首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper deals with problems concerning measurements of rainfall acidity and interpretation in terms of possible effects on the soil-plant system. The theory of acidity relationships of the carbon dioxide-bicarbonate equilibria and its effect on rainfall acidity measurements is given. The relationship of a cation-anion balance model of acidity in rainfall to plant nutrient uptake processes is discussed, along with the relationship of this model to a rainfall acidity model previously proposed in the literature. These considerations lead to the conclusion that average H+ concentration calculated from pH measurements is not a satisfactory method of determining H+ loading from rainfall if the rain is not consistently acid. Calculating loading from H+ minus HCO3 ? , strong acid anions minus basic cations, or net titratable acidity is suggested. The flux of H+ ions in soil systems due to plant uptake processes and sulfur and nitrogen cycling is considered. H+ is produced by oxidation of reduced sulfur and nitrogen compounds mineralized during decomposition of organic matter. Plant uptake processes may result in production of either H+ or OH? ions. Fluxes of H+ from these processes are much greater than rainfall H+ inputs, complicating measurement and interpretation of rainfall effects. The soil acidifying potential due to the oxidation of the NH4 + rainfall is examined, with the conclusion that acidity from this source is of a similar magnitude to direct H+ inputs common in rainfall.  相似文献   

2.
Cai  Zejiang  Xu  Minggang  Zhang  Lu  Yang  Yadong  Wang  Boren  Wen  Shilin  Misselbrook  Tom H.  Carswell  Alison M.  Duan  Yinghua  Gao  Suduan 《Journal of Soils and Sediments》2020,20(8):3124-3135
Purpose

Decarboxylation of organic anions in crop straw is recognized as one of the mechanisms for increasing pH in acidified soils. However, the effectiveness of specific compounds in alleviating soil acidification from nitrification has not been well determined. This study examined three organic anions commonly found in crop straws and their effect on soil acidity and N transformation processes following urea application to a red soil (Ferralic Cambisol).

Materials and methods

A 35-day incubation experiment was conducted using soil after receiving 26 years of two different nutrient treatments: (1) chemical nitrogen, phosphorus, and potassium fertilization (NPK, pH 4.30) and (2) NPK plus swine manure (NPKM, pH 5.88). Treatments included three rates (0.25, 0.5, and 1.0 g C kg?1) of calcium citrate, 0.5 g C kg?1 calcium oxalate, 0.5 g C kg?1 calcium malate, urea-only (control) soil, and a non-treated soil as a reference. Soil acidity, mineral N species, decarboxylation, and their correlations were determined.

Results and discussion

All three organic anions significantly increased pH in both soils and the effectiveness was positively correlated with application rate. The change in total exchangeable soil acidity was dominated by aluminum concentration in the NPK soil, but by proton concentration in the NPKM soil. At ≥?0.5 g C kg?1, the anions decreased soil exchangeable acidity by 25–68% in NPK soil and by 63–88% in NPKM soil as compared with control. Oxalate was the most effective in increasing soil pH by 0.70 and 1.31 units and reducing exchangeable acidity by 3.79 and 0.33 cmol(+) kg?1 in NPK and NPKM soils, respectively, and also resulted in the highest CO2 production rate. Addition of organic anions led to a lower nitrification rate in NPKM soil relative to the NPK soil.

Conclusions

These results imply that crop straws rich in organic anions, especially oxalate, would have a higher potential to alleviate soil acidification.

  相似文献   

3.
Studies were undertaken to determine factors affecting composition of acidic precipitation formation in the Austin area of Central Texas. The study was initiated to determine background levels of acid and alkalinity producing constitutents in an area with elevated natural dust levels from nearby limestone rock formations. Results showed normal rainfall pH values of 6.5 to 6.6 in the area, with extreme variations from 5.8 to 7.3. Significant Ca levels of 1 to 4 mg 1?1 were observed from probably natural origin which appeared to have a buffering effect on acidity. Significant sulfate and nitrate ion concentrations occurred during the early stages of rainfall where rainfall pH was dependent on calcium-sulfate ratio.  相似文献   

4.
Acidic precipitation, wet or frozen precipitation with a H+ concentration greater than 2.5 μeq l?1, is a significant air pollution problem in the United States. The chief anions accounting for the H+ in rainfall are nitrate and sulfate. Agricultural systems may derive greater net nutritional benefits from increasing inputs of acidic rain than do forest systems when soils alone are considered. Agricultural soils may benefit because of the high N and S requirements of agricultural plants. Detrimental effects to forest soils may result if atmospheric H+ inputs significantly add to or exceed H+ production by soils. Acidification of fresh waters of southern Scandinavia, southwestern Scotland, southeastern Canada, and northeastern United States is caused by acid deposition. Areas of these regions in which this acidification occurs have in common, highly acidic precipitation with volume weighted mean annual H+ concentrations of 25 μeq l?1 or higher and slow weathering of granitic or precambrian bedrock with thin soils deficient in minerals which would provide buffer capacity. Biological effects of acidification of fresh waters are detectable below pH 6.0. As lake and stream pH levels decrease below pH 6.0, many species of plants, invertebrates, and vertebrates are progressively eliminated. Generally, fisheries are severely impacted below pH 5.0 and are completely destroyed below pH 4.8. At the present time studies documenting effects of acidic precipitation on terrestrial vegetation are insufficient to establish an air quality standard. It must be demonstrated that current levels of precipitation acidity alone significantly injure terrestrial vegetation. For aquatic ecosystems, current research indicates that establishing a maximum permissible value for the volume weighted annual H+ concentration of precipitation at 25 μeq l?1 may protect the most sensitive areas from permanent lake acidification. Such a standard would probably protect other systems as well.  相似文献   

5.
Goal, Scope and Background  The remediation of heavy-metalcontaminated soils and sediments is of significant value to industrial areas around the world. The spread of such pollutants can result in a potential risk of entering the groundwater system and being transported to potential receptors. Leaching techniques can be an effective treatment option for the metal removal from soils and sediments. This approach consists of washing or leaching the contaminated soil with an appropriate reagent and the subsequent treatment of the leaching in an above-ground installation (on-site treatment) where metals can be removed and concentrated into a smaller volume. Among the heavy metals, chromium is a commonly identified soil contaminant, particularly in sites with intensive economic activities including agriculture, industrial, mining and mineral,processing. Objective  The objective of this work was the evaluation and development of a leaching process for the remediation of soils and sediments polluted with chromium at laboratory scale. Chromium soil pollution was generated after the breakdown of a channel containing chromium wastes from a tannery plant. The pollution extension has been estimated to be on the order of thousands of tonnes of soil to be treated, with chromium contents ranging from 500 to 17,000 mg kg-1 soil. Methods  The whole process investigated in this study integrates three stages; a) chromium leaching from a sediment using a diluted sulphuric acid solution, b) treatment of the leaching effluents with a magnesium oxide/limestone mixture for the precipitation of chromium hydroxide after acidity neutralisation, and c) polishing step to remove the eventual remaining chromium by adsorption onto natural zeolite. The amount of contaminated sediment treated ranged from 0.5 to 2 kg with chromium contents of between 2000 and 17,000 mg kg-1. Results and Discussion  The paper describes results on the performance of the process and the optimisation of steps including influence of acid sulphuric concentration, chromium removal efficiency as well as alkaline reactive mixture proportions. Effluents from the leaching cells showed a significant decay on the chromium concentration with the increase of leaching runs and a high content of acidity (pH values close to 0.5). The treatment of these effluents in a second cell containing magnesium oxide/ limestone mixtures resulted in a high efficiency in neutralisation of acidity (pH values around 7) and chromium removal (concentrations below 5 mg 1-1). The passage through a third compartment containing zeolite as an adsorbent decreased the chromium concentration below 0.5 mg 1-1, Conclusions  From the results obtained on the chromium leaching and immobilisation with magnesium oxide/limestone mixture at a laboratory scale, it could be pointed out that: (a) diluted sulphuric acid solutions (3%) demonstrated a high efficiency on chromium removal from sandy polluted soils on the kilogram scale, (b) mixtures of magnesium oxide/limestone demonstrated a high capacity to neutralise the residual high acidity present on the effluents and to remove chromium by precipitation and (c) between the limestone and caustic magnesia mixtures, those containing more than 60% of caustic magnesia provide the higher efficiency. Recommendation and Outlook  Future work would be directed to the evaluation of the integrated process of leaching and chromium precipitation on column at a scale of 100 to 1000 kg.  相似文献   

6.
Abstract

Soil acidity is one of the main factors that limit profitable and sustained agricultural production. Oil palm (Elaeis guineensis Jacq.) is mainly planted in acidic soils. In the last years, there has been a stagnated yield and increases in disease incidence and severity worldwide that could be attributed in some extent to soil acidity. This study was conducted to determine the effects of soil acidity alleviation on oil palm seedlings. The effects of ground magnesium limestone or dolomite and magnesium carbonate (0, 1.1, 2.2, 3.3 and 4.4 t ha?1) applied to an Ultisol dominated by kaolinite (pH in water 4.4) were evaluated on selected morphological, physiological and nutritional characteristics of hybrid (Deli dura × AVROS pisifera) and clonal (clone 366) oil palm progenies under nursery conditions for 8 months. Increasing rates of ground magnesium limestone and magnesium carbonate showed a significant effect on improving soil pH and lowering exchangeable aluminium. The hybrid oil palm showed significant either linear or quadratic trends for most of the parameters evaluated, indicating that the best responses for morphological and physiological traits were achieved from 2.5 to 4.23 t ha?1 with ground magnesium limestone and 2.87 to 3.45 t ha?1 with magnesium carbonate. Positive effects of increasing rates of ground magnesium limestone and magnesium carbonate were observed on nitrogen and magnesium uptake. Aluminium concentration in the third frond decreased significantly with increasing ground magnesium limestone rate. A significant reduction of manganese uptake was also observed with increasing rates of both ameliorants. The clonal oil palm progeny exhibited a better performance on un-amended treatment. This may be explained by the significant higher root growth of this progeny. Soil acidity alleviation improved the oil palm seedling growth. These results are important for the oil palm industry and could be applied in the nursery stage as well as extended to the immature stage.  相似文献   

7.
This study focuses on fluxes of elements from, and changes in the soil properties of shallow organic material rich soil as a result of changes in precipitation acidity. Intact soil columns including natural vegetation from two areas (one exposed to acidic precipitation and one unpolluted) were used in a lysimeter experiment. The lysimeters were watered with simulated normal rain (pH 5.3) or simulated acidic rain (pH 4.3) for four years. Sulphuric acid and ammonium nitrate were used to regulate the quality of the simulated rain. Significantly more SO4 2? was leached from lysimeters receiving acid rain. Rain acidity had no significant effect on NO3 ? leaching. Significantly more Mg2+ was leached from lysimeters receiving acid rain, but this only applied for the soils from the unpolluted area. Four years of treatment did not cause any significant effect on the soil acidity and the amounts of base cations in the soil. The more acidic rain did, however, cause a significant lower cation exchange capacity. For the soils from the polluted area the acid precipitation did cause a lowering of the exchangeable K+ in the upper 5 cm of the soil. Different quality of the soil organic material indicated by different vegetation types appeared to cause significant differences in the amount of components leached from the soil, but did not cause any difference in response to the different rain qualities.  相似文献   

8.
We estimated the contribution of dissolved organic matter (DOM) to cation leaching and the translocation of acidity in three acid forest soils. The analysis was based on monitored (2 years) concentrations of dissolved organic carbon (DOC) in the field, measured total acidities of DOM, and measured as well as predicted weighted mean dissociation constants of the organic acids. Although the forest floor solutions were strongly acidic (pH 3.47–4.10), a considerable proportion of the organic acids was dissociated and organic anions represented 22–40% of the total anions in the mineral soil input. The flux of DOM-associated exchangeable protons from the forest floor to the mineral soil ranged from 0.35 (Wülfersreuth) to 3.72 (Hohe Matzen) kmol ha?1 yr?1. In the subsoil, this organic acidity may be neutralized by microbial decomposition of the organic acids, but a part of the hydrogen ions may dissociate and contribute to acidification of the soil solution and to weathering processes. Due to the pronounced retention of DOM in the mineral subsoil horizons, the contribution of DOM to the output of cations and acidity from the soil is much lower than in the surface horizons but still significant.?  相似文献   

9.
为了确定红壤施用石灰后钙、镁移动和土壤酸化速率,监测了耕层(10~20cm)和底土(20~60cm)的pH和交换性Ca2+、Mg2+、Al2+的长期变化。结果表明,耕层交换性Ca2+在施用石灰后的一年半时间达到最高值,此后随着时间的推移而急剧减少;而底土的交换性Ca2+随石灰用量的增加和施用石灰后时间的推移而增加。镁在土壤剖面中的移动比钙快;施用石灰后耕层和底土酸度的降低与交换性Ca2+的增加基本同步。在本试验条件下,不论施用石灰与否都存在着复酸化过程,但施用石灰后复酸化作用更强。  相似文献   

10.
Bulk precipitation and bulk throughfall was collected during the period September to November 1984 in a Danish spruce forest. Samples were analyzed for all major anions and cations as well as strong and total acidity. The acid load to the forest ecosystem was estimated adding the throughfall fluxes of protons (79 eq ha?1mo?1), ammonium (99 eq ha?1mo?1) and a calculated estimate oflthe protons buffered by exchange processes in the canopy (75 eq ha?1 mo?1). This is still a minimum estimate but it exceeds the proton load determined by pH measurement in bulk throughfall and bulk precipitation by factors 3 and 6, respectively. Throughfall fluxes of all major cations and anions except ammonium decreased with distance from the trunk.  相似文献   

11.
The effects of a low-external-input soil fertility enhancement solution – hereafter termed ‘nitrolimigation’ were examined, as a preferred technique of applying nitrogen and calcium in the “Acid Sands” soils of southern Nigeria. Two types of nitrogenous fertilizer sources [urea and liquid pig manure (LPM)] and two types of lime {limestone (CaCO3) and hydrated lime [Ca(OH)2]} were used both in greenhouse and in field experiments at varying levels: Urea [CO (NH2)2] 0, 40, 50, 80, 100, 120, and 150 kg ha?1; lime 0, 0.1, 0.3, 0.5, 1.0, 5.0, and 10.0 metric tonnes per hectare (t ha?1) and LPM 0, 30, 60, 90, and 120 t ha?1. The rates were arranged factorially and laid out in randomized complete block design (RCBD). The results indicated that combining lime at 9 t ha?1 and LPM at 90 t ha?1 in irrigation water had significant (P < 0.01) positive effects on the fertility status of the “Acid Sands” soils and growth of okra- Abelmoschus esculentus, the test crop. When urea was combined with hydrated lime, it reduced acidity and provided nutrient balance in the Acid Sands of Calabar. Total nitrogen was significantly (P < 0.01) boosted from 0.05 to 0.11%, base saturation (BS) from 46 to 62%, and exchange acidity was reduced from 2.93 to 1.35 cmol kg?1. Combining urea (46-0-0) at 80 kg ha?1 with lime (CaCO3) at 5 t ha?1 raised the soil pH from 4.4 to 7.1. Exchange acidity was reduced from 0.8 cmol kg?1 to a negligible value, but electrical conductivity was improved from 170.7 to 291.9 μS cm?1. When LPM and lime were combined, organic carbon was increased from 2.75 to 2.93%, BS was increased from 46.72 to 75.19%, and pH was raised from 6.0 to 6.73. Plant height was increased from 9.5 to 16.9 cm while mean number of leaves was also increased from 5.6 to 6.3 only with lower level of lime (3 t ha?1) and LPM at 90 t ha?1. Of the nitrogen and calcium sources, LPM and limestone were better at 120 t ha?1 and 9 t ha?1, respectively, to offset soil acidity, boost nutrient availability, and provide balanced nutrition to arable crops grown on the “Acid Sands” of southern Nigeria.  相似文献   

12.
Intact soil cores were collected to a depth of 15 cm from a Lexington silt loam. Simulated precipitation with adjusted pH values of 3.7, 4.7 and 5.7 (control), was applied to the cores in increments of 500 mL day?1 until totals which approximated 10, 20, 40, and 80 yr of effective rainfall in Louisiana were reached. The exchangeable acidity and Al and H2O and KC1 pH were measured from 2.5 cm sections of the cores after treatment. Only the 3.7 treatment at the 80 yr volume significantly affected the soil pH and exchangeable acidity and Al.  相似文献   

13.
Most tropical soils have high acidity and low natural fertility. The appropriate application of lime and cattle manure corrects acidity, improves physical and biological properties, increases soil fertility, and reduces the use of chemical and/or synthetic fertilizers by crops, such as soybean, the main agricultural export product of Brazil. This study aimed to assess the effects of the combination of the application of dolomite limestone (0, 5, and 10 Mg ha?1) and cattle manure (0, 40, and 80 Mg ha?1) on grain yield and the chemical properties of an Oxisol (Red Latosol) cultivated with soybean for two consecutive years. The maximum grain yield was obtained with the application of 10 Mg ha?1 of lime and 80 Mg ha?1 of cattle manure. Liming significantly increased pH index, the concentrations of calcium (Ca2+) and exchangeable magnesium (Mg2+), and cation exchange capacity (CEC) of soil and reduced potential acidity (H+ + Al3+), while the application of cattle manure increased pH level; the concentrations of potassium (K+), Ca2+, and exchangeable Mg2+; and CEC of the soil. During the 2 years of assessment, the greatest grain yields were obtained with saturation of K+, Ca2+, and Mg2+ in CEC at the 4.4, 40.4, and 17.5 levels, respectively. The results indicated that the ratios of soil exchangeable Ca/Mg, Ca/K, K/Mg, and K/(Ca+Mg) can be modified to increase the yield of soybean grains.  相似文献   

14.
In acid soils, when no-tillage farmers intend to apply lime, the question arises as to whether it should be incorporated into the soil or whether it can be left on the soil surface. In this study, two types of limestone, calcitic (Lcal) and dolomitic (Lmag), were tested in two olive groves of cv. Cobrançosa, with an initial pH of 4.9 (S. Pedro) and 5.5 (Raparigas). In S. Pedro, limestone was incorporated into the soil (Lburied) and in Raparigas, it was left on the floor (Lfloor). The use of limestone significantly increased soil pH in the 0–0.10 m layer in both experiments. In the 0.10–0.20 m soil layer, only Lmag increased significantly the soil pH in comparison with the control. Lmag was more effective than Lcal in increasing cation exchange capacity (CEC) and reducing exchangeable acidity (EA) and aluminium (Al3+) in the Lfloor experiment. Both limes increased leaf calcium (Ca) concentration, and Lmag increased the leaf levels of magnesium (Mg). In Lfloor experiment (higher soil pH), soil microbial carbon (C) decreased, and microbial nitrogen (N) increased with liming, which may indicate an increase in bacteria in the soil and a decrease in fungi. In Lburied experiment (initial pH of 4.9), liming significantly increased accumulated (2018–2021) olive yield (56 and more than 67 kg tree−1, respectively, in the control and liming treatments). In Lfloor experiment (initial pH of 5.5), the accumulated olive yields did not differ significantly between treatments (average values between 105 and 115 kg tree−1). The results of this study provide evidence that liming may increase olive yield in very acid soils and that dolomitic limestone should preferably be used by no-tillage farmers, due its higher solubility and faster effect on soil and trees.  相似文献   

15.
Nutrient content and pH of precipitation samples collected at six sites during 1971–1973 were studied to determine the fraction of rainfall and snowmelt and the amounts of N, S, and P added by precipitation over Iowa The amount of NH4-N ha?1 added by precipitation annually at each site was about equal to that added as N03-N. The amounts of inorganic N ha?1 yr?1 added ranged from 10 kg in north-central to 14 kg in west-central Iowa, and the annual amounts of S04-S ha?1 added ranged from 13 kg in northeastern to 17 kg in north-central Iowa. It is estimated that, on average, precipitation adds about 0.6 kg of NH4-N, 0.6 kg of N03-N, and 1.5 kg of S04 -S ha?1 monthly in Iowa. However, the data indicated that, on an annual basis, the contribution of precipitation to P in soil is very small; at the most, about 0.1 kg of water-soluble P04-P ha?1 was added annually in Iowa. No N02-N could be detected in any of the precipitation samples analyzed. Average pH value of the rainfall and snowmelt samples collected at each site during each year was about 6, individual samples seldom reached as low as pH 4. The data indicate that the concentration of S04-S in precipitation in this region is seasonal, high during fall and winter and low during spring and summer.  相似文献   

16.
Soil erosion has serious off-site impacts caused by increased mobilization of sediment and delivery to water bodies causing siltation and pollution. To evaluate factors influencing soil erodibility at a proposed dam site, 21 soil samples collected were characterized. The soils were analyzed for soil organic carbon (SOC), exchangeable bases, exchangeable acidity, pH, electrical conductivities, mean weight diameter and soil particles’ size distribution. Cation exchange capacity, exchangeable sodium percentage, sodium adsorption ratio, dispersion ratio (DR), clay flocculation index (CFI), clay dispersion ratio (CDR) and Ca:Mg ratio were then calculated. Soil erodibility (K-factor) estimates were determined using SOC content and surface soil properties. Soil loss rates by splashing were determined under rainfall simulations at 360?mmh?1 rainfall intensity. Soil loss was correlated to the measured chemical and physical soil properties. There were variations in soil form properties and erodibility indices showing influence on soil loss. The average soil erodibility and SOC values were 0.0734?t?MJ?1?mm?1 and 0.81%, respectively. SOC decreased with depth and soil loss increased with a decrease in SOC content. SOC significantly influenced soil loss, CDR, CFI and DR (P??1. Addition of organic matter stabilize the soils against erosion.  相似文献   

17.
The relation between soil acidification and element cycling   总被引:2,自引:0,他引:2  
Controversy about the contribution of acidic deposition to soil acidification partly arises from different concepts of soil acidification. Differentiating between actual and potential soil acidification has proved to be appropriate for properly identifying and quantifying the natural and anthropogenic sources of protons. Actual soil acidification is primarily manifested by leaching of cations from the soil, regulated by the mobility of major anions. Leaching of HCO3 ? and RCOO? occurs naturally whereas leaching of NO3 ? and SO4 2? is mainly caused by land use in agricultural soils and by acidic deposition in forest soils. Potential soil acidification is primarily due to accumulation of atmospherically derived N and S. This potential acid threat is partly realized by mineralization processes after the removal of vegetation.  相似文献   

18.
A previous investigation of thechemical characteristics of precipitation in theWielkopolski National Park has shown its high acidity,which sometimes drops below pH 3.0. This paper dealswith the leaching of potassium and sodium ions by acidrain from typical soils of the study area. Laboratoryexperiments were conducted on undisturbed soil cores(15 cm in diameter, 50 cm high) with acid solutions of pH 3.0, pH 2.0 and with water of pH 5.6 (control). The sprinkling lasted 30 days simulating a rainfall of 400 mm. The eluates were analysed daily. Soil propertiesand forms of potassium and sodium were determinedbefore and after treatment. The investigations showthat quite significant amounts of K+ andNa+ can be leached from the soil: in the very acidtreatment (pH 2.0) about 4 mg K+ and 3 mgNa+ per kg of soil. The leaching of these elementswas smaller in the pH 3.0 and 5.6 treatments.Differences in the dynamics of the process are shownin the leaching curves. In the case of potassium theirshapes are smooth when pH is 5.6 and 3.0, while at pH2.0 the curves rise sharply. The leaching curves inthe case of sodium do not show sharp peaks, whichmeans that the leaching is slow and equalised.  相似文献   

19.

Purpose

The effect of Fe oxides on the natural acidification of highly weathered soils was investigated to explore the natural acidification process in variable charge soils

Materials and methods

A variety of highly weathered soils with different Fe oxide contents were collected from the tropical and subtropical regions of southern China to investigate the soil acidity status. Electrodialysis experiments were conducted to simulate natural acidification process and promote accelerated acidification in a variety of systems such as relatively less weathered soils, mixtures of goethite with montmorillonite or kaolinite, an Alfisol, a limed Ultisol, and Fe oxides coated montmorillonite. The objective was to gather evidence for the occurrence of Fe oxide inhibited natural acidification in highly weathered soils.

Results and discussion

Highly weathered soils with free Fe2O3?<?100?g/kg (17 soils) had an average pH?=?4.64?±?0.06, while the soils with free Fe2O3?>?100?g/kg (49 soils) had an average pH?=?5.25?±?0.04. A significant linear relationship was found between the soil pH and Fe oxide content of these soils. Similar results were obtained in electrodialysis experiments, i.e., in soils that underwent accelerated acidification. A negative correlation was found between the Fe oxide content and exchangeable acidity or effective cation exchange capacity, respectively. In another set of experiments, goethite slowed down acidification in experiments conducted with this Fe oxide and montmorillonite, or kaolinite, or an Alfisol, or a limed Ultisol. The overlapping of the electrical double layers on the positively charged Fe oxide particles and negatively charged minerals may have caused the release and subsequent leaching of the base cations, but inhibited the production of exchangeable acidity cations. In addition, when montmorillonite or Fe oxide-coated montmorillonite were electrodialyzed in another set of experiments, exchangeable acidity of the former was much greater than that of the latter, suggesting that the positively charged Fe oxide coatings on montmorillonite have partially neutralized the permanent negative charge on montmorillonite surfaces, decreasing exchangeable acidity.

Conclusions

Fe oxides may function as natural ??anti-acidification?? agents through electric double-layer overlapping and coating of phylliosilicates in highly weathered soils.  相似文献   

20.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号