能参数进行测试,得出以下结论:1)随着横纹层数的增加,顺纹方向的弹性模量下降,横纹方向的弹性模量增加,层积方向的弹性模量先减小后增加,单板层积材的各向异性降低;2)随着横纹层数的增加,静曲强度减小,变异性逐渐增大,进行结构设计时需更多考虑材料的性能稳定性;3)组坯方式对LVL抗拉强度的影响不大,适当增加横纹层板可提高抗拉强度;4)组坯方式对泊松比的影响较大,随着横纹层数的增加,泊松比总体降低,采用纵横混合式组坯可能有利于抵抗由拉、压载荷所造成的材料变形。  相似文献   

2.
One of the greatest threats posed by ongoing climate change may be regarded the drought caused by changes in precipitation distribution. The aim of presented study was to characterize reactions to dry conditions and conditions without drought stress on gross primary production (GPP) and net ecosystem production (NEP) of spruce and beech forests, as these two species dominate within the European continent. Daily courses of GPP and NEP of these two species were evaluated in relation to an expected decrease in CO2 uptake during dry days. The occurrence of CO2 uptake hysteresis in daily production was also investigated. Our study was performed at Bily Kriz(spruce) and Stitna(beech) mountain forest sites during 2010–2012 period. We applied eddy covariance technique for the estimation of carbon fluxes, vapor pressure deficit and precipitation characteristics together with the SoilClim model for the determination of drought conditions, and the inverse of the Penman–Monteith equation to compute canopy conductance. Significant differences were found in response to reduced water supply for both species. Spruce reacts by closing its stomata before noon and maintaining a reduced photosynthetic activity for the rest of the day, while beech keeps its stomata open as long as possible and slightly reduces photosynthetic activity evenly throughout the entire day. In the spruce forest, we found substantial hysteresis in the light response curve of GPP. In the beech forest, the shape of this curve was different: evening values exceeded morning values.  相似文献   

3.
In an effort to find suitable wood from natural forest to meet the demand for veneer products, the yield and tensile strength of veneers produced from Brachystegia nigerica were investigated. Two trees of B. nigerica were separately selected from 10 different natural forest zones while two logs were obtained from each tree. The logs were debarked and steamed in a vat prior to rotary peeling and slicing for veneer production. The optimum steam temperature was determined by considering different temperatures: 50°C, 60°C, 70°C, 80°C and 90°C for 24 h. Thereafter, optimum steam time was determined at the optimum temperature by considering durations of 24, 48, 72 and 96 h. The average taper of 0.75 mm per 1.0 m length was recorded for B. nigerica, indicating that the logs were reasonably cylindrical; thereby its logs are good for the production of veneer. The yield ranged from 44% to 61% with an average of 52% of the log input. The tensile strength of the veneer was tested perpendicular to grain and both peeled and sliced veneers had the highest tensile strength between 70°C and 90°C, suggesting that softening of wood polymers, especially lignin, is between 70°C and 90°C. The optimum temperature and time for veneer production are 70°C and 48 h, respectively. Commercial production of veneer from B. nigerica is feasible based on the yield and mechanical properties of the obtained veneer, thereby encouraging the expansion of the scope ofits utilization.  相似文献   

4.
ABSTRACT

The usage of hardwoods for engineered wood products, such as glulam, requires defined mechanical properties reflecting the actual tensile strength of the material. Currently, the European strength class system EN 338 only covers profiles for hardwoods tested in bending. In this study, the material properties of medium-density hardwoods are analysed with the focus on a total of 3663 European ash (Fraxinus excelsior) and European beech (Fagus sylvatica) specimens tested in different loading modes (tension, compression, bending, and shear). The relationships between the material propertiestensile strength, stiffness, and density—are analysed on grouped data of both graded and ungraded specimens. As a result, a tailored ratio of tensile strength to tensile MOE and density is given, which allows to utilize a higher tensile strength of hardwoods (ft,0,k over 30?N/mm²) compared to softwoods. Furthermore, the relationship of the test values and the derived values is checked. The equations for deriving the compression and bending strength from tensile strength are verified based on available data. For tensile and compression strength perpendicular to the grain and for shear strength of both beech and ash, higher strength values than the ones listed in EN 338 are possible. The relationship between the mechanical properties are combined to tensile strength profiles for hardwoods.  相似文献   

5.
Abstract

Discolouration during the drying of non-steamed beech is a major industrial concern. The generally preferred yellow-white colour can easily develop a reddish or dull grey appearance during drying. In this study, the influences of log storage time and kiln drying climate on the colour of non-steamed sawn beech have been investigated and quantified. Samples 27×87 mm in cross section were dried in laboratory kilns and the average colour, in CIELAB colour space was measured on dry planed surfaces using a photoelectric colorimeter. Log storage for 13 weeks under low-temperature conditions had no visible effect. The reddish discolouration is mainly temperature related while the greyish discolouration is mainly controlled by the equilibrium moisture content (EMC) during the initial drying. Within the investigated climate interval, the EMC was twice as important as temperature for the final colour. Regression models developed show that, as long as the EMC is kept below 15%, a temperature of up to 37°C can be allowed without any visually detectable discolouration.  相似文献   

6.
Oil palm trunk is an excellent raw material for thermally compressed wood board.However,improvements to dimensional stability during water absorption and reduced thickness swelling has been tied to losses in other mechanical properties,especially as the compression temperature is increased.Toward solving this trade-off,we analyzed the effects of a 48 h pre-soak in citric acid solutions(0,5,15,25,or 35%w/v in distilled water)on the physical and mechanical properties of oil palm board compressed at 140℃.The reference benchmark case was compressed at 200℃without pretreatment.The oil palm board raw materials were obtained from outer,middle and inner parts of trunk.The results showed that the oven-dry density of compressed oil palm board made from different parts of trunk increased with thermal compression(maximum pressure 12.26 MPa for 8 min).The citric acid pretreatment improved water absorption and thickness swelling properties of oil palm board thermally compressed at 140℃,consistent with the citric acid concentration.The carboxyl groups in citric acid cross-link with the hydroxyl groups in the wood.However,no significant difference was found between the benchmark(200℃)and pretreatments with 5 or 15%citric acid.The citric acid altered the wood chemistry during hot compressing at 140℃.Static bending strength,modulus of rupture(MOR),and modulus of elasticity(MOE)slightly decreased with the citric acid pretreatment,matching the effects of high temperature compression at 200℃.  相似文献   

7.
ABSTRACT

Drying takes the largest share of energy in plywood production, and varying moisture content of veneers necessitates re-drying that often leads to over-dry veneers with deactivated surfaces, which may promote imperfect bonding. In order to decrease the drying time, reduce the need for re-drying of veneers, and improve the quality of plywood, birch and spruce veneers were subjected to pre-treatment by cold compression, incision, or a combination of the two. The effects of pre-treatment on the veneer and plywood quality were assessed by standard tests. Compression had a beneficial effect on water removal of the wettest veneers (spruce sapwood (SW) and birch), but some thickness reduction was observed in the veneers as well as the finished birch plywood. Compression led to thickness reduction of spruce veneers, but had no effect on SW plywood thickness likely due to higher viscoelasticity. Both compression and the combination of incising and compression levelled the moisture variation within the compressed stacks. Incision improved the modulus of elasticity of birch plywood, shear strength of SW plywood, and both bending and shear strengths of heartwood plywood. Higher surface pressure decreased the drying time of spruce SW in both plain compression and combined incision and compression pre-treatment.  相似文献   

8.
Acetylation of wood was carried out in acetic anhydride only, acetic anhydride/xylene 1:1 (v/v), and acetic anhydride/pyridine 4:1 (v/v) solutions. The antishrink efficiency (ASE), hygroscopic properties, vibrational properties, and bending strength were compared among the three reaction solutions. The ASE was a simple function of weight gain (WG); the equilibrium moisture content at a given WG differed among the reaction solutions. Based on this fact and the results of repeated water soaking and oven-drying tests, it was found that the bulking effect was a major factor, and that decreased hygroscopicity contributes only slightly to the dimensional stabilization by acetylation. The difference in equilibrium moisture content among reaction solutions appears more significant in block samples than wood meal, probably due to the fiber-to-fiber bonds in the former. The tendencies for change in the specific Youngs modulus and the loss tangent differed among reaction solutions, whereas in the static bending test the difference was not marked.Part of this report was represented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   

9.
Abstract

The objective of this work was to evaluate the performance of particleboard manufactured from roselle (Hibiscus sabdariffa) stalks and eucalyptus (Eucalyptus camaldulensis) wood. The manufacturing parameters were various roselle (Hibiscus sabdariffa) ratios in the mixture (0, 25, 50, 75 and 100%) and press time (3, 5 and 7 min). Modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) strength values and thickness swelling (TS) after 24-hour water soaking of the panels were determined according to the procedure of European Union (EN) Standard. The results of the study demonstrate that roselle stalks can be an alternative raw material source for particleboard industry. With an increase of roselle particles from 0% to 100%, the TS was reduced, and the IB, MOR and MOE were increased. The highest MOE, MOR, IB strength and TS values of the samples were found as 2754.18, 16.81, 0.89 N/mm2 and 15.26% for the panels made using 100% roselle with a 7-min press time, respectively.  相似文献   

10.
锈蚀诱导处理下竹钉和钢钉的抗剪性能   总被引:1,自引:0,他引:1  
以钢钉、普通竹钉和压缩竹钉连接SPF(云杉-松木-冷杉类)规格材试件,用质量分数为5%的盐水对试件作锈蚀诱导处理,进行短梁剪切和抗剪试验,探讨锈蚀诱导处理对钉抗剪性能的影响。结果表明,竹钉和木材连接部位呈犬牙交错状,能有效约束木构件,维持其抗剪性能;锈蚀诱导处理对钉连接的水平剪切承载力和极限抗弯承载力的影响不显著,不同钉连接的水平剪切承载力和极限抗弯承载力无显著差异,水平剪切承载力范围为6.08~6.90 k N,极限抗弯承载力范围为6.19~7.01 k N;锈蚀诱导处理使钢钉剪切破坏提前,而对竹钉的极限荷载影响并不显著;锈蚀诱导处理使普通竹钉的极限荷载对应位移显著增大,而对钢钉和压缩竹钉影响不显著。  相似文献   

11.
ABSTRACT

Certain important quality parameters of red maple (Acer rubrum) laminated veneer lumber (LVL) impregnated with three waterborne formulations: copper azole (CA-B), micronized copper azole (MicroCA or MCA) and alkaline copper quaternary (ACQ-D) bonded with phenol formaldehyde or cross-linked polyvinyl acetate (XPVAc) adhesives were evaluated. Pre-dipping of veneers before LVL production and two post-manufacturing procedures, viz., vacuum-pressure and post-dipping of LVL, were applied. Maximum copper retention in pre-dip-treated, vacuum-pressure and post-dip-treated LVL was 1.4, 9.7 and 1.7?kg/m3, respectively. Copper retention in MCA-treated LVL was relatively lower than soluble formulations. Various physical, mechanical and bonding properties of treated LVL such as density, water absorption, swelling, flexural properties, hardness, tensile shear strength, delamination and wood failure (%) were studied and compared with untreated LVL. Little to negligible deleterious effect was observed on properties of LVL due to these chemical treatments. Analysis of variance results showed that most of properties of red maple LVL were not significantly different compared with those of untreated LVL. Therefore, vacuum-pressure impregnation process can be used to treat the red maple LVL with novel micronized copper formulations for increasing the service life of such products against biodegradation without affecting techno-mechanical quality parameters.  相似文献   

12.
闽南格木木材物理力学性质的研究   总被引:2,自引:0,他引:2  
方夏峰  方柏州 《福建林业科技》2007,34(2):146-147,154
通过对格木木材物理力学性质进行测定和分析,结果表明:格木木材密度大、变形大,其气干密度为0.857 g·cm-3,基本密度为0.746 g·cm-3,体积干缩系数为0.615,顺纹抗压强度为67.59 MPa,抗弯强度为141.82 MPa,综合强度为209.41 MPa,属于高。该研究结果解决了格木营林和木材利用上的一个基础性问题。  相似文献   

13.
对江汉平原人工林落羽杉物理力学性能进行了研究,结果表明:落羽杉的气干密度为0.413 g/cm3,气干密度等级为轻;综合强度为74 MPa,强度等级为Ⅰ级;径向横纹抗压强度略大于弦向横纹抗压强度;端面硬度最高,弦面硬度与径面硬度差别不大。落羽杉南北面近树皮处木材的密度、抗弯强度、弹性模量、顺纹抗压强度均大于近髓心处,南北方向对落羽杉的密度、顺纹抗压强度在5%水平上差异均不显著,而对其抗弯强度、弹性模量在1%水平上差异显著。  相似文献   

14.
Effects of zinc-oxide nanoparticles on physical and mechanical properties, as well as biological resistance of untreated and heat-treated beech wood were investigated in this study. Test specimens were prepared from sapwood and impregnated with a 5,000-ppm nano-zinc-oxide (NZ) suspension with a size ranging from 10 to 80 nm at 2.5 bars of pressure and using the Rueping process for 20 min. Control (C) and nano-zinc-oxide-impregnated specimens after (NZA) and before (NZB) heat treatment were divided into four subgroups of unheated (C and CNZ), heated at 50, 145 and 185 °C. Heat treatment resulted in a significant decrease in mechanical strength at temperatures of 145 and 185 °C. Heat-treated specimens showed less dimensional instability and fungal degradation. Impregnation with nano-zinc resulted in a slight and significant increase in weight loss and biological resistance against Trametes versicolor. The results showed that the impregnation significantly decreased the water absorption of the specimens. Impregnation before heat treatment showed considerable effect on the properties of wood compared to that of untreated ones.  相似文献   

15.
为了探究木质材料在大型建筑应用的可行性,以竹材为原料,利用层积热压组坯的方式制备长度为3 m和6 m的竹质方梁,对其进行四点抗弯测试,观察其在测试过程中的弯曲变形及破坏特征,分析弹性模量、静曲强度,根据其破坏形式分析竹质方梁结构及组坯方式对其抗弯性能的影响。结果表明:6 m竹质方梁弹性模量达10 261.24 MPa,跨中竖向位移至86.97 mm而不破坏;3 m竹质方梁静曲强度达85.51 MPa。竹质方梁破坏均出现在弯曲的受拉面,且裂纹通过竹节处、胶合界面以及竹纤维排布方向蔓延,这与竹材本身结构特性有关。通过对3 m和6 m竹质方梁抗弯实验及分析,以期为竹质方梁在大跨度下的应用提供数据支撑。  相似文献   

16.
以强化木地板、中密度纤维板、高密度纤维板、浸渍胶膜纸饰面人造板等5类人造板为试材,研究标准、模拟夏季、模拟冬季等不同温湿度平衡处理条件对上述人造板内结合强度、吸水厚度膨胀率和表面结合强度值等理化性能检测指标结果的影响。结果表明,高温高湿平衡处理使人造板的力学强度增加,吸水厚度膨胀率降低;低温低湿平衡处理使人造板力学强度降低,吸水厚度膨胀率增加;不同平衡处理条件下强化木地板吸水厚度膨胀率差异较大;对饰面板表面结合强度的影响大于素板。  相似文献   

17.
18.
竹篾帘拼长是制备超长竹篾层积材(LBSL)的必要手段,竹篾帘端头搭接是拼长的方式之一。对LBSL抗弯及抗拉性能的测试结果表明:搭接长度和位置对板材力学性能影响显著;增加搭接长度有利于提高其抗弯和抗拉性能,当搭接长度大于10mm时,板材的力学性能趋于稳定;搭接接头位于芯层时,板材性能优于接头位于表层。LBSL生产组坯工序要保证竹篾帘搭接长度,同时尽量避免板坯表层出现搭接。  相似文献   

19.
There is a growing desire to improve the properties and use of nonwood plant materials as supplements to wood materials for wood cement-bonded boards (WCBs). This study was conducted to determine the comparative properties of WCBs containing various amounts of discontinuous inorganic fiber materials, such as alkali-resistant glass fiber, normal glass fiber, mineral wool, and nonwood plant materials such as retted flax straw and wheat straw particles. Tested cement-bonded boards were made at wood/additive compositions of 100/0, 90/10, 80/20, 70/30, 60/40, and 50/50 (weight percentages). Seventy-eight laboratory-scale WCBs were produced. Various board properties, such as the modulus of rupture (MOR), internal bonding strength (IB), water absorption (WA), thickness swelling (TS), and linear expansion (LE), were studied. The test results showed that three types of discontinuous inorganic fiber used as reinforcing materials in composites significantly enhanced and modified the performance of WCBs. The mechanical properties and dimensional stability of cement-bonded board were significantly improved with increasing amounts of the additives. MOR and IB were increased; and WA, TS, and LE of boards were reduced by combination with the inorganic fiber materials. The results also indicated that combination with retted flax straw particles only slightly increased the MOR of boards, and wheat straw particles led to marked decreases in all the mechanical properties and the dimensional stability of WCBs.Part of this report was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

20.
The aim of the present paper is to investigate the influence of biotic factors (fungi and insects) on the mechanical properties of wood through the effect of blue-stain, taking into account the time of harvesting and the time of stay of wood in the forest. Specifically, the resistance to axial compression and to bending (modulus of rupture (MOR)) was studied using infected specimens of Scots Pine (Pinus sylvestris) and Norway Spruce (Picea abies) (the usual types of wood used in woodwork). The specimens were obtained from logs of Scots Pine and Norway Spruce that were harvested in three different seasons of year, namely in July 2012, November 2012 and June 2013, respectively, in the forest of Elatia-Greece, and the attack pace by biotic factors with respect to the time of logging was studied. The placement of the experimental surfaces of each type of tree was made on skid road and in the stand. Totally, 120 laboratory measurements in axial compression and 120 measurements in bending (MOR) took place. The results proved that blue-stain hardly affect the mechanical properties of both wooden species and particularly the specimens that were derived during the winter logging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号