首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
克菌丹50%可湿性粉剂在草莓和土壤中的残留动态研究   总被引:2,自引:0,他引:2  
采用田间试验方法,研究了克菌丹在草莓和土壤中的消解动态和最终残留.样品经溶剂浸泡提取,层析柱净化,用带ECD检测器的气相色谱仪测定,外标法定量.结果表明,克菌丹在该方法下的最小检出量为3×10-12g,在草莓和土壤中的最低检出浓度分别为0.1和0.04 mg·kg-1,草莓中克菌丹的平均回收率为90.92%~96.32%,变异系数为6.50%~7.22%,土壤中克菌丹的平均回收率为95.46%~103.52%,变异系数为1.43%~2.81%.田间试验结果表明,克菌丹消解较快,在山东和沈阳两地草莓中降解半衰期分别为2.92和2.98 d,土壤中降解半衰期分别为2.36和5.67 d.在草莓上使用克菌丹50%可湿性粉剂,按照推荐剂量的2倍、200倍液和400倍液喷雾3-4次,距最后一次施药2d,草莓和土壤中的克菌丹残留量分别为0.92~4.94 mg·kg-1和ND-2.36 mg·kg-1,均小于10mg·kg-1.说明克菌丹在草莓和土壤中属低残留、易降解农药.  相似文献   

2.
克菌丹在苹果园土壤中的代谢研究   总被引:3,自引:0,他引:3       下载免费PDF全文
GC-M S是对农药及其代谢物进行定性定量分析的重要方法。本研究采用气相色谱-质谱(GC-M S)联用研究了克菌丹在土壤及苹果中的代谢,确证了克菌丹的代谢物为四氢邻苯二甲酰亚胺。克菌丹在土壤中的半衰期为1.6~1.9 d。最低检出浓度为0.006 m g/kg。  相似文献   

3.
气相色谱法测定棉籽中高效氯氰菊酯残留   总被引:1,自引:0,他引:1  
建立用气相色谱法测定棉籽中高效氯氰菊酯残留量的分析方法。样品经丙酮-石油醚(1∶1,V/V)超声提取,凝胶渗透色谱(GPC)净化,用带ECD检测器的气相色谱仪测定。高效氯氰菊酯的最低检出量为1.0×10-12g,在棉籽中的最低检出浓度为0.01 mg/kg,平均回收率在84.5%~97.4%之间,相对标准偏差为1.4%~5.9%,符合农药残留检测的要求。  相似文献   

4.
易保在苹果和土壤中的残留动态研究   总被引:2,自引:0,他引:2  
在北京市海淀区进行了易保68.75%水分散粒剂在苹果上的残留动态和最终残留试验,用HPLC测定了其有效成分恶唑菌酮的残留量。恶唑菌酮的最低检出量为2.0×10-10g,在苹果中的最低检出浓度为0.004 mg.kg-1,在土壤中的最低检出浓度为0.002 mg.kg-1。在苹果中的平均回收率为91.5%~92.3%,变异系数为0.13%~3.18%,在土壤中的平均回收率为89.7%~100.6%,变异系数为2.10%~10.10%,符合农药残留分析的要求。结果表明,恶唑菌酮在苹果上的半衰期为11.6 d,在土壤中的半衰期为6.8 d。按推荐剂量和推荐剂量的两倍施用的情况下,恶唑菌酮在苹果中的残留量为0.048~0.406 mg.kg-1,土壤中的残留量为0.057~0.539 mg.kg-1,均低于最大残留限量。  相似文献   

5.
在北京市海淀区进行了易保68.75%水分散粒剂在苹果上的残留动态和最终残留试验,用HPLC测定了其有效成分恶唑菌酮的残留量。恶唑菌酮的最低检出量为2.0×10-10g,在苹果中的最低检出浓度为0.004 mg.kg-1,在土壤中的最低检出浓度为0.002 mg.kg-1。在苹果中的平均回收率为91.5%~92.3%,变异系数为0.13%~3.18%,在土壤中的平均回收率为89.7%~100.6%,变异系数为2.10%~10.10%,符合农药残留分析的要求。结果表明,恶唑菌酮在苹果上的半衰期为11.6 d,在土壤中的半衰期为6.8 d。按推荐剂量和推荐剂量的两倍施用的情况下,恶唑菌酮在苹果中的残留量为0.048~0.406 mg.kg-1,土壤中的残留量为0.057~0.539 mg.kg-1,均低于最大残留限量。  相似文献   

6.
通过2年3地动态消解及最终残留试验,研究80%克菌丹水分散粒剂在苹果及土壤中的降解情况,并通过气相色谱法对苹果及土壤中克菌丹残留量进行测定。结果表明,动态试验中克菌丹在苹果和土壤中降解速率较快,均符合一级动力学方程,克菌丹在苹果和土壤中降解的半衰期分别为7.3~12.6 d、9.8~17.8 d,且动态及终残试验中克菌丹残留量均低于最大残留限量15 mg/kg。在苹果种植中,其推荐剂量为800倍稀释液(有效成分4 000 mg/kg),最多施药3次。  相似文献   

7.
研究了4%杀螟丹粒剂在水稻植株、稻米、稻壳、稻田水和土壤中的残留及消解动态.采用石油醚提取,液液分配净化,气相色谱(GC-ECD)测定,结果表明:杀螟丹在稻田土壤中的平均添加回收率为93.25%~106.85%,相对标准偏差为5.99%~8.17%;在水样中的平均添加回收率为95.43%~103.68%,相对标准偏差为2.64%~8.48%;在稻杆中的平均添加回收率为90.81%~100.8%,相对标准偏差为3.00%~6.89%;在稻壳中的平均添加回收率96.77%~101.09%,相对标准偏差2.75%~6.32%;在稻米中的平均添加回收率为92.89%~97.71%,相对标准偏差为2.98%~8.09%.杀螟丹的最低检出量为1.0×10~(-11)g,土样、水样中杀螟丹的最低检出浓度分别为0.001 mg/kg和0.000 25 mg/L,在水稻稻杆、稻米和稻壳中的最低榆出浓度均为0.005 mg/kg.湖南长沙和云南昆明两地残留消解动态试验结果表明:杀螟丹在稻田土壤、水样和植株中的半衰期分别为:6.8~9.9 d,7.4~7.8 d和7.6~8.9 d.  相似文献   

8.
采用硫化钠和甲醇的混合溶液碱解,乙酸乙酯萃取,建立烟草中噻菌铜残留的反相高效液相色谱(HPLC-PDA)测定方法。结果表明,噻菌铜在烟草中的最低检出浓度为0.1 mg.kg-1。当添加浓度为0.1~5.0mg.kg-1时,回收率为80%~101%,相对标准偏差为1.3%~5.8%。  相似文献   

9.
啶虫脒在梨中的残留检测与消解动态研究   总被引:1,自引:0,他引:1  
研究了啶虫脒在梨中的残留分析方法及消解动态和最终残留量。啶虫脒经乙酸乙酯∶丙酮(1∶1,V/V)提取,用弗罗里硅土净化、浓缩、定容后,用带ECD检测器的气相色谱仪进行测定。啶虫脒最低检出量为1.0×10^-12 g,最低检出浓度为0.001 mg/kg,回收率在82.1%~99.7%之间,相对标准偏差为2.5%~4.1%。啶虫脒在梨中的消解半衰期分别为2.8 d(滨州)和4.8 d(烟台),属于易降解农药(T1/2〈30 d)。啶虫脒在梨中的最终残留量分别为0.010、0.028 mg/kg(烟台)和0.025、0.045 mg/kg(滨州)。  相似文献   

10.
建立GC-NPD测定苯醚甲环唑和嘧菌酯在香蕉和土壤中残留的分析方法。样品经乙腈提取,弗罗里硅土小柱净化,洗脱液为正己烷∶丙酮=9∶1。结果表明:该方法可以同时检测出香蕉和土壤中两种物质的含量,两种物质在0.05~2μg/mL的范围内有良好的线性关系,苯醚甲环唑和嘧菌酯的线性相关系数分别为0.997 3和0.999 4。在香蕉果、肉和土中的最低检测浓度皆为0.05 mg/kg,最小检出量为0.05 ng,在不同样品中的平均回收率分别为85.4%~107.4%和93.4%~106.3%,相对标准偏差分别为1.67%~7.80%和1.40%~5.84%。  相似文献   

11.
采用高效液相色谱分析技术测定了噻螨酮在桃中的残留动态和最终残留。噻螨酮的最低检出量为1 ng,最低检出浓度为0.05 mg/kg,在桃中的平均回收率为82.4%~97.5%,相对标准偏差为3.00%~5.97%,符合农药残留分析的要求。试验结果表明:噻螨酮在桃中的半衰期为6.8 d,按高浓度药液施药7 d后桃中最高残留量为0.79 mg/kg。  相似文献   

12.
研究并建立了醚磺隆(cinosulfuron)在水稻植株、稻米、土壤及田水中的残留分析方法。水稻植株和稻米样品以甲醇提取,经石油醚、二氯甲烷液液分配,固相萃取(SPE)净化,高效液相色谱(HPLC)测定;土壤样品经甲醇提取后,高效液相色谱(HPLC)测定;田水样品经固相萃取(SPE)净化,高效液相色谱(HPLC)测定。醚磺隆的最小检测量为2 ng,水稻植株和稻米中醚磺隆最小检测浓度为0.04 mg.kg-1;土壤中醚磺隆最小检测浓度为0.02mg.kg-1;田水中醚磺隆的最小检测浓度为0.04 mg.L-1。添加浓度0.04~0.2 mg.kg-1时,水稻植株中醚磺隆的回收率为98.1%~105.9%,变异系数3.9%~4.4%;稻米中醚磺隆的回收率为87.8%~98.8%,变异系数2.9%~6.6%;添加浓度0.02~0.2 mg.kg-1时,土壤中醚磺隆的回收率为87.9%~100.5%,变异系数2.5%~7.3%;添加浓度0.04~0.2 mg.L-1时,田水中醚磺隆的回收率为86.2%~107.9%,变异系数为3.3%~8.6%。该方法的准确性、精确性以及灵敏度均符合农药残留分析的要求。  相似文献   

13.
[目的]为甘薯和土壤中灭线磷的残留检测提供分析方法。[方法]样品经丙酮提取,提取液用石油醚液-液分配,中性氧化铝(含活性炭)柱层析净化,气相色谱测定。[结果]灭线磷的最小检测量为1×10^-12g,最低检测浓度为0.2 μg/kg。添加浓度在0.01~1.0mg/kg时,甘薯植株中灭线磷的添加回收率为88.3%~91.1%,变异系数为4.5%~9.3%;土壤中的添加回收率为85.2%~88.3%,变异系数为7.0%~7.5%;甘薯块茎中的添加回收率为82.5%~88.0%,变异系数为4.8%~7.1%。[结论]该方法的准确性、精确性和灵敏度均达到农药残留分析的要求。  相似文献   

14.
样品经乙酸乙酯-二甲基甲酰胺(20∶1,V/V)混合液提取后,采用高效液相色谱法(配紫外检测器)建立了桃和土壤中叶枯唑残留检测方法。结果表明,叶枯唑添加量为0.1、0.5、1.0 mg/kg时,桃和土壤中的叶枯唑回收率在79.0~97.0,相对标准偏差在1.6%~6.8%;叶枯唑在桃和土壤中的最小检出量均为0.5×10-9g,最低检测浓度均为0.1 mg/kg,满足农药残留分析要求。  相似文献   

15.
气相色谱法测定玉米中的高效氯氰菊酯残留   总被引:2,自引:1,他引:1  
研究了玉米植株、鲜食玉米籽粒和玉米粉中高效氯氰菊酯残留分析方法。植株和鲜食籽粒中高效氯氰菊酯经丙酮:石油醚(体积比1:1)高速匀浆提取;玉米粉中的高效氯氰菊酯用丙酮超声提取;提取物用弗罗里硅土+氧化铝净化;用带ECD检测器的气相色谱仪进行测定。高效氯氰菊酯的最低检出量为1.0×10-12 g,在植株、玉米粉和鲜食籽粒中的最低检出浓度为0.001mg/kg,平均回收率在94.2%~104%之间,相对标准偏差为2.3%~7.0%,符合残留分析要求。  相似文献   

16.
梨中烯唑醇残留分析方法研究   总被引:2,自引:0,他引:2  
本文阐述了烯唑醇在梨中的残留分析方法,采用丙酮提取,硅胶柱层析净化,气相色谱测定,烯唑醇的最低检测量为2×10^-11g。烯唑醇的添加回收率(0.01~0.5mg/kg)为86.13%~98.12%,变异系数分别为1.36%~6.88%。该方法的准确性、灵敏度均达到农药残留分析的要求。  相似文献   

17.
氯氟吡氧乙酸在小麦及土壤中残留的分析方法   总被引:1,自引:0,他引:1  
采用氢氧化钠-甲醇溶液提取,二氯甲烷萃取,定量甲醇、浓H2SO4条件下酯化,气相色谱法测定小麦及土壤中的氯氟吡氧乙酸。氯氟吡氧乙酸质量浓度在0.01~1.0 mg.L-1之间线性关系良好。在添加浓度0.01~0.8 mg.kg-1下,植株、土壤和籽粒中氯氟吡氧乙酸的平均回收率分别为72.3%~86.7%、83.6%~95.8%和77.7%~87.3%,变异系数分别为3.02%~8.59%、2.87%~8.46%和2.75%~7.61%。氯氟吡氧乙酸的最小检测量为1.0×10-11g,在植株、土壤和籽粒中最低检出浓度均为0.01 mg.kg-1。该方法的准确性、精确性和灵敏度均满足农药残留分析的要求。  相似文献   

18.
黄瓜和甜瓜中噻苯隆残留量检测方法研究   总被引:1,自引:0,他引:1  
陆道训 《安徽农业科学》2014,42(36):13070-13071,13118
[目的]建立高效液相色谱法测定黄瓜和甜瓜中噻苯隆残留量的方法.[方法]样品经匀浆处理后用乙腈提取,弗罗里硅土柱层析净化,用高效液相色谱仪测定.[结果]该方法的最低检测浓度为0.01 mg/kg,在0.01 ~0.50 mg/kg加标浓度范围内方法的回收率在75.7% ~91.1%,变异系数0.54% ~8.02%.[结论]该方法具有较高的灵敏度,其准确度和精密度均可满足农药残留分析要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号