首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experimental bovine respiratory syncytial virus (BRSV) challenge studies were undertaken to evaluate the efficacy of a single intranasal dose of a bivalent modified live vaccine containing BRSV in 3-week-old calves. In the first study, vaccine efficacy was evaluated in colostrum deprived (maternal antibody negative) calves 5, 10 and 21 days after vaccination. Nasal shedding of BRSV was significantly reduced in vaccinated calves challenged 10 or 21 days after vaccination. Virus excretion titres were also reduced in vaccinates challenged 5 days after vaccination but reduction in duration of shedding and total amount of virus shed were not statistically significant. Clinical disease after challenge in this study was mild. In the second study, vaccine efficacy was assessed in calves with maternal antibodies against BRSV by challenge 66 days post-vaccination. Vaccination significantly reduced nasal shedding after challenge and the severity of clinical disease was also reduced.  相似文献   

2.
3.
Six serum samples were taken at monthly intervals from birth to weaning from each of 41 newborn calves in the autumn and spring calf crops of a beef cow--calf herd. The serum hemagglutination-inhibition (HI) antibody titres to parainfluenza type 3 virus (PIV-3), virus-neutralization (VN) antibody titres to bovine adenovirus type 3 (BAV-3) and bovine respiratory syncytial virus (BRSV) were determined using microtitration techniques. There was serological evidence of a significantly higher incidence of infection with BAV-3 in the fall calves than in the spring calves. Serological responses to BAV-3 were not detected in calves with VN titres of greater than 1/256. Serological evidence of subclinical infection with PIV-3 occurred mainly in late February or early March during a period of marked environmental temperature fluctuations. Serological evidence of a high incidence of infection with BRSV was obtained for both the fall and spring calf crops. Serum antibody appeared to be unable to prevent infection with BRSV. An association between infection with BRSV and clinical pneumonia was found in 3 out of 9 calves. BAV-3 infection was related to pneumonia in only 1 instance; however, there was simultaneous evidence of BRSV infection in this calf. PIV-3 infection was found to be related to pneumonia in only 1 instance. There was serological evidence of infection with BAV-3 in association with the occurrence of diarrhea in 3 calves.  相似文献   

4.
Field trials were carried out in calves using a live bovine respiratory syncytial (BRS) virus vaccine prepared from the attenuated BRS virus, strain rs-52. Two hundred seventy-five and 353 calves were vaccinated intranasally and intramuscularly, respectively. No undesirable postvaccinal reactions were observed in the vaccinated calves. Of the serum neutralizing (SN) antibody negative calves 89.7% (26/29) and 92.8% (90/97) developed SN antibody 1 month after intranasal and intramuscular vaccination, respectively. Most of the calves having SN antibody titers of 1:1 or 1:2 at the time of vaccination showed a significant increase in SN antibody titer. About 70% and 90% of the calves vaccinated intranasally and intramuscularly, respectively, maintained SN antibody for 6 months after vaccination. In a field trial, a natural BRS virus infection occurred about 5 months after the start of the trial. Ten of the 16 unvaccinated control calves showed respiratory symptoms due to BRS virus infection. On the contrary, all of the 68 vaccinated calves exhibited no symptoms at all, indicating efficacy of the vaccine.  相似文献   

5.
OBJECTIVE: To determine whether an inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from infection with virulent BRSV. DESIGN: Randomized controlled trial. ANIMALS: 27 nine-week-old calves seronegative for BRSV exposure. PROCEDURE: Group-1 calves (n = 9) were not vaccinated. Group-2 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing a minimum immunizing dose of antigen. Group-3 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing an amount of antigen similar to that in a commercial vaccine. All calves were challenged with virulent BRSV on day 42. Clinical signs and immune responses were monitored for 8 days after challenge. Calves were euthanatized on day 50, and lungs were examined for lesions. RESULTS: Vaccination elicited increases in BRSV-specific IgG and virus neutralizing antibody titers and in production of interferon-gamma. Virus neutralizing antibody titers were consistently less than IgG titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, whereas vaccinated calves had less severe signs of clinical disease and less extensive pulmonary lesions. The percentage of vaccinated calves that shed virus in nasal secretions was significantly lower than the percentage of control calves that did, and peak viral titer was lower for vaccinated than for control calves. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus and decreased the severity of pulmonary lesions. Efficacy was similar to that reported for modified-live BRSV vaccines.  相似文献   

6.
In four outbreaks of indoor calf pneumonia, dyspnoea was a prominent clinical finding. At necropsy it was associated with pneumonia involving the cranial lobes of the lung and severe pulmonary emphysema. Histological examination of lung tissue revealed bronchiolitis and alveolitis with alveolar epithelial cell hyperplasia and multinucleate syncytium formation. Intraalveolar haemorrhage, intra-alveolar oedema and hyaline membrane formation were also noted. In all cases parainfluenza type 3 (PI3) virus was isolated from the lungs. In each of the four outbreaks there was evidence of PI3 virus and respiratory syncitial virus (RSV) infection.  相似文献   

7.
To develop a live virus vaccine for the prevention of bovine respiratory syncytial (BRS) virus infection in calves, an attempt was made to produce an attenuated virus. The RS-52 strain of BRS virus, isolated from the nasal secretions of a naturally infected calf, was subjected to serial passages in adult hamster lung established (HAL) cells at 30 degrees C and the attenuated rs-52 strain as a live virus vaccine was established. The rs-52 strain multiplied better at 30 degrees C than at 34 or 37 degrees C in HAL cells. The differences in the highest virus titers of this strain between the culture temperature of 30 degrees C and that of 34 or 37 degrees C were more than 2.25 log TCID50. Colostrum-deprived newborn calves and 2 approximately 4 months old calves inoculated with the rs-52 strain manifested no abnormal clinical sings at all. However, all inoculated calves produced serum neutralization antibody. When the colostrum-deprived newborn calves immunized with the rs-52 strain were challenged with the virulent NMK7 strain of BRS virus, they exhibited no pyrexia or other abnormal clinical signs at all. An attempt was made to recover the virus from nasal secretions of these calves, but in vain. On the other hand, a nonimmunized control colostrum-deprived newborn calf developed slight fever, mild cough, and slight serous nasal discharge after challenge exposure. The virus was recovered from nasal secretions of this calf. From these results, it was considered that the rs-52 strain could be used as an attenuated live virus vaccine for prevention of BRS virus infection.  相似文献   

8.
The fluorescent antibody (FA) test is compared with the haemagglutination inhibition (HI) test for parainfluenza virus type 3 (PI-3) and virus neutralisation (VN) test for respiratory syncytial (RS) virus for detection and titration of virus-specific antibodies. In experimentally inoculated calves PI-3 and RS virus FA tests detected seroconversion at the same time as HI and VN tests, however, in serially diluted sera, the FA test was positive to higher dilution. In studies with paired samples from calves from four farms with respiratory problems, the FA test gave similar results to PI-3 HI and RS virus VN tests. Large increases in antibody titre to RS virus detected by FA and VN tests indicated this was the problem on two of the farms. Individual animals showed large rises to PI-3 by FA and HI test on three farms. It is concluded that the FA test provides a rapid and sensitive alternative to the more conventional serological tests for respiratory viruses.  相似文献   

9.
The objective of this study was to determine whether a commercially available, saponin-adjuvanted, inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from experimental infection with virulent BRSV. This was a randomized controlled trial comprising 14, 8- to 9-week-old calves seronegative for BRSV Group 1 calves (n = 8) were not vaccinated and group 2 calves (n = 6) were vaccinated on days 0 and 19 with an inactivated BRSV vaccine. All calves were challenged with virulent BRSV on day 46. Clinical signs, arterial PO2, and immune responses were monitored after challenge. Calves were euthanatized on day 54 (8 d after challenge) and lungs were examined for lesions. Vaccination elicited increases in BRSV-specific immunoglobulin (Ig) G and virus neutralizing antibody titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, but no signs of clinical disease and minimal or no pulmonary lesions in vaccinated calves. Arterial blood oxygen values on day 53 (7 d after challenge) in control calves were significantly lower than those in vaccinated calves, which remained within normal limits. Control calves shed BRSV for several days after challenge, whereas BRSV was not detected on deep nasal swabs from vaccinated calves. In summary, the results indicated that this inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus 27 d after vaccination and significantly decreased the prevalence and severity of pulmonary lesions. Efficacy was similar to that reported for other commercial inactivated and modified-live BRSV vaccines.  相似文献   

10.
OBJECTIVE: To assess short- and long-term efficacy of an inactivated bovine respiratory syncytial virus (BRSV) vaccine administered i.m. to calves with maternally derived antibodies. ANIMALS: 28 two-week-old calves with neutralizing, maternally derived antibodies against BRSV. PROCEDURE: For evaluation of short-term efficacy, 6 calves were vaccinated i.m. at 2 and 6 weeks of age and challenged intranasally and intratracheally along with a matched group of 4 unvaccinated control calves at 10 weeks of age. For evaluation of long-term efficacy, 2 groups of 6 calves each were vaccinated i.m. at 2, 6, and 18 weeks of age or 14 and 18 weeks of age; these calves were challenged intranasally and intratracheally along with 6 matched unvaccinated control calves at 43 weeks of age. Serum virus neutralizing antibody titer, clinical reactions, and virus shedding in nasal mucus and lung washings were assessed. RESULTS: None of the vaccination regimens resulted in a significant increase in serum virus neutralizing antibody titer. As judged by virus shedding in nasal mucus and lung washings, vaccinated calves were protected against challenge, compared with unvaccinated control groups. Clinical signs attributable to challenge were coughing (short-term efficacy study) and tachypnea and dyspnea (long-term efficacy study). The severity and incidence of disease were significantly lower in the vaccinated groups, compared with that in the unvaccinated groups. CONCLUSIONS AND CLINICAL RELEVANCE: Through vaccination, it is possible to protect vulnerable calves with maternal antibodies against BRSV infection and reduce respiratory tract disease.  相似文献   

11.
Summary

A severe outbreak of respiratory tract disease associated with bovine respiratory syncytial virus (BRSV) on a large beef‐fattening farm is described. The outbreak started two days after five‐ to seven‐month‐old calves were vaccinated with a modified live BRSV vaccine. The disease ran a very severe course among five‐ to seven‐month‐old vaccinated calves, but disease was absent in eight‐month‐old an older non‐vaccinated calves. The presence of IgM antibodies in sera of non‐vaccinated calves indicated that BRSV was spreading on the farm between two to 15 days before the day of vaccination. The data indicate that vaccination with modified live vaccine during the course of a natural infection may enhance the severity of disease. The possible pathogenesis of the disease is discussed.  相似文献   

12.
A severe outbreak of respiratory tract disease associated with bovine respiratory syncytial virus (BRSV) on a large beef-fattening farm is described. The outbreak started two days after five- to seven-month-old calves were vaccinated with a modified live BRSV vaccine. The disease ran a very severe course among five- to seven-month-old vaccinated calves, but disease was absent in eight-month-old an older non-vaccinated calves. The presence of IgM antibodies in sera of non-vaccinated calves indicated that BRSV was spreading on the farm between two to 15 days before the day of vaccination. The data indicate that vaccination with modified live vaccine during the course of a natural infection may enhance the severity of disease. The possible pathogenesis of the disease is discussed.  相似文献   

13.
Bovine respiratory syncytial virus (BRSV) is an important cause of respiratory disease among calves in the Danish cattle industry. An experimental BRSV infection model was used to study the pathogenesis of the disease in calves. Broncho alveolar lung lavage (BAL) was performed on 28 Jersey calves, of which 23 were experimentally infected with BRSV and five were given a mock inoculum. The presence of the cytokine tumor necrosis factor alpha (TNF-alpha) in the BAL fluids was detected and quantified by a capture ELISA. TNF-alpha was detected in 21 of the infected animals. The amount of TNF-alpha in the BAL fluid of calves killed post inoculation day (PID) 2 and 4 was at the same very low level as in the uninfected control animals. Large amounts of TNF-alpha were detected on PID 6, maximum levels of TNF-alpha were reached on PID 7, and smaller amounts of TNF-alpha were seen on PID 8. The high levels of TNF-alpha appeared on the days where severe lung lesions and clinical signs were obvious and the amounts of BRSV-antigen were at their greatest. Although Pasteurellaceae were isolated from some of the BRSV-infected calves, calves treated with antibiotics before and through the whole period of the infection, as well as BRSV-infected calves free of bacteria reached the same level of TNF-alpha as animals from which bacteria were isolated from the lungs. It is concluded that significant quantities of TNF-alpha are produced in the lungs of the calves on PID 6-7 of BRSV infection. The involvement of TNF-alpha in the pathogenesis of, as well as the anti-viral immune response against, BRSV infection is discussed.  相似文献   

14.
Respiratory syncytial virus was inoculated intratracheally into five 1-week-old lambs. Three of the lambs responded clinically with fever, hyperpnea, and listlessness. Pulmonary lesions consisted of multifocal areas of consolidation, with necrosis of individual epithelial cells of the airways and accumulation of necrotic debris, macrophages, and few neutrophils in terminal airways and alveoli. Pulmonary septa in affected areas were infiltrated with numerous macrophages and lymphocytes. Viral particles were seen as buds on epithelial cells and free in bronchioles and alveoli.  相似文献   

15.
16.
OBJECTIVE: To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS: 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES: Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS: The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE: An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.  相似文献   

17.
The efficacy of a quadrivalent vaccine against viral bovine respiratory diseases (BRD) was assessed in four experimental studies. Calves between 2 and 9 months of age were allocated to one of two treatment groups (n=9-15) and then received either the vaccine or sterile saline in two doses approximately 3 weeks apart. Three to 5 weeks after the second injection, animals were challenged experimentally with one of the viruses, bovine herpes-virus-1 (BHV-1), parainfluenza type-3 virus (PI(3)V), bovine viral-diarrhoea virus type 1 (BVDV), or bovine respiratory syncytial virus (BRSV) and were then monitored for at least 2 weeks. The administration of the vaccine was associated with enhanced antibody response to all four viruses post-challenge, with the reduction of the amount or duration (or both) of virus shedding in the BHV-1, PI(3)V, BVDV and BRSV studies and with an improvement of some clinical signs in the BHV-1 (nasal discharge, and rectal temperature) and the PI(3)V studies (abnormal respiration, and depression).  相似文献   

18.
The efficacy of intranasal vaccination in preventing or limiting disease of the lower respiratory tract induced by parainfluenza 3 (PI3) virus was evaluated under experimental conditions, using a commercially available live vaccine containing a temperature-sensitive strain of PI3 virus. In a preliminary study four colostrum-deprived calves were vaccinated intranasally at one week and again at two months of age, and two similar calves were given an intranasal placebo. After the second vaccination serum antibodies to PI3 virus were detected in all four vaccinated calves, but not in the control animals. Seventeen days after the second vaccination all six calves were challenged with virulent PI3 virus, and they were killed six days later. The clinical scores and the extent of pulmonary consolidation were reduced in the vaccinated animals; PI3 virus was detected in the upper and lower respiratory tract of the control calves but in none of the vaccinated calves. In a larger scale study with 14 colostrum-fed calves, seven were vaccinated at one week and again at five weeks of age, and seven were given an intranasal placebo. Two weeks after the second vaccination all 14 calves were challenged with virulent PI3 virus. The clinical scores and lung consolidation were significantly reduced in the vaccinated calves in comparison with the controls. Six days after infection, 10 of the 14 calves were killed; PI3 virus was detectable in the nasal secretions of all seven control calves but in only one of the vaccinated animals, and PI3 viral antigen was detected in the lungs of the control calves but not in those of the vaccinated animals. One of the vaccinated calves had developed a severe clinical response after the challenge, but it had only minor lung consolidation when killed.  相似文献   

19.
Twenty-three calves (three to eight months of age) with serological evidence of bovine respiratory syncytial virus infection were used in this study. The calves originated from four herds with respiratory tract disease. In a double blind trial the calves were injected intravenously with either flunixin meglumine (2 mg/kg body weight) or with a placebo. The effect on the course of disease was measured using the PO2 in capillary blood samples from the ears of the calves and by the effect on body temperature and respiratory rate. Mean body temperature fell significantly in the flunixin meglumine treated group. Statistically significant differences were not found between the treated and control group during the seven-day examination period.  相似文献   

20.
A field trial to assess the ability of two vaccines to protect calves against respiratory disease was carried out on a large beef rearing unit in southern England over the two winters of 1983 to 1984 and 1984 to 1985. A quadrivalent vaccine containing the killed antigens of respiratory syncytial virus, parainfluenza virus type 3, Mycoplasma bovis and M dispar or a vaccine containing only the respiratory syncytial virus component were inoculated into 246 and 245 calves, respectively; 245 calves remained as unvaccinated controls. The calves were reared in seven batches and outbreaks of disease occurred in five; significant protection was achieved in the four batches in which disease was associated with respiratory syncytial virus and M bovis infection, together or independently. The death rate from pneumonia was 9 per cent in the control group, 2 per cent in the calves inoculated with the quadrivalent vaccine (P less than 0.001), a protection rate of 77 per cent, and 3 per cent in the calves inoculated with the respiratory syncytial virus vaccine (P less than 0.01), a protection rate of 68 per cent. The proportion of calves receiving treatment for respiratory disease was 38 per cent in the control group, 25 per cent in the calves inoculated with the quadrivalent vaccine (P less than 0.001) and 27 per cent in the calves inoculated with the respiratory syncytial virus vaccine (P less than 0.01). The results show that protection against respiratory disease can be achieved by parenteral vaccination of calves with the appropriate inactivated microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号