共查询到18条相似文献,搜索用时 80 毫秒
1.
核盘菌致病性分化研究 总被引:4,自引:0,他引:4
为了解核盘菌的致病性分化,本研究用活体定位穿刺接种法,以油菜为供试寄主,对采自四川省10个地区23个县、9种寄主的108个菌株进行了致病性测定,结果表明,所有菌株对供试油菜品种均能致病,但各菌株所致病斑长度差异很大(2.7~82.0 mm),说明核盘菌种群内存在明显的致病性分化,这种分化与地理来源和寄主来源没有明显的关系。 相似文献
2.
核盘菌侵染循环类型的研究 总被引:4,自引:0,他引:4
对核盘菌科7个种21个代表菌株的研究结果表明,核盘菌分4种侵染循环类型:1.土传病害类型:包括人参菌核病、细辛菌核病和向日葵小菌核病菌,其特点是子囊孢子在侵染循环中不起作用,以菌丝体为初侵染源,病健株接触构成再侵染。2.子囊孢子气传病害类型:包括油菜、黄瓜、大豆、莴苣、萝卜、红花和紫云英菌核病,其特点是气传的子囊孢子致病力强,从寄主的花、衰老叶或伤口侵入,以病健组织接触构成再侵染。3.分生孢子气传病害类型:包括黄瓜、油菜、葡萄和大葱灰霉病,其特点是在自然条件下未见有性世代,以气传的分生孢子从寄生的花和衰老叶侵染,以分生孢子和健病株接触构成再侵染。4气传、种传、土传病害兼有型:包括向日葵菌核病,其特点是子囊孢子从花或茎侵染造成盘腐和茎腐,菌核、带菌种子萌生菌丝体侵染造成苗腐和立枯。病健组织接触构成再侵染。 相似文献
3.
核盘菌侵入油菜超微结构及侵染机制的研究 总被引:8,自引:0,他引:8
通过电子显微镜观察核盘菌在油菜叶片上侵染过程,发现该菌首先在叶片上形成复合附着器。每个分枝末端一般生出一个侵染钉。侵染钉侵入叶表面腊质、角质层和表皮细胞壁时.不仅靠附着器产生的压力,而且供助于酶对寄主表面的软化、消解作用。该菌通过角质层和表皮细胞壁侵入油菜叶片,尚未发现通过气孔侵入的现象。侵入叶片后,该菌的继续生长,导致了油菜组织的溃烂。然后菌丝在腐烂的叶片上集结形成菌核。 相似文献
4.
陕西省核盘菌不同分离株对油菜的致病性 总被引:2,自引:0,他引:2
采用带菌牙签活体茎秆穿刺接种法和离体叶片菌饼接种法,以3个品种的油菜为供试寄主,对陕西省5个地区10个县的油菜和其它5种寄主共495个核盘菌分离株进行了致病性测定。结果显示,两种接种方法接种3个不同油菜品种所反映的不同分离株的致病趋势一致。离体叶片菌饼接种蓉油12号除来自勉县和城固县的2个分离株不能致病外,其余493个分离株均能致病,但各分离株所致病斑直径差异很大,为0.5~42.6mm,其中病斑直径在10~40mm的分离株占94.7%,属于优势群体。同一地区甚至同一地块均存在不同致病力的分离株,不同寄主来源的分离株在油菜离体叶片上均能致病。说明核盘菌种内存在明显的致病性分化,这种分化与地理来源和寄主来源均无明显的相关性。 相似文献
5.
内蒙古和黑龙江的核盘菌菌丝融合群分化及致病性研究 总被引:1,自引:0,他引:1
为明确核盘菌的遗传多样性,对采自内蒙古和黑龙江不同地区的44株核盘菌进行了菌丝融合群确定,并比较了不同菌丝融合群间菌丝生长速度、致病力、草酸和总酸产量的差异。结果表明:供试44个菌株分为25个融合群,其中有14个融合群仅由单一菌株组成,所占比例为56.0%。菌丝融合群内和菌丝融合群间菌丝生长速度、致病力、草酸和总酸产量都表现出显著差异(P0.001),并与菌株的地理来源无关。相关分析表明核盘菌菌株的致病力与菌株草酸产量呈正相关(r=0.484,P≤0.01),与pH呈负相关(r=-0.580,P≤0.01),与菌株的生长速度无关;草酸产量与pH高低(表示总酸的分泌量)负相关(r=-0.392,P≤0.01),进一步表明核盘菌菌株产生的总酸中草酸量占了很大的比例。 相似文献
6.
利用SRAP分析油菜品种对核盘菌遗传分化的影响 总被引:1,自引:0,他引:1
本文采用茎秆牙签接种法将单一核盘菌菌株接种至不同油菜品种茎秆,再从46个油菜品种茎秆内收集接种后形成的菌核进行分离纯化和培养,并采用SRAP技术对46株核盘菌菌株进行了遗传分化分析。从12对检测引物中共获得357个位点,其中多态性位点273个,占76.47%;UPGMA聚类分析显示,在相似系数为0.77时,46株核盘菌菌株能够分为7组。当以寄主的抗(耐)病程度、寄主品种类型和品种选育地来源为标准将菌株分为不同群体时,AMOVA(analysis of molecular variance)结果表明核盘菌菌株在各群体内变异率分别为98.50%、105.16%和95.36%,均达到极显著水平(P<0.001),而寄主品种选育地群体间的遗传变异达到极显著,变异率为4.64%。结果表明:核盘菌菌株接种不同油菜品种后,菌株间存在明显的遗传分化,这种分化与油菜品种的选育地来源有密切关系。 相似文献
7.
采用Griffing双列杂交第四类遗传试验设计,运用朱军发展的加性-显性遗传模型,直接估算了甘蓝型油菜抗核盘菌及其毒素草酸的遗传方差、遗传力和基因效应.抗病性鉴定采用温室病圃和草酸浸根鉴定法,它们分别鉴定了对核盘菌和草酸的抗性.结果表明,油菜对核盘菌及草酸的抗性加性方差和显性方差均极显著(P<0.01),抗病性主要由加性和显性基因控制,且对核盘菌抗性的加性方差大于显性方差,而对草酸抗性则是显性方差大于加性方差.油菜对核盘菌和草酸的广义遗传力分别为0.750和0.576,狭义遗传力分别为0.403和0.236.高遗传力表明可通过适当的抗病性鉴定方法有效地培育抗病品种(系).基因效应评价结果表明,抗、感亲本的基因效应是不同的,其中抗病亲本783-3具有较理想的加性效应值,同时在多数组合中有较低的显性效应值,是抗病育种的优良亲本,而感病亲本相反.抗×感病的后代既可能为抗病,也可能为感病. 相似文献
8.
9.
10.
Sclerotinia sclerotiorum是世界范围内分布的重要病原菌。我地近几年由核盘菌引起的菌核病普遍发生,陈申宽1991年报道了17种野生花卉新寄主。 相似文献
11.
向日葵菌核病接种方法及品种抗病性鉴定 总被引:1,自引:0,他引:1
为建立有效的向日葵菌核病田间接种鉴定方法,以核盘菌菌丝体悬浮液和孢子悬浮液作为接种物,分别对抗、感向日葵品种在现蕾期、始花期和盛花期进行人工接种,并对接种后保湿材料和保湿时间进行比较。试验结果表明:两种接种物均可使向日葵抗、感品种产生盘腐症状。用菌丝体悬浮液和孢子悬浮液接种时,浓度分别为10.0~15.0g/L和200~500个/mL,始花期接种,牛皮纸袋保湿2~4d,即可区分出向日葵品种间抗感性差异。用此方法鉴定出13个对盘腐型菌核病表现抗病的向日葵品种。 相似文献
12.
核盘菌对菌核净的抗药性机制初探 总被引:16,自引:10,他引:16
经药剂筛选获得对菌核净不同表型的核盘菌(Sclerotinia sclerotiorum ) 抗药性突变体。与敏感亲本菌株相比, 抗药突变体MN 61 (MR ) 和MN 91 (HR) 在含1% 和8% 葡萄糖的PDA 上生长受到抑制,MN 113 (LR) 只对1% 葡萄糖敏感。通过测定抗药突变体MN 61 和野生敏感菌株PN 061 的电导率, 发现抗药突变体能在更短的时间里渗出更多的电解质。抗药突变体苯丙氨酸解氨酶活性比敏感亲本菌株高出1 倍以上, 当用不同浓度菌核净处理或饥饿处理时, 抗药突变体和敏感亲本菌株PAL 活性均上升, 但抗药突变体的酶活始终高于敏感亲本菌株。 相似文献
13.
Near‐isogenic lines (NILs) of apetalous (AP) and fully petalled (FP) winter oilseed rape were used to investigate infection by Sclerotinia sclerotiorum, which occurs mainly via infected petals adhering to leaves in FP oilseed rape. AP1 flowers had an average of 1·4 and 0·8 petals per flower in field and polytunnel experiments, respectively. In field experiments there were no significant differences between counts of FP1 petals, FP1 stamens and AP1 stamens adhered to leaves during flowering. At any one sample time, significantly more stamens tested positive for S. sclerotiorum on AP1 than FP1 NILs, e.g. in 2004, at early flowering 37·5% and 24·2% of stamens tested positive on AP1 and FP1 NILs, respectively. In polytunnel experiments, there were significantly more sclerotinia lesions per plant in the FP1 than in the AP1 NIL. The AP1 NIL did not avoid infection completely, probably because it produced some petals, and lesions were initiated from adhered stamens as well as petals. However, while 8·5% and 16·3% of petals initiated lesions in FP1 and AP1 NILs, respectively, only 2·5% and 1·0% of stamens initiated lesions in FP1 and AP1 NILs, which suggests stamens may be less infective than petals. In field experiments the AP1 NIL had significantly less incidence of sclerotinia stem rot than the FP1 NIL in 2004 (4·9% and 7·0%, respectively). However, there was no significant difference in stem rot incidence between AP and FP lines in 2005 (3·6% and 4·3%, respectively) or 2006 (5·5% and 3·9%, respectively). 相似文献
14.
The response of Sclerotinia sclerotiorum , the causal agent of stem rot of oilseed rape ( Brassica napus ), to toxic volatiles produced by the glucosinolate-myrosinase system was studied. Mycelium plugs were exposed to inoculated leaf discs of oilseed rape cultivars and two related species, black mustard ( Brassica nigra ) and white mustard ( Sinapis alba ). Growth of exposed colonies was inhibited by more than 87% compared with controls. Despite inhibition of exposed fungal colonies, the fungus continued to grow in infected tissue. Repeated exposure of the fungus to hydrated mustard powder (which contains both glucosinolates and myrosinase) or synthetic isothiocyanates (ITCs) resulted in growth inhibition decreasing from initial levels of up to 80% to insignificant levels after 2–3 days, suggesting that S. sclerotiorum has the ability to adapt to volatiles during the infection progress. This adaptation was studied by investigating induction of glutathione S-transferase-like genes identified from the S. sclerotiorum genome. Three genes, with locus numbers SS1G_07195.1, SS1G_01918.1 and SS1G_10295.1, appeared to be up-regulated following exposure of S. sclerotiorum to mustard powder or allyl ITC. A fourth gene, SS1G_07319.1, appeared to be down-regulated. In addition, glutathione S-transferase catalytic activity in crude mycelium extracts was doubled following 48 h of exposure to mustard powder volatiles. This adaptation could allow S. sclerotiorum to parasitize tissues of Brassica species despite the production of toxic metabolites. 相似文献
15.
粉红粘帚霉67-1菌株寄生核盘菌研究 总被引:5,自引:0,他引:5
用诱捕法从海南乐东县菜园土壤中获得一株对核盘菌菌核具有强寄生能力的粉红粘帚霉(Gliocladium roseum)菌株67-1,寄生频率为100%。该菌的PDA平板回接核盘菌菌核,一周后寄生率可达100%。对峙培养发现其对核盘菌有明显的抑菌带。保湿条件下,该菌孢子在24h内成功侵入核盘菌菌核。切片显微观察证明该菌能高效侵染菌核,造成组织溃解。寄生过程中菌核内蛋白组成发生明显变化。这一菌株在22~35℃均能很好生长,菌丝及产孢最适温度为24℃,产孢量大。认为这一菌株具有良好的菌核病生防应用潜力。 相似文献
16.
Predicting diseases caused by Sclerotinia sclerotiorum in field crops remains difficult, and published literature is largely inconsistent in finding significant relationships with environmental and agronomic factors for various life stages of the fungus. A scoping review was performed to synthesize the current quantitative insights into the role of the environment on the life cycle of S. sclerotiorum and the relationships between various life stages of the fungus and final disease expression under field conditions. For most variables, relationships with stages of the life cycle showed a wide range of responses ranging from closely related (high correlations or r2 values) to not related at all. The effects were often moderated by year, location and/or the presence of another variable such as irrigation, soil type, row spacing or cultivar. Studies that based analysis on a more nuanced understanding of pathogen biology rather than looking only at linear relationships tended to find stronger associations between variables. Yield was consistently negatively associated with disease levels, but cultivar, year, location and planting density were all important determinants of yield. Suggestions for improvement to future research in predictive model development of S. sclerotiorum diseases are discussed. 相似文献
17.
18.
In this study, 497 pea accessions from the Pisum core collection located at the USDA-ARS, Western Regional Plant Introduction Station (WRPIS), Pullman, WA and seven woody-stem pea lines from a private collection in the UK, were screened for resistance to Sclerotinia sclerotiorum , the cause of white mould. All of the Pisum genotypes screened were susceptible to infection, and 237 of the 504 genotypes were highly susceptible since these did not survive 2 weeks post-inoculation. However, 22 pea accessions and one woody-stem line were identified with quantitative partial resistance to white mould. Pea accessions 103709, 166084, 169603, 240515 and 270536 from the core collection demonstrated the greatest quantitative partial resistance to S. sclerotiorum based on nodal resistance and plant survival in replicated greenhouse and laboratory tests. Only five of the 504 genotypes screened had a mean lesion length of between 0 and 1 cm when assessed 3 days post-inoculation. Pea stem diameter was significantly ( P ≤ 0·03) negatively correlated with stem lesion length in replicated greenhouse and laboratory experiments, and was determined to be the best predictor of quantitative partial resistance to S. sclerotiorum based on lesion length. 相似文献