首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
司永胜  肖坚星  刘刚  王克俭 《农业机械学报》2023,54(1):243-250,262
奶牛的躺卧率可以反映奶牛的舒适度和健康情况,躺卧奶牛的个体识别是自动监测奶牛躺卧率的基础。本文提出了一种基于改进YOLO v4模型识别非限制环境下躺卧奶牛个体的方法。为实现对躺卧奶牛全天的准确个体识别,首先对18:00—07:00的图像采用MSRCP(Multi-scale retinex with chromaticity preservation)算法进行图像增强,改善低光照环境下的图像质量。其次,在YOLO v4模型的主干网络中融入RFB-s结构,改善模型对奶牛身体花纹变化的鲁棒性。最后,为提高模型对身体花纹相似奶牛的识别准确率,改进了原模型的非极大抑制(Non-maximum suppression, NMS)算法。利用72头奶牛的图像数据集进行了奶牛个体识别实验。结果表明,相对于YOLO v4模型,在未降低处理速度的前提下,本文改进YOLO v4模型的精准率、召回率、mAP、F1值分别提高4.66、3.07、4.20、3.83个百分点。本文研究结果为奶牛精细化养殖中奶牛健康监测提供了一种有效的技术支持。  相似文献   

2.
随着我国畜牧业的快速发展,牛只养殖由分散性养殖逐渐向精准化养殖转变。针对分散养殖中农户无法对每头牛只健康状况给予足够关注的问题,通过分析牛只行为模式结合视觉方向特征,设计了综合管理方法来准确识别和跟踪牛只行为。首先,采用改进YOLO v8算法对牛只进行目标监测,其中,在Backbone和Neck端使用C2f-faster结构,增强模型特征提取能力;引入上采样算子CARAFE,拓宽感受视野进行数据特征融合;针对牛只幼仔检测加入BiFormer注意力机制,以识别牛只小面积特征;更换动态目标检测头DyHead,融合尺度、空间和任务感知;然后,使用Focal SIoU函数,解决正负样本分配不均衡和CIoU局限性的问题。最后,将YOLO v8检测到的行为类别信息引入BoTSORT算法中,实现在复杂场景下牛只多目标行为识别跟踪。实验结果表明,提出的FBCD-YOLO v8n(FasterNet、BiFormer、CARAFE、DyHead)模型在牛只行为数据集上,相比较YOLO v5n、YOLO v7tiny和原YOLO v8n模型的mAP@0.5分别提升3.4、3.1、2.4个百分点,尤其牛只回舔行为识别平均精度提高7.4个百分点。跟踪方面,BoTSORT算法的MOTA为96.1%,MOTP为78.6%,IDF1为98.0%,HOTA为78.9%;与ByteTrack、StrongSORT算法比,MOTA和IDF1显著提升,跟踪效果良好。研究表明,在牛舍养殖环境下,本研究构建的多目标牛只行为识别跟踪系统,可有效帮助农户监测牛只行为,为牛只的自动化精准养殖提供技术支持。  相似文献   

3.
基于改进YOLO v3模型的挤奶奶牛个体识别方法   总被引:3,自引:0,他引:3  
为实现无接触、高精度养殖场环境下奶牛个体的有效识别,提出了基于改进YOLO v3深度卷积神经网络的挤奶奶牛个体识别方法。首先,在奶牛进、出挤奶间的通道上方安装摄像机,定时、自动获取奶牛背部视频,并用视频帧分解技术得到牛背部图像;用双边滤波法去除图像噪声,并用像素线性变换法增强图像亮度和对比度,通过人工标注标记奶牛个体编号;为适应复杂环境下的奶牛识别,借鉴Gaussian YOLO v3算法构建了优化锚点框和改进网络结构的YOLO v3识别模型。从89头奶牛的36790幅背部图像中,随机选取22074幅为训练集,其余图像为验证集和测试集。识别结果表明,改进YOLO v3模型的识别准确率为95.91%,召回率为95.32%,mAP为95.16%, IoU为85.28%,平均帧率为32f/s,识别准确率比YOLO v3高0.94个百分点,比Faster R-CNN高1.90个百分点,检测速度是Faster R-CNN的8倍,背部为纯黑色奶牛的F1值比YOLO v3提高了2.75个百分点。本文方法具有成本低、性能优良的特点,可用于养殖场复杂环境下挤奶奶牛个体的实时识别。  相似文献   

4.
奶牛体况评分是评价奶牛产能与体态健康的重要指标。目前,随着现代化牧场的发展,智能检测技术已被应用于奶牛精准养殖中。针对目前检测算法的参数量多、计算量大等问题,以YOLO v5s为基础,提出了一种改进的轻量级奶牛体况评分模型(YOLO-MCE)。首先,通过2D摄像机在奶牛挤奶通道处采集奶牛尾部图像并构建奶牛BCS数据集。其次,在MobileNetV3网络中融入坐标注意力机制(Coordinate attention, CA)构建M3CA网络。将YOLO v5s的主干网络替换为M3CA网络,在降低模型复杂度的同时,使得网络特征提取时更关注于牛尾区域的位置和空间信息,从而提高了运动模糊场景下的检测精度。YOLO v5s预测层采用EIoU Loss损失函数,优化了目标边界框回归收敛速度,生成定位精准的预测边界框,进而提高了模型检测精度。试验结果表明,改进的YOLO v5s模型的检测精度为93.4%,召回率为85.5%,mAP@0.5为91.4%,计算量为2.0×109,模型内存占用量仅为2.28 MB。相较原始YOLO v5s模型,其计算量降低87.3%,模型内存占用量减...  相似文献   

5.
奶牛身体部位的精准分割广泛应用于奶牛体况评分、姿态检测、行为分析及体尺测量等领域。受奶牛表面污渍和遮挡等因素的影响,现有奶牛部位精准分割方法实用性较差。本研究在YOLO v8n-seg模型的基础上,加入多尺度融合模块与双向跨尺度加权特征金字塔结构,提出了YOLO v8n-seg-FCA-BiFPN奶牛身体部位分割模型。其中,多尺度融合模块使模型更好地提取小目标几何特征信息,双向跨尺度加权特征金字塔结构实现了更高层次的特征融合。首先在奶牛运动通道处采集奶牛侧面图像作为数据集,为保证数据集质量,采用结构相似性算法剔除相似图像,共得到1452幅图像。然后对目标奶牛的前肢、后肢、乳房、尾部、腹部、头部、颈部和躯干8个部位进行标注并输入模型训练。测试结果表明,模型精确率为96.6%,召回率为94.6%,平均精度均值为97.1%,参数量为3.3×106,检测速度为6.2f/s。各部位精确率在90.3%~98.2%之间,平均精度均值为96.3%。与原始YOLO v8n-seg相比,YOLO v8n-seg-FCA-BiFPN的精确率提高3.2个百分点,召回率提高2.6个百分点,平均精度均值提高3.1个百分点,改进后的模型在参数量基本保持不变的情况下具有更强的鲁棒性。遮挡情况下该模型检测结果表明,精确率为93.8%,召回率为91.67%,平均精度均值为93.15%。结果表明,YOLO v8n-seg-FCA-BiFPN网络可以准确、快速地实现奶牛身体部位精准分割。  相似文献   

6.
针对肉牛行为识别过程中,多目标骨架提取精度随目标数量增多而大幅降低的问题,提出了一种改进YOLO v3算法(Not classify RFB-YOLO v3,NC-YOLO v3),在主干网络后引入 RFB(Receptive field block)扩大模型感受野,剔除分类模块提高检测效率,结合8SH(8-Stack...  相似文献   

7.
基于改进DeepSORT的群养生猪行为识别与跟踪方法   总被引:1,自引:0,他引:1  
为改善猪只重叠与遮挡造成的猪只身份编号(Identity,ID)频繁跳变,在YOLO v5s检测算法基础上,提出了改进DeepSORT行为跟踪算法。该算法改进包括两方面:一针对特定场景下猪只数量稳定的特点,改进跟踪算法的轨迹生成与匹配过程,降低ID切换次数,提升跟踪稳定性;二将YOLO v5s检测算法中的行为类别信息引入跟踪算法中,在跟踪中实现准确的猪只行为识别。实验结果表明,在目标检测方面,YOLO v5s的mAP为99.3%,F1值为98.7%。在重识别方面,实验的Top-1准确率达到99.88%。在跟踪方面,改进DeepSORT算法的MOTA为91.9%,IDF1为89.2%,IDS为33;与DeepSORT算法对比,MOTA和IDF1分别提升了1.0、16.9个百分点,IDS下降了83.8%。改进DeepSORT算法在群养环境下能够实现稳定ID的猪只行为跟踪,能够为无接触式的生猪自动监测提供技术支持。  相似文献   

8.
为了能准确检测、跟踪加州鲈鱼因水中溶解氧含量低产生的胁迫行为,本文构建了一种改进的YOLO v5与DeepSORT组合网络算法。在算法方面提出2个改进方案:在原YOLO v5的Backbone和Neck中分别加入2个基于移位窗口的自注意力Swin Transformer模块,提升了网络对目标特征信息的提取能力,以此提升原模型的检测效果;采用Warmup和Cosine Annealing结合的学习率策略,使多目标跟踪算法DeepSORT前期收敛速度更快、更稳定。实验结果表明,在目标检测方面,相对于原YOLO v5,改进的YOLO v5的mAP@0.5、mAP@0.5:0.95和召回率分别提升1.9、1.3、0.8个百分点,在不完全遮挡情况下,改进的算法表现出更好的检测效果。在目标跟踪方面,DeepSORT算法的MOTA、MOTP和IDF1分别提升4.0、0.7、10.7个百分点,并且加州鲈鱼在遮挡前后的ID切换频率得到明显抑制。改进的YOLO v5与DeepSORT跟踪算法更适合于检测、跟踪加州鲈鱼的低氧胁迫行为,能够为加州鲈鱼的养殖提供技术支持。  相似文献   

9.
日常行为是家畜健康状况的重要体现,在传统的行为识别方法中,通常需要人工或者依赖工具对家畜进行观察。为解决以上问题,基于YOLO v5n模型,提出了一种高效的绵羊行为识别方法,利用目标识别算法从羊圈斜上方的视频序列中识别舍养绵羊的进食、躺卧以及站立行为。首先用摄像头采集养殖场中羊群的日常行为图像,构建绵羊行为数据集;其次在YOLO v5n的主干特征提取网络中引入SE注意力机制,增强全局信息交互能力和表达能力,提高检测性能;采用GIoU损失函数,减少训练模型时的计算开销并提升模型收敛速度;最后,在Backbone主干网络中引入GhostConv卷积,有效地减少了模型计算量和参数量。实验结果表明,本研究提出的GS-YOLO v5n目标检测方法参数量仅为1.52×106,相较于原始模型YOLO v5n减少15%;浮点运算量为3.3×109,相较于原始模型减少30%;且平均精度均值达到95.8%,相比于原始模型提高4.6个百分点。改进后模型与当前主流的YOLO系列目标检测模型相比,在大幅减少模型计算量和参数量的同时,检测精度均有较高提升。在边缘设备上进行部署,达到了实时检测要求,可准确快速地对绵羊进行定位并检测。  相似文献   

10.
基于改进YOLO v3模型的奶牛发情行为识别研究   总被引:1,自引:0,他引:1  
为提高复杂环境下奶牛发情行为识别精度和速度,提出了一种基于改进YOLO v3模型的奶牛发情行为识别方法。针对YOLO v3模型原锚点框尺寸不适用于奶牛数据集的问题,对奶牛数据集进行聚类,并对获得的新锚点框尺寸进行优化;针对因数据集中奶牛个体偏大等原因而导致模型识别准确率低的问题,引入DenseBlock结构对YOLO v3模型原特征提取网络进行改进,提高了模型识别性能;将YOLO v3模型原边界框损失函数使用均方差(MSE)作为损失函数度量改为使用FIoU和两框中心距离Dc度量,提出了新的边界框损失函数,使其具有尺度不变性。从96段具有发情爬跨行为的视频片段中各选取50帧图像,根据发情爬跨行为在活动区出现位置的不确定性和活动区光照变化的特点,对图像进行水平翻转、±15°旋转、随机亮度增强(降低)等数据增强操作,用增强后的数据构建训练集和验证集,对改进后的模型进行训练,并依据F1、mAP、准确率P和召回率R指标进行模型优选。在测试集上的试验表明,本文方法模型的识别准确率为99.15%,召回率为97.62%,且处理速度达到31 f/s,能够满足复...  相似文献   

11.
为实现收获后含杂马铃薯中土块石块的快速检测和剔除,提出了一种基于改进YOLO v4模型的马铃薯中土块石块检测方法。YOLO v4模型以CSPDarknet53为主干特征提取网络,在保证检测准确率的前提下,利用通道剪枝算法对模型进行剪枝处理,以简化模型结构、降低运算量。采用Mosaic数据增强方法扩充图像数据集(8621幅图像),对模型进行微调,实现了马铃薯中土块石块的检测。测试表明,剪枝后模型总参数量减少了94.37%,模型存储空间下降了187.35 MB,前向运算时间缩短了0.02 s,平均精度均值(Mean average precision, mAP)下降了2.1个百分点,说明剪枝处理可提升模型性能。为验证模型的有效性,将本文模型与5种深度学习算法进行比较,结果表明,本文算法mAP为96.42%,比Faster R-CNN、Tiny-YOLO v2、YOLO v3、SSD分别提高了11.2、11.5、5.65、10.78个百分点,比YOLO v4算法降低了0.04个百分点,模型存储空间为20.75 MB,检测速度为78.49 f/s,满足实际生产需要。  相似文献   

12.
为解决限位栏场景下经产母猪查情难度大、过于依赖公猪试情和人工查情的问题,提出了一种基于改进YOLO v5s算法的经产母猪发情快速检测方法。首先,利用马赛克增强方式(Mosaic data augmentation, MDA)扩充数据集,以丰富数据表征;然后,利用稀疏训练(Sparse training, ST)、迭代通道剪枝(Network pruning, NP)、模型微调(Fine tune, FT)等方式重构模型,实现模型压缩与加速;最后,使用DIOU_NMS代替GIOU_NMS,以提高目标框的识别精度,确保模型轻量化后,仍保持较高的检测精度。试验表明,优化后的算法识别平均精确率可达97.8%,单幅图像平均检测时间仅1.7 ms,单帧视频平均检测时间仅6 ms。分析空怀期母猪发情期与非发情期的交互行为特征,发现母猪发情期较非发情期交互时长与频率均显著提高(P<0.001)。以20 s作为发情检测阈值时,发情检测特异性为89.1%、准确率为89.6%、灵敏度为90.0%,该方法能够实现发情母猪快速检测。  相似文献   

13.
基于融合图像与运动量的奶牛行为识别方法   总被引:7,自引:0,他引:7  
为从海量监控视频中快速、准确识别影响奶牛繁殖与健康的行为,以小育成牛舍与泌乳牛舍中400头奶牛为研究对象,分析了奶牛在活动区与奶厅匝道的运动行为,提出了一种基于图像熵的奶牛目标对象识别方法,通过最小包围盒面积计算与目标对象轮廓图,实时捕获奶牛爬跨行为与蹄部、背部特征,融合被识别奶牛连续7 d的运动量,判断影响奶牛健康繁殖的异常行为。试验结果表明,利用本文方法对监控视频内奶牛目标对象、运动行为进行实时监测,有效监控识别奶牛发情、蹄病行为准确率超过80%,发情漏检率最低为3.28%,蹄病漏检率最低为5.32%,提高了规模化养殖管理效率。  相似文献   

14.
实现果园机械化智能采摘是解决农村劳动力不足、降低果实采摘成本的重要途径,对果园中果实的准确识别是其关键技术。以枣为研究对象,建立最适合多品种、实用性强的枣果实成熟度识别模型,将YOLO算法引入到枣果实在自然环境下的成熟度识别中,将枣果实分为成熟果实、未熟果实和完熟果实、半红果实、未熟果实两种标注方式,建立YOLO V3、YOLO V4、YOLO V4-Tiny和Mobilenet-YOLO V4-Lite四种识别模型。研究表明YOLO算法中YOLO V3与YOLO V4-Tiny两个模型均可适用于两种标注方式,验证集mAP约为94%,证明YOLO算法能够对枣果实进行有效的成熟度识别。  相似文献   

15.
基于DeepSORT算法的肉牛多目标跟踪方法   总被引:1,自引:0,他引:1  
肉牛的运动行为反映其健康状况,在实际养殖环境下如何识别肉牛并对其进行跟踪,对感知肉牛的运动行为至关重要.基于YOLO v3改进算法(LSRCEM-YOLO),利用视频监控实现了实际养殖环境下的肉牛实时跟踪.该方法采用MobileNet v2作为目标检测骨干网络,根据肉牛分布不均、目标尺度变化较大的特点,提出通过添加长短...  相似文献   

16.
为实现褐菇高效、精准、快速的自动化采摘,针对工厂化褐菇的种植特点,提出一种基于YOLO v5迁移学习(YOLO v5-TL)结合褐菇三维边缘信息直径动态估测法的褐菇原位识别-测量-定位一体化方法。首先,基于YOLO v5-TL算法实现复杂菌丝背景下的褐菇快速识别;再针对锚框区域褐菇图像进行图像增强、去噪、自适应二值化、形态学处理、轮廓拟合进行褐菇边缘定位,并提取边缘点和褐菇中心点的像素坐标;最后基于褐菇三维边缘信息的直径动态估测法实现褐菇尺寸的精确测量和中心点定位。试验结果表明单帧图像平均处理时间为50ms,光照强度低、中、高情况下采摘对象识别平均成功率为91.67%,其中高光强时识别率达100%,菇盖的尺寸测量平均精度为97.28%。研究表明,本文提出的YOLO v5-TL结合褐菇三维边缘信息直径动态估测法可实现工厂化种植环境下褐菇识别、测量、定位一体化,满足机器人褐菇自动化采摘需求。  相似文献   

17.
针对鸡只个体较小、个体间存在遮挡,对蛋鸡日常行为识别造成干扰的问题,提出了一种基于SEEC-YOLO v5s的蛋鸡日常行为识别方法。通过在YOLO v5s模型输出部分添加SEAM注意力模块、在特征融合部分引入显式视觉中心模块(EVCBlock),扩大了模型的感受野,提高了模型对小个体遮挡情况下的目标识别能力,提升了模型对蛋鸡站立、采食、饮水、探索、啄羽和梳羽6种行为的识别精度。提出了一种基于视频帧数与视频帧率比值计算蛋鸡日常行为持续时间的统计方法,并对蛋鸡群体一天之中不同时间段及全天各行为变化规律进行了分析。将改进后的模型进行封装、打包,设计了蛋鸡日常行为智能识别与统计系统。试验结果表明,SEEC-YOLO v5s模型对6种行为识别的平均精度均值为84.65%,比YOLO v5s模型高2.34个百分点,对比Faster R-CNN、YOLO X-s、YOLO v4-tiny和YOLO v7-tiny模型,平均精度均值分别提高4.30、3.06、7.11、2.99个百分点。本文方法对蛋鸡的日常行为监测及健康状况分析提供了有效的支持,为智慧养殖提供了借鉴。  相似文献   

18.
针对水稻稻纵卷叶螟和二化螟成虫图像识别中自动化程度较低的问题,引入目标检测算法YOLO v5对监测设备和诱捕器上的稻纵卷叶螟和二化螟成虫进行识别与计数。依据稻纵卷叶螟和二化螟的生物习性,采用自主研发的水稻害虫诱集与拍摄监测装置,自动获取稻纵卷叶螟和二化螟成虫图像,并与三角形诱捕器和虫情测报灯诱捕拍摄的稻纵卷叶螟和二化螟成虫图像共同构建水稻害虫图像数据集;采用左右翻转、增加对比度、上下翻转的方式增强图像数据集;对比了不同训练模型对三角形诱捕器和监测设备诱捕拍摄的水稻害虫图像的检测性能,并对比稻纵卷叶螟成虫不同训练样本量对识别结果的影响,用精确率、召回率、F1值、平均精度评估各模型的差异。测试结果表明,测试集图像为三角形诱捕器和监测设备诱捕拍摄虫害图像时,稻纵卷叶螟识别的精确率和召回率分别达到91.67%和98.30%,F1值达到94.87%,二化螟识别的精确率和召回率分别达到93.39%和98.48%,F1值达到95.87%。不同采样背景、设备构建的多源水稻害虫图像数据集可以提高模型对水稻害虫识别的准确性。基于YOLO v5算法设计的水稻害虫识别计数模型能够达到较高的识别准确率,可以用于...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号