共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Worldview-2影像的林木冠幅提取与树高反演 总被引:1,自引:0,他引:1
以湖南省攸县黄丰桥国有林场杉木人工林为例,探讨林木冠幅提取与树高反演方法研究。基于Worldview-2影像,采用均值漂移分割算法开展样地内杉木冠幅信息提取。通过设置不同分割尺度确定最佳的冠幅分割参数为hs=10,hr=6,M=20。对提取的冠幅边界进行平滑处理,利用平滑后的影像冠幅与实测树高,分别建立了冠幅树高曲线估计模型和非线性联立方程组反演模型。其中以树高作为哑变量,建立的影像冠幅树高非线性联立方程组模型的拟合效果最佳,模型决定系数R2为0.899,模型的变动系数(CV),平均百分标准误差(EMPSE)均在10%以内,是树高反演的一种有效手段。 相似文献
2.
针对经济林中树木的生长状况进行调查,有助于农户制定针对性的经营策略,提高经营效率。然而,由于山核桃树通常生长在山地环境下,使用传统的林业调查方法获取树木参数需要的人力资源和时间成本较高,而且在陡峭的山地环境中容易受到地形、植被和气象等因素的干扰。为了解决这一问题,提出了一种新的自动化方法——检测框投影法。该方法基于深度学习的目标检测算法对遥感图像中的树冠进行检测并生成检测框,再依据所得到的检测框获取树木位置和数量,并进一步提取单木的冠幅与树高等参数。在不同环境的山核桃种植林场进行的树冠检测实验结果表明,该方法使用的目标检测算法对山核桃树冠检测的总体平均精度和F1-score分别达到了85.5%与0.84;参数提取方面,在两处不同的山核桃种植林场选取了3处研究样地,并在每处样地选取并实地测量了50棵样本树木的冠幅和树高以验证参数提取精度,结果表明,使用检测框投影法预测冠幅与实测值的均方根误差、平均绝对误差和平均相对误差分别为0.469 m、0.313 m和5.7%,预测树高与实测值的均方根误差、平均绝对误差和平均相对误差分别为0.427 m、0.331 m和6.0%。提出的检测框投影法在... 相似文献
3.
基于山西省太行山国有林管理局东山实验林场的无人机影像数据和油松样方的每木检尺数据,利用ENVI 5.3软件对无人机影像进行多尺度分割,确定最佳的冠幅分割参数。采用面向对象的分类方法提取油松影像冠幅,通过影像冠幅与实测胸径构建冠幅-胸径模型,并进行蓄积量反演。结果表明,当分割尺度设为35,合并尺度设为80时,冠幅边缘较为清晰,对影像的分割较为合理。胸径-冠幅估计模型以一元线性模型拟合度最高,决定系数R2为0.779 7,将提取参数代入模型反演蓄积量,可得到航空立木材积表。 相似文献
4.
[目的]以无人机高清影像为数据源,结合样地实地调查数据,研究杨树冠幅提取及其与胸径和林分蓄积量的相关性,为无人机森林调查技术提供一种思路和方法。[方法]基于无人机高分影像及实地调查数据,采用面向对象法,对杨树林木冠幅进行分割与提取,通过实地测量数据建立冠幅-胸径模型,利用一元材积表计算样地蓄积量,并进行相关性分析与精度检验。[结果]影像分割效果良好,但提取得到的冠幅比实际值偏小,研究区最适宜的杨树冠幅分割尺度为10,平滑度0.1,紧致度0.5。杨树冠幅与胸径建立相关模型,其中一元线性方程拟合效果最好,相关系数为0.75。通过模型计算的样地蓄积与实测样地蓄积进行双侧T检验,结果 sig=0.0580.05,两组数据差异不显著。[结论]采用面向对象法,通过无人机高分影像能自动分割并提取了杨树林木冠幅信息,提取效果良好;利用影像提取林木平均冠幅,通过冠幅-胸径相关关系模型得到林木胸径,进而推算林分蓄积的方法可以满足森林资源调查精度要求。 相似文献
5.
基于无人机影像的树顶点和树高提取及其影响因素分析 总被引:3,自引:1,他引:2
对基于无人机影像生成的树冠高度模型(Canopy Height Model,CHM),采用局部最大值算法进行树顶点和树高提取的可行性进行了探讨。此外,还探讨了分辨率、窗口大小对于树顶点提取的影响。以密集的针阔混交林为样地,利用SfM(Structure from Motion)算法结合无人机影像对研究区进行三维重建,得到点云、数字表面模型(Digital Surface Model,DSM)、数字高程模型(Digital Elevation Model,DEM)等一系列三维数据并生成CHM。然后,对不同分辨率的CHM使用不同的平滑窗口大小、移动窗口大小组合进行树顶点的提取并对结果进行精度评价。当CHM分辨率为0.4m,平滑窗口大小为3×3像元,移动窗口大小为3×3像元时,树顶点的提取精度最高,F测度为77.08%。将基于该组合提取正确的37个树顶点对应的提取树高与实地测量得到的树高对比,R~2为0.966 9,RMSE为1.411 4m,rRMSE=10.69%。研究结果表明:利用无人机影像可以较好地提取复杂树林的树顶点和树高;基于局部最大值算法提取树顶点,需要根据实际情况确定CHM的分辨率、平滑窗口大小和移动窗口大小,以获得最佳提取结果。 相似文献
7.
在野外调查马尾松毛虫数量时,由于受树高的影响,只能查到树高3m以下各代幼虫的数量,而很难对大树上的虫口进行详查.现在马尾松毛虫虫口密度是以每株树的虫口数(条/株)来表示的,虫口密度相同,但冠体大小不同,对当代发生造成的危害程度显然不同.为能取得准确的虫情,根据发生情况进行预测预报,我们在2007~2008年就桐城市马尾松毛虫幼虫虫口数量与树高和冠幅大小关系进行了初步研究,旨在探讨用3m以下的矮树的虫口密度估测高大树木的虫口密度以及新的计算方法. 相似文献
8.
利用目前流行的高分辨率可见光无人机遥感影像生成树木冠层高度模型,采用分水岭分割算法提取单木树高的研究具有重要理论和实践意义。以位于云南省富民县的天然云南松纯林为研究对象,通过大疆Phantom 4 Pro无人机获取低空可见光遥感影像,利用Pix4D Mapper对无人机影像进行预处理及三维重建,生成三维点云,利用LiDAR360处理三维点云,构建DSM,DEM并生成CHM;采用分水岭分割算法对不同郁闭度条件下获得的CHM进行单木分割及树高提取,对提取结果进行精度评价。结果表明:分水岭分割算法能够准确分割CHM,利用无人机可见光遥感影像进行单木树高提取是可行的;将基于无人机可见光影像提取的树高值与野外实地调查得到的树高值进行对比,R2为0.893,RMSE为1.23m,估测精度为87.58%;同时,林分郁闭度会对单木树高估测产生影响,根据不同郁闭度条件下提取的3组样木树高与实地测量树高的决定系数(R2)分别是0.857,0.939和0.921,RMSE分别为1.450,1.097,0.896m,在低郁闭度林分内树高估测的精度显著高于高郁闭度林分。 相似文献
9.
基于无人机影像的城市绿地提取分析 总被引:1,自引:0,他引:1
《四川林业科技》2019,(6)
本文通过无人机获取四川省北川县高分辨率影像数据,经过空三加密,正射校正等一系列预处理,利用ENVI软件分别计算研究区可见光波段差异植被指数VDVI(visible-band difference vegetation index),归一化绿红差值指数NGRDI(normalized green-red difference index)、归一化绿蓝差值指数NGBDI(normalized green-blue difference index)。采用面向对象的影像分类方式,分别提取城市绿地并进行精度评价。结果表明:3种植被指数均能较好地提取城市绿地,总体提取精度均在83%以上,其中VDVI提取效果最优,总体精度达到89.5%。因此,利用无人机遥感技术进行城市绿地的提取统计是可行的。基于VDVI统计结果,通过去除小斑块以及目视解译校正城市绿地分类结果,统计得到北川县建成区绿地面积为2.3948 km~2,城市绿化覆盖率为40.04%。 相似文献
10.
基于VirtuoZo系统对林木冠幅信息的提取 总被引:1,自引:0,他引:1
针对目前林木冠幅信息人工测量高误差低效率的现状,本文基于1:10000的数字航空相片影像,采用专业的数字摄影测量平台VirtuoZo提取了林木冠幅信息。选取凉水国家级自然保护区17林班18小班内第32号固定样地为测图区,通过立体模型的内定向、相对定向和绝对定向构建测区的立体像对,并在立体像对上量测了样地内各林木的东西和南北冠幅。结果表明:林木冠幅的数字摄影测量的相关系数均大于0.85,具有较好的正相关性。因此应用全数字测量系统VirtuoZo提取冠幅因子具有可行性,能够减少外业工作量,但测量精度受到航摄参数、环境因素和判读员经验等因素影响。 相似文献
11.
《林业资源管理》2021,(2)
针对无人机在森林资源监测中的便携性特点,利用无人机RGB三波段影像进行森林计测参数(株数、树高及蓄积量)的提取及精度验证。以华山松人工林为研究对象,以无人机RGB影像为主要信息源,在前期进行5块0.08hm~2华山松人工林标准地单木定位的基础上,采用冠层高度模型(CHM)最大值法和点云分割方法,提取华山松人工林计测参数,建立无人机RGB影像的华山松人工林单木二元材积模型。研究结果表明:1)采用CHM最大值分割法较点云分割方法精度高,单木株数分割精度分别为87.17%和80.79%;提取得到的树高与其地面实测所得树高的R~2相比较,使用CHM方法,R~2为0.71;而使用点云算法,R~2为0.69。2)基于CHM最大值法提取的单株冠幅和树高所建立的二元材积模型,其决定系数(R~2)为0.94,均方根误差(RMSE)为0.033 8m~3;与基于云南省华山松人工林二元材积表的标准地实测蓄积量调查结果相比,基于无人机RGB数据的5块标准地蓄积量监测精度分别为79.72%,81.64%,83.57%,82.49%,80.28%,平均精度达81.54%。基于无人机RGB影像的华山松人工林在森林计测参数提取中,CHM最大值分割法优于点云分割,所建立的树高和冠幅二元材积模型,可为华山松单层人工林无人机遥感监测提供参考。 相似文献
12.
13.
14.
【目的】基于新造林健康树冠的光谱特征和空间交错情况,探讨复杂地面植被条件下健康树冠的光谱增强方式和多尺度分割阈值,为造林核查的日常监测工作提供技术支撑。【方法】以冬奥核心区新造林地无人机航拍影像为试验数据,首先,基于健康树冠与其他干扰地物的不同颜色特征,采用同态滤波增强影像并使用ExG光谱指数进行变换;然后,采用最大类间方差方法得到二值图像,并使用多尺度形态学滤波方法进行分割并融合分割结果,以分割交错的树冠区域对应提取原始图像中可能的健康树冠区域;最后,基于颜色向量、灰度共生矩阵和局部二值模式共同构建的特征向量,采用随机森林识别提取区域,从而检测图像中的健康树冠。【结果】基于光谱指数变换、多尺度形态学滤波方法能够有效分割交错连续的树冠区域,排除与健康树冠颜色相近的地物干扰,较为准确提取出可能为树冠的区域。采用该方法对不同造林密度、光照条件下的17幅无人机正射图像进行试验,使用目视解译方式标记出树冠中心,运用精确度、召回率和F1分数3个评价指标对随机森林和支持向量机的识别效果进行定量对比分析,结果表明,多尺度形态学滤波方法可提取96.78%的树冠,随机森林的F1分数高于97%,而支持向量... 相似文献
15.
基于无人机可见光影像的亚高山针叶林树冠参数信息自动提取 总被引:2,自引:0,他引:2
《林业资源管理》2017,(4):82-88
树冠是树木获取光能并进行能量转换的主要场所,在监测树木长势,估算树木生物量等方面具有重要作用。及时准确获取树冠参数信息有助于研究树木生长状况和森林变化动态,有效改善森林经营管理。无人机遥感具有快速机动、云下飞行、影像分辨率高、成本低等优势,非常适合于亚高山针叶林树冠遥感影像的获取。论文以贡嘎山雅家埂局部范围亚高山针叶林为研究对象,采用固定翼无人机获取可见光遥感影像,基于面向对象方法自动提取了亚高山针叶林的东西冠幅、南北冠幅、单元面积树木数和郁闭度等参数。以目视解译结果作为参考数据进行验证,东西冠幅和南北冠幅的提取精度分别是0.765 1和0.855 6,单元面积树木数和郁闭度的提取精度分别是0.99和0.92。研究结果表明,基于无人机遥感影像的树冠参数信息自动提取方法高效可靠,能够满足亚高山针叶林生长状况快速评价与动态遥感监测的需求。 相似文献
16.
幼年赤桉胸径与冠幅、树高、材积的相关性分析 总被引:2,自引:0,他引:2
对试验地的1470株赤桉进行树高、胸径、冠幅的测量,并计算出样木的单株材积。把胸径分别和冠幅、树高及株材积进行相关性分析并且建立数学模型,用SPSS软件对所选模型进行曲线估计。结果表明:其中幂方程的 R2最大,F 值亦为最大,说明赤桉胸径与树高的幂关系显著,可确定赤桉胸径与树高的最优回归方程为H=1.804D0.673。胸径—冠幅,胸径—材积的最优模型分别为CW=0.674D0.561,V=0.0001614D2.341。分别对3组最优模型进行适应性检验,结果表明:材积的3个最优回归模型预测误差均在±3%以内,方程预测精度较高,可用于估算立木树高、冠幅、材积。 相似文献
17.
基于FCM和分水岭算法的无人机影像中林分因子提取 总被引:2,自引:0,他引:2
【目的】研究高精度小型无人机获取林分调查因子方法,将林分调查因子在低空无人机影像上识别并提取出来,获取树高、冠径等测树因子,建立林分因子测量方法,实现经济、高效、快捷、精准的森林资源调查和监测,及时掌握森林资源及相关林分因子的时空变化特征。【方法】以东北林业大学城市林业示范基地樟子松人工林为研究对象,以多旋翼无人机影像为数据源,基于FCM聚类算法和分水岭分割算法以及形态学运算、阈值分割、图像平滑、灰度化、二值化等一系列数字图像处理技术,提取樟子松人工林林分因子。FCM聚类算法和阈值分割法用于提取树梢标记图像,分水岭分割算法对树梢标记图像进行迭代处理从而获得单木树冠分割图像,根据单木树冠分割结果提取单木特征进而计算各林分因子值。【结果】在林地提取中,根据影像的颜色特征绿度分割成功地将林地部分与非林地部分分离开来,确定单木树冠分割范围。在单木树冠分割中,阈值分割法和FCM聚类算法均可有效将树梢标记从林地图像中提取出来;将基于标记的分水岭分割算法用于单木树冠分割取得较好效果,大多数单木树冠被单独分割出来,但某些区域仍然存在一定的欠分割或过分割问题。在林分因子提取中,提取的林分因子包括林分郁闭度、林地面积、立木株数和平均冠幅,其中林分郁闭度的测量精度为96.67%,林地面积的测量精度为81.23%,立木株数和平均冠幅的测量精度与单木树冠分割中的树梢提取方法(阈值分割法和FCM聚类算法)及分水岭分割中的2个参数(形态学腐蚀的结构元素大小和中值滤波的窗口大小)有关。针对2种树梢提取方法,分别进行参数组合试验,结果显示2种树梢提取方法使用适当参数组合所得各林分因子测量精度均在80%以上,平均测量精度均在90%以上,其中阈值分割法的最高平均测量精度为94.49%,FCM聚类算法的最高平均测量精度为93.17%。【结论】利用无人机拍摄的人工林影像进行森林资源调查,将先进的计算机科学技术和无人机技术应用到林业领域中,可有效提高森林资源调查的效率和精度。本研究提出的林分因子提取方法适用于高郁闭度林分,测量精度满足实际需求。 相似文献
18.
《中南林业科技大学学报(自然科学版)》2016,(10)
行道树具有补充氧气、净化空气、美化城市、减少噪音等作用。虽然高分辨率遥感技术能够提取行道树信息,但其工作量大、成本高。无人机具有飞行成本低、数据分辨率高、外业周期短、机动灵活等优点,根据行道树分布灵活设计航线,可显著降低成本提高效率。文章利用无人机航测遥感系统采集并制作的DEM、DSM与DOM,基于邻域最高过滤法提取了行道树信息,并将提取结果与实地调查数据进行了比较分析。结果表明,邻域最高过滤法测量行道树单株树高的平均误差为4.94,株数提取率也达到95%以上。 相似文献
19.
《林业资源管理》2021,(3)
以内蒙古旺业甸林场为研究区,结合地面调查,对高分二号遥感数据进行预处理,并提取光谱信息、植被指数及纹理信息等48个遥感因子,采用Pearson相关系数法筛选出8个因子进行建模。采用多元线性回归、多层感知机、K-近邻、支持向量机、随机森林模型估测森林蓄积量,得到研究区内森林蓄积量反演图。结果表明:1)高分二号影像提取的遥感因子中,基于二阶矩阵的纹理特征均值(Mean)与森林蓄积量的相关性较高;2)随机森林相对于多元线性、多层感知机、K-近邻、支持向量机等方法具有更好的森林蓄积量估测精度,其相对均方根误差(rRMSE)为25.40%;3)研究区内森林蓄积量高的地区主要分布在西部和东南部;森林蓄积量低的地区主要分布在西北部、中部及北部,与实际调查情况一致。国产高分二号影像利用随机森林算法在森林蓄积量反演方面具有一定的潜力。 相似文献
20.
为了提高林分尺度下单木参数的识别精度,研究了基于三维激光扫描的单木胸径和树高的辨识方法。在东北林业大学实验林场,采用Trimble S60三维激光扫描仪,对104株蒙古栎进行多测站扫描,获得样本树的点云数据。在对点云数据进行配准、去噪、地形数据提取、切片栅格化等一系列处理基础上,基于霍夫变换和连续生长法分别构建了胸径和树高的提取方法,对林分尺度下单木定位识别、胸径和树高提取精度进行了对比分析。研究结果表明:所构建方法单木定位识别精度均值为87.50%,胸径和树高提取的均方根误差分别为2.88 cm、2.61 m。 相似文献