首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil evaporation from drip-irrigated olive orchards   总被引:1,自引:3,他引:1  
Evaporation from the soil (Es) in the areas wetted by emitters under drip irrigation was characterised in the semi-arid, Mediterranean climate of Córdoba (Spain). A sharp discontinuity in Es was observed at the boundary of the wet zone, with values decreasing sharply in the surrounding dry area. A single mean value of evaporation from the wet zone (Esw) was determined using microlysimeters. Evaporation from the wet zones of two drip-irrigated olive orchards was clearly higher than the corresponding values of Es calculated assuming complete and uniform soil wetting (Eso), demonstrating the occurrence of micro-scale advection in olive orchards under drip irrigation. Measurements over several days showed that the increase in evaporation due to microadvection was roughly constant regardless of location and of the fraction of incident radiation reaching the soil. Thus, daily evaporation from wet drip-irrigated soil areas (Esw) could be estimated as the sum of Eso and an additive microadvective term (TMA). To quantify the microadvective effects, we developed variable local advective conditions by locating a single emitter in the centre of a 1.5 ha bare plot which was subjected to drying cycles. Esw increased relative to Eso as the soil dried and advective heat transfer increased evaporation from the area wetted by the emitter. The microadvective effects on Es were quantified using a microadvective coefficient (Ksw), defined as the ratio between Esw and Eso. A model was then developed to calculate TMA for different environmental and orchard conditions. The model was validated by comparing measured Esw against simulated evaporation (Eso+TMA) for different soil positions and environmental conditions in two drip-irrigated olive orchards. The mean absolute error of the prediction was 0.53 mm day-1, which represents about a 7% error in evaporation. The model was used to evaluate the relative importance of seasonal Es losses during an irrigation season under Córdoba conditions. Evaporation from the emitter zones (Esw) represented a fraction of seasonal orchard evapotranspiration (ET), which ranged from 4% to 12% for a mature (36% ground cover) and from 18% to 43% of ET for a young orchard (5% ground cover), depending on the fraction of soil surface wetted by the emitters. Estimated potential water savings by shifting from surface to subsurface drip ranged from 18 to 58 mm in a mature orchard and from 28 to 93 mm in a young orchard, assuming daily drip applications and absence of rainfall during the irrigation season.  相似文献   

2.
Water requirements of olive orchards are difficult to calculate, since they are influenced by heterogeneous factors such as age, planting density and irrigation systems. Here we propose a model of olive water requirements, capable of separately calculating transpiration (E p), intercepted rainfall evaporation (E pd) and soil evaporation (E s) from the wet and dry fraction of the soil surface under localized irrigation. The model accounts for the effects of canopy dimension on E p and of the wetted soil surface fraction on E s. The model was tested against actual measurements of olive evapotranspiration (ET) obtained by the eddy covariance technique in a developing olive orchard during 3 years. The predicted ET and crop coefficients showed good agreement with the measured data. The model was then used to simulate the average water requirements of two mature orchards using 20-year meteorological datasets of Cordoba (Spain) and Fresno (CA, USA). Average annual ET of a 300 trees ha−1 orchard at Cordoba was 1,025 mm, while the same orchard at Fresno had an average ET of 927 mm. Transpiration losses were 602 mm at Cordoba and 612 mm at Fresno. Evaporation from the soil can have a large effect on olive ET; thus, olive crop coefficients (K c) are very sensitive to the rainfall regime.  相似文献   

3.
Efficient irrigation regimes are becoming increasingly important in commercial orchards. Accurate measurements of the components of the water balance equation in olive orchards are required for optimising water management and for validating models related to the water balance in orchards and to crop water consumption. The aim of this work was to determine the components of the water balance in an olive orchard with mature ‘Manzanilla’ olive trees under three water treatments: treatment I, trees irrigated daily to supply crop water demand; treatment D, trees irrigated three times during the dry season, receiving a total of about 30% of the irrigation amount in treatment I; and treatment R, rainfed trees. The relationships between soil water content and soil hydraulic conductivity and between soil water content and soil matric potential were determined at different depths in situ at different locations in the orchard in order to estimate the rate of water lost by drainage. The average size and shape of the wet bulb under the dripper was simulated using the Philip’s theory. The results were validated for a 3 l h−1 dripper in the orchard. The water amounts supplied to the I trees during the irrigation seasons of 1997 and 1998 were calculated based on the actual rainfall, the potential evapotranspiration in the area and the reduction coefficients determined previously for the particular orchard conditions. The calculated irrigation needs were 418 mm in 1997 and 389 mm in 1998. With these water supplies, the values of soil water content in the wet bulbs remained constant during the two dry seasons. The water losses by drainage estimated for the irrigation periods of 1997 and 1998 were 61 and 51 mm, respectively. These low values of water loss indicate that the irrigation amounts applied were adequate. For the hydrological year 1997–1998, the crop evapotranspiration was 653 mm in treatment I, 405 mm in treatment D and 378 mm in treatment R. Water losses by drainage were 119 mm in treatment I, 81 mm in treatment D and 4 mm in treatment R. The estimated water runoff was 345 mm in treatments I and R, and 348 mm in treatment D. These high values were due to heavy rainfall recorded in winter. The total rainfall during the hydrological year was 730 mm, about 1.4 times the average in the area. The simulated dimensions of the wet bulb given by the model based on the Philip’s theory showed a good agreement with the values measured. In a period in which the reference evapotranspiration was 7.9 mm per day, estimations of tree transpiration from sap flow measurements, and of evaporation from the soil surface from a relationship obtained for the orchard conditions, yielded an average daily evapotranspiration of 70 l for one I tree, and 48 l for one R tree.  相似文献   

4.
The main goal of this research was to evaluate the potential of the dual approach of FAO-56 for estimating actual crop evapotranspiration (AET) and its components (crop transpiration and soil evaporation) of an olive (Olea europaea L.) orchard in the semi-arid region of Tensift-basin (central of Morocco). Two years (2003 and 2004) of continuous measurements of AET with the eddy-covariance technique were used to test the performance of the model. The results showed that, by using the local values of basal crop coefficients, the approach simulates reasonably well AET over two growing seasons. The Root Mean Square Error (RMSE) between measured and simulated AET values during 2003 and 2004 were respectively about 0.54 and 0.71 mm per day. The basal crop coefficient (Kcb) value obtained for the olive orchard was similar in both seasons with an average of 0.54. This value was lower than that suggested by the FAO-56 (0.62). Similarly, the single approach of FAO-56 has been tested in the previous work (Er-Raki et al., 2008) over the same study site and it has been shown that this approach also simulates correctly AET when using the local crop coefficient and under no stress conditions.Since the dual approach predicts separately soil evaporation and plant transpiration, an attempt was made to compare the simulated components of AET with measurements obtained through a combination of eddy covariance and scaled-up sap flow measurements. The results showed that the model gives an acceptable estimate of plant transpiration and soil evaporation. The associated RMSE of plant transpiration and soil evaporation were 0.59 and 0.73 mm per day, respectively.Additionally, the irrigation efficiency was investigated by comparing the irrigation scheduling design used by the farmer to those recommended by the FAO model. It was found that although the amount of irrigation applied by the farmer (800 mm) during the growing season of olives was twice that recommended one by the FAO model (411 mm), the vegetation suffered from water stress during the summer. Such behaviour can be explained by inadequate distribution of irrigation. Consequently, the FAO model can be considered as a potentially useful tool for planning irrigation schedules on an operational basis.  相似文献   

5.
为了探明盐渍土水盐分布和土壤蒸发特性对掺沙的响应特征,以山东省滨州市无棣县"渤海粮仓"科技示范区土壤为研究对象,分析了不同掺沙量(沙-土质量比为0,10%,30%,50%和70%,分别以处理CK,T1,T2,T3和T4表示)对盐渍土水盐运移特征和土壤蒸发的影响.结果表明,0~5000 min,处理T1和T2表层0~1 ...  相似文献   

6.
Intensification of olive cultivation by shifting a tree crop that was traditionally rain fed to irrigated conditions, calls for improved knowledge of tree water requirements as an input for precise irrigation scheduling. Because olive is an evergreen tree crop grown in areas of substantial rainfall, the estimation of crop evapotranspiration (ET) of orchards that vary widely in canopy cover, should be preferably partitioned into its evaporation and transpiration components. A simple, functional method to estimate olive ET using crop coefficients (K c=ET/ET0) based on a minimum of parameters is preferred for practical purposes. We developed functional relationships for calculating the crop coefficient, K c, for a given month of the year in any type of olive orchard, and thus its water requirements once the reference ET (ET0) is known. The method calculates the monthly K c as the sum of four components: tree transpiration (K p), direct evaporation of the water intercepted by the canopy (K pd), evaporation from the soil (K s1) and evaporation from the areas wetted by the emitters (K s2). The expression used to calculate K p requires knowledge of tree density and canopy volume. Other parameters needed for the calculation of the K c’s include the ET0, the fraction of the soil surface wetted by the emitters and irrigation interval. The functional equations for K p, K pd, K s1 and K s2 were fitted to mean monthly values obtained by averaging 20-year outputs of the daily time step model of Testi et al. (this issue), that was used to simulate 124 different orchard scenarios.  相似文献   

7.
An experiment was performed in a low-density olive orchard (69 trees ha−1) to study the recovery from water stress of olive trees under different irrigation managements. The effect of water stress on oil quality was also examined. The trees were subjected to one of four irrigation treatments: rain-fed conditions, irrigation with either 100% or 125% of the crop evapotranspiration (ETc) level, or a deficit treatment in which only 60 mm of water were provided (at different times depending on the weather and phenological stage of the crop). The irrigation water in the deficit treatment was some 43% of the water applied in the 125% treatment. Plant water relations were determined periodically by measuring the water potential of covered leaves and the stomatal conductance at midday. The trees in the water deficit and rain-fed treatments rapidly recovered from water stress after receiving irrigation water or autumn rainwater, respectively, reaching the condition of the fully irrigated trees. However, stomatal conductance took longer to recover. Recovery at mid-summer in the deficit treatment was related to the amount of water in the soil; in autumn, however, this relationship was not so clear in rain-fed trees. The effect on oil quality was recorded in terms of the total concentration of phenolic compounds (TP). This was strongly related to the water stress integral, suggesting that the effect of irrigation on this variable occurs year-round and not just during the oil accumulation phase. Thus, even with low doses of water it should be possible to significantly reduce the TP concentration. Since recovery from water stress is rapid when irrigation is concentrated in the second half of summer, such an irrigation regimen might allow efficient use of the limited amounts of water available in central Spain.  相似文献   

8.
To monitor seasonal water consumption of agricultural fields at large scale, spatially averaged surface fluxes of sensible heat (H) and latent heat (LvE) are required. The scintillation method is shown to be a promising device for obtaining the area-averaged sensible heat fluxes, on a scale of up to 10 km. These fluxes, when combined with a simple available energy model, can be used to derive area-averaged latent heat fluxes. For this purpose, a Large Aperture Scintillometer (LAS) was operated continuously for more than one year over a tall and sparse irrigated oliveyard located in south-central Marrakesh (Morocco). Due to the flood irrigation method used in the site, which induces irregular pattern of soil moisture both in space and time, the comparison between scintillometer-based estimates of daily sensible heat flux (HLAS) and those measured by the classical eddy covariance (EC) method (HEC) showed a large scatter during the irrigation events, while a good correspondence was found during homogenous conditions (dry conditions and days following the rain events). We found, that combining a simple available energy model and the LAS measurements, the latent heat can be reliably predicted at large scale in spite of the large scatter (R2 = 0.72 and RMSE = 18.25 W m−2) that is obtained when comparing the LAS against the EC. This scatter is explained by different factors: the difference in terms of the source areas of the LAS and EC, the closure failure of the energy balance of the EC, and the error in available energy estimates. Additionally, the irrigation efficiency was investigated by comparing measured seasonal evapotranspiration values to those recommended by the FAO. It was found that the visual observation of the physical conditions of the plant is not sufficient to efficiently manage the irrigation, a large quantity of water is lost (≈37% of total irrigation). Consequently, the LAS can be considered as a potentially useful tool to monitor the water consumption in complex conditions.  相似文献   

9.
The emergence of intensively managed olive plantations in arid, northwestern Argentina requires the efficient use of irrigation water. We evaluated whole tree daily transpiration and soil evaporation throughout the year to better understand the relative importance of these water use components and to calculate actual crop coefficient (Kc) values. Plots in a 7-year-old ‘Manzanilla fina’ olive grove with 23% canopy cover were either moderately (MI) or highly irrigated (HI) using the FAO method where potential evapotranspiration over grass is multiplied by a given Kc and a coefficient of reduction (Kr). The Kc values employed for the MI and HI treatments were 0.5 and 1.1, respectively, and the Kr was 0.46. Transpiration was estimated by measuring main trunk sap flow using the heat balance method for three trees per treatment. Soil evaporation was measured using six microlysimeters in one plot per treatment. Both parameters were evaluated for 7-10 consecutive days in the fall, winter, mid-spring, summer, and early fall of 2006-2007. Maximum soil evaporation was observed in the summer when maximum demand was combined with maximum surface wetted by the drips and evaporation from the inter-row occurred due to rainfall. Similarly, maximum daily transpiration was observed in mid-spring and summer. Transpiration of MI trees was 30% lower than in HI trees during the summer period. However, this difference in transpiration disappeared when values were adjusted for total leaf area per tree because leaf area was 28% less in the MI trees. Transpiration represented about 70-80% of total crop evapotranspiration (ETc) except when soil evaporation increased due to rainfall events or over-irrigation occurred. We found that daily transpiration per unit leaf area had a positive linear relationship with daily potential evapotranspiration (r2 = 0.84) when considering both treatments together. But, a strong relationship was also observed between transpiration per unit leaf area and mean air temperature (r2 = 0.93). Thus, it is possible to predict optimum irrigation requirements for olive groves if tree leaf area and temperature are known. Calculated crop coefficients during the growing season based on the transpiration and soil evaporation values were about 0.65-0.70 and 0.85-0.90 for the MI and HI treatments, respectively.  相似文献   

10.
利用秸秆粉碎还田配施化肥(S)和常规施肥(R)2种措施下的大田试验数据,对比分析了2种措施下冬小麦全生育期内棵间蒸发量的变化,棵间蒸发量占蒸发蒸腾量的比例与叶面积指数的关系以及土壤含水量与叶片含水量的关系.结果表明:S,R 2种措施下冬小麦全生育内的棵间蒸发量变化均呈现为"大—小—大—小—大"的"W"型变化规律,相比较R措施,S措施可有效抑制冬小麦棵间蒸发,全生育期内平均抑制蒸发率为9.96%,抑制蒸发率随着生育期变化,呈现出"高—低—高—低"的趋势.同时冬小麦全生育期内S措施下的叶面积指数均高于R措施下的,棵间蒸发量占蒸发蒸腾量的比例均小于R措施下的,可见,S措施有利于叶片生长,并可减小棵间蒸发量占蒸发蒸腾量的比例.冬小麦封行后,通过监测40~60 cm和60~80 cm土层的土壤含水量可反映S,R 2种措施下冬小麦的水分状况.  相似文献   

11.
The aim of this study is to use the FAO-56-based single crop coefficient approach to estimate actual evapotranspiration (AET) of an olive (Olea europaea L.) orchard in the Mediterranean semi arid region of Tensift-basin (central Morocco) during two consecutive growing seasons (2003 and 2004). The results showed that using crop coefficients Kc suggested by FAO-56 method yielded an AET overestimation by about 18% when compared against eddy covariance measurements. Therefore, the determination of appropriate Kc values is required to accurately estimate crop water requirement of olive orchards in such water scarce area.In this study, after applying the Kc values derived over olive orchard in Spain by Pastor and Orgaz [Pastor, M., Orgaz, F., 1994. Riego deficitario del olivar: los programas de recorte de riego en olivar. Agricultura 746, 768-776 (in Spanish)], a better agreement was observed between measured and simulated AET. The root mean square error (RMSE) was reduced by about 28%, from 0.80 to 0.61 mm/day for 2003 and from 0.93 to 0.69 mm/day for 2004. The used Kc values of olives at three crop growth stages (initial, mid-season and maturity) were 0.65, 0.45, and 0.65, respectively, the mid-season stage value being considerably lower than that suggested by the FAO-56.Despite these improvements in the performance of AET simulations, some discrepancies between measured and simulated AET remained, especially when water stress occurred. These discrepancies were ascribed to the estimation of the stress coefficient Kc To overcome this problem, we assimilated into FAO-56 single source model estimates of AET derived from a simple energy balance model along with thermal infrared observations. The latter were collected with the ASTER sensor in 2003 and from ground-based measurements in 2004. The results showed a clear improvement for FAO-56 performances after assimilation: for 2003 and 2004, the RMSE values between observations and simulations, respectively, dropped down from 0.61 to 0.52 and from 0.69 to 0.46 (corresponding to relative reductions of 15 and 40%, respectively).  相似文献   

12.
通过室内土柱模拟培养试验,对比研究了秸秆粉碎、氨化及与无机土壤改良剂混合配施后对土壤蒸发特性及秸秆分解速率的影响.结果表明:秸秆施入土壤后明显提高了土壤的累积蒸发量,粉碎氨化秸秆具有降低累积蒸发量的作用,其与无机土壤改良剂混合配施后,降低土壤蒸发强度作用显著,提高了土壤的耐旱性.长秸秆和粉碎秸秆单独施入土壤后明显提高了土壤的蒸发失水比,粉碎氨化秸秆能持续降低土壤的蒸发失水比,当其与土壤改良剂混合后抑制土壤无效蒸发作用周期延长.秸秆施入土壤后的分解高峰主要发生在30 d内.短期内秸秆粉碎程度对其分解速率作用不明显,粉碎氨化秸秆提高秸秆分解率效果显著.土壤耗水特征各指标累积蒸发量Ec、蒸发速率a·b、蒸发失水比pwl各指标之间相关关系具有统计学意义,能较好地表征土壤蒸发特性.  相似文献   

13.
不同覆盖模式对土壤水分蒸发的影响   总被引:1,自引:0,他引:1  
为了揭示不同覆盖模式抑制土壤水分蒸发的效果,通过模拟试验,对不同覆盖模式抑制土壤水分蒸发的效果进行了分析.试验设置无覆盖(CK)、覆砂(S)、覆砂+覆膜(SM)、覆秸秆+覆膜(JM)和覆秸秆+覆砂(JS)5种模式.结果表明:土壤表层不同覆盖处理的土壤日蒸发量不同,在蒸发初期,土壤水分蒸发量从大到小依次为CK,JS,JM,S,SM,之后基本保持CK,JS,S,SM,JM的变化趋势.当有降雨发生时,土壤水分蒸发量从大到小由CK,JM,SM,JS,S变为CK,JS,S,SM,JM的趋势;土壤表层的不同覆盖处理可有效减少土壤水分的蒸发,CK,JS,JM,S,SM处理的土壤水分累积蒸发量分别为1823.6,712.2,473.3,450.6,375.1 g,与对照相比,CK,JS,JM,S,SM处理的土壤水分累积蒸发量分别减少了60.9%,74.0%,75.3%,79.4%;在整个蒸发过程中,不同覆盖模式下土壤水分累积蒸发量与时间的关系符合W=atb,综合分析可知,覆砂(S)处理是最符合试验区域的覆盖模式.  相似文献   

14.
Olive farming on sloping land in southern Europe is facing multiple challenges and it is reasonable to believe that farmers will opt for the abandonment of some systems and intensification or change to organic production of other systems. The issues at stake surpass financial farm viability and two EU policy instruments - cross-compliance and agri-environmental measures (AEM) - are available to address environmental objectives. This paper explores how cross-compliance and AEM policy options may lead to shifts in olive production systems and their social and environmental effects in Trás-os-Montes, NE Portugal over 25 years under two sets of conditions of uncertainty: decision-making by land users and market scenarios. Uncertainty in decision-making is addressed by employing five alternative goal programming models. The models include Linear Programming (LP), Weighted Goal Programming (WGP) and MINMAX Goal Programming (MINMAX GP), the GP variants of which are moreover formulated from a societal (S) and farmer (F) perspective. Uncertainty in market prospects is addressed by projecting olive oil and labour prices and trends in farm subsidies, distinguishing four price combinations in market scenarios. The models were validated by their capability to reproduce the initial configuration of olive production systems. Six policy options are evaluated under the complete ranges of uncertainty factors in a total of 6 × 5 × 4 = 120 model runs. Results show overall large effects of farmer decision-making and market scenarios. The cross-compliance and AEM policy instruments have an unequivocal effect on environmental performance and help to maintain work in rural areas. However, farmer income levels are insensitive to the policies, all work is absorbed by family labour and important environmental issues linked to more intensive systems such as pollution are not addressed. In a case study with the WGP (F) model which best reproduced the initial configuration of production systems, cross-compliance was moreover found to burden farmers under adverse market conditions, while AEM contributed to farmer’s objectives under favourable market conditions. A solution would be to focus cross-compliance regulations on intensive systems and offer appropriate AEM for traditional or abandoned orchards. Both policy instruments proved effective, but there is scope for removing substantial overlap between them.  相似文献   

15.
A surface energy balance model (SEB) was extended by Lagos et al. Irrig Sci 28:51–64 (2009) to estimate evapotranspiration (ET) from variable canopy cover and evaporation from residue-covered or bare soil systems. The model estimates latent, sensible, and soil heat fluxes and provides a method to partition evapotranspiration into soil/residue evaporation and plant transpiration. The objective of this work was to perform a sensitivity analysis of model parameters and evaluate the performance of the proposed model to estimate ET during the growing and non-growing season of maize (Zea Mays L.) and soybeans (Glycine max) in eastern Nebraska. Results were compared with measured data from three eddy covariance systems under irrigated and rain-fed conditions. Sensitivity analysis of model parameters showed that simulated ET was most sensitive to changes in surface canopy resistance, soil surface resistance, and residue surface resistance. Comparison between hourly estimated ET and measurements made in soybean and maize fields provided support for the validity of the surface energy balance model. For growing season’s estimates, Nash–Sutcliffe coefficients ranged from 0.81 to 0.92 and the root mean square error (RMSE) varied from 33.0 to 48.3 W m?2. After canopy closure (i.e., after leaf area index (LAI = 4) until harvest), Nash–Sutcliffe coefficients ranged from 0.86 to 0.95 and RMSE varied from 22.6 to 40.5 W m?2. Performance prior to canopy closure was less accurate. Overall, the evaluation of the SEB model during this study was satisfactory.  相似文献   

16.
Estimating spatial mean soil water contents from point-scale measurements is important to improve soil water management in sloping land of semiarid areas. Temporal stability analysis, as a statistical technique to estimate soil water content, is an effective tool in terms of facilitating the upscaling estimation of mean values. The objective of this study was to examine temporal stability of soil water profiles (0–20, 20–40, 40–60 and 0–60 cm) in sloping jujube (Zizyphus jujuba) orchards and to estimate field mean root-zone soil water based on temporal stability analysis in the Yuanzegou catchment of the Chinese Loess Plateau, using soil water observations under both dry and wet soil conditions. The results showed that different time-stable locations were identified for different depths and the temporal stability of soil water content in 20–40 cm was significantly (P < 0.05) weaker than that in other depths. Moreover, these time-stable locations had relatively high clay contents, relatively mild slopes and relatively planar surfaces compared to the corresponding field means. Statistical analysis revealed that the temporal stability of root zone soil water (0–60 cm) was higher in either dry or wet season than that including both, and soil water exhibited very low temporal stability during the transition period from dry to wet. Based on the temporal stability analysis, field mean soil water contents were estimated reasonably (R2 from 0.9560 to 0.9873) from the point measurements of these time-stable locations. Since the terrains in this study are typical in the hilly regions of the Loess Plateau, the results presented here should improve soil water management in sloping orchards in the Loess Plateau.  相似文献   

17.
The losses of water by evapotranspiration and evaporation from soil were investigated during two seasons from wheat and lupin crops sown at two times. Evapotranspiration was measured using ventilated chambers and microlysimeters were used within the chambers to measure evaporation from the soil surface. These techniques allowed the partitioning of evapotranspiration into its two components. In the early part of the season, evaporation from the soil surface was greatest beneath late-sown crops. Larger canopies, associated with early sowing, reduced evaporation during the energy-dependent first stage. The greater losses beneath late-sown crops were not sustained as surface soil water contents declined, decreasing the influence of canopy area on evaporation. Early sowing may increase evapotranspiration early in the season and thereby decrease the risk of drainage losses contributing to groundwater recharge. However, the magnitude of the hydrological advantages from early sowing is likely to vary each year according to seasonal climatic conditions.  相似文献   

18.
19.
盐渍土区潜水蒸发机理、特性及其计算方法的研究,对防治土壤盐碱化、地下水资源评价及农田水分管理具有重要意义.基于潜水蒸发的最新国内外研究成果,提出了当前在潜水蒸发研究方面的薄弱之处:即以往有关潜水蒸发的研究较多集中于其常规影响因素,且大多是对裸土条件下潜水蒸发特性及其计算进行研究,而对种植作物、土表覆膜和特殊土壤等条件下潜水蒸发问题的认识和研究较为不足.根据我国干旱地区土壤特性和种植模式,分别对有无作物种植、土表覆膜和盐渍土壤等3种条件下的潜水蒸发特性及计算方法进行了较为详细地阐述和评价,并就目前研究中存在的不足和未来亟待深入研究的问题进行了探讨,认为在今后的研究工作中,应把潜水蒸发对作物耗水的补给比例、不同地区适宜潜水埋深和生态地下水位、潜水蒸发昼夜变化特性,以及盐碱地潜水蒸发与土壤积盐的数值模拟等内容,作为研究重点.  相似文献   

20.
为了提高黄土高原雨养区谷子的降水利用效率,该文利用中型称重式蒸渗仪和微型蒸渗仪并结合谷子整个生育期内生物指标的动态变化过程,对神木六道沟流域谷子棵间蒸发与田间蒸散规律进行了研究。结果表明,Logistic模型可以很好地模拟谷子株高和盖度的变化,模型计算值与实测值的相关系数均达到0.99。神木六道沟流域的降水总量和谷子的耗水量基本持平,在谷子抽穗期到灌浆期出现了阶段性的缺水。在谷子整个生育期内谷子棵间蒸发占总耗水量的44%。叶面积指数、0~10 cm土层土壤含水率与棵间蒸发与田间蒸散比值间均呈指数函数关系,其决定系数均在0.8以上,且呈现出极显著的相关性。研究为当地合理利用有限水资源和提高水分利用效率提供理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号