首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuronal elements of the vomeronasal organ (VNO) of camel were investigated immunohistochemically. PGP 9.5 labeled the receptor cells in the vomeronasal sensory epithelium, but not the supporting or basal cells. OMP stained some receptor cells, but no immunoreactive signals for OMP were detected in the non-sensory epithelium. PLCβ2 labeled scattered cells in the sensory epithelium and a larger number of cells in the non-sensory epithelium. Double labeling immunohistochemistry revealed that the PLCβ2-positive cells were surrounded by substance P-positive nerve fibers. Collectively, these data suggest that the camel VNO bears, in addition to the mature vomeronasal receptor cells, trigeminally-innervated solitary chemosensory cells which are expected to play a substantial role in the control of stimulus access to the VNO.  相似文献   

2.
Xenopus laevis has three distinctive olfactory neuroepithelia. We examined the axonal projection from each of these epithelia to the olfactory bulb by Di-I labeling, and confirmed that the Xenopus primary olfactory pathways involve the dorsal pathway from the olfactory epithelium to the dorsal region of the main olfactory bulb, the ventral pathway from the middle chamber epithelium to the ventral region of the main olfactory bulb, and the vomeronasal pathway from the vomeronasal epithelium to the accessory olfactory bulb. We next examined expression patterns of glycoconjugates in the three olfactory pathways by lectin-histochemistry using 21 biotinylated lectins. Fourteen out of 21 lectins stained the Xenopus primary olfactory system. RCA-I stained the three olfactory pathways uniformly. PHA-E stained only the dorsal pathway. LEL, STL, PNA, ECL and UEA-I stained the dorsal pathway more intensely than the ventral pathway, and among them, only UEA-I stained the vomeronasal pathway. In contrast, s-WGA, DBA, SBA, BSL-I VVA, SJA and PHA-L showed intense stainings in the ventral pathway and moderate stainings in the vomeronasal pathway, but faint or weak stainings in the dorsal pathway. These observations suggest that the ventral pathway expresses glycoconjugates shared commonly with either the dorsal or the vomeronasal pathway. In addition, from the binding patterns of the lectins with a binding specificity for N-acetylgalactosamine, glycoconjugates containing this saccharide seem to play an important role for the organization of the olfactory pathways.  相似文献   

3.
Seasonal changes in the histochemical properties of the vomeronasal and olfactory epithelia of the Japanese striped snake were examined in four seasons, viz. the reproductive, pre-hibernating, hibernating and post-hibernating seasons. In the vomeronasal and olfactory supporting cells, secretory granules were much more abundant in the hibernating season than in the other seasons. In the vomeronasal and olfactory receptor cells, the lipofuscin granules were much fewer in the post-hibernating season than in the other seasons. In histochemical studies with 21 lectins, several lectins stained the vomeronasal and olfactory epithelia (receptor cells, supporting cells and free border) more weakly in the hibernating season than in the reproductive season. However, all lectins stained both epithelia in the hibernating season after sialic acid removal in a similar manner as in the reproductive season after sialic acid removal. These lectin histochemical studies indicate that sialic acid residues in the vomeronasal and olfactory epithelia are more numerous in the hibernating season than in the reproductive season. The results suggest that during hibernation, the vomeronasal and olfactory receptor cells possibly undergo rapid cell turnover, and that during this time, the vomeronasal and olfactory epithelia are securely protected from pathogens by an innate immune defence system.  相似文献   

4.
Differential maturation of three types of olfactory organs, the olfactory epithelium (OE), the vomeronasal organ (VNO) and the septal olfactory organ of Masera (MO), was examined immunohistochemically in embryonic and newborn rats by the use of antiprotein gene product 9.5 (PGP 9.5) serum. These olfactory organs were derived in common from the olfactory placode as neuroepithelia. In the OE, PGP 9.5-immunopositive olfactory cells first appeared at 13 days of gestation. The OE maturated completely, and showed the same cytological features as in the adult at 20 days of gestation. The MO first appeared as a dense mass of PGP 9.5-immunopositive sensory cells on the most ventrocaudal part of the nasal septum at 15 days of gestation and was evidently isolated from the OE by the decrease of immunopositive cells in the intercalated epithelium between the OE and the MO at 20 days of gestation. However, even at 7 days after birth, the MO did not complete its development and contained sensory cells aggregating in the mass. The VNO was separated from the nasal cavity at 13 days of gestation as a tubular structure of a neuroepithelium including PGP 9.5-immunopositive sensory cells. These cells gradually increased in number in the sensory epithelium of the VNO and extended their dendritic processes to the free surface at 7 days after birth. These findings clarified the differential maturation of these olfactory organs. That is, the OE completes its development before birth, while the MO and VNO after birth.  相似文献   

5.
Histochemical activities of several enzymes were investigated in the olfactory epithelium (OE) and vomeronasal organ (VNO) of the golden hamster. Activities of adenosine triphosphatase, lactate dehydrogenase and succinate dehydrogenase were intense in the OE, and the sensory (VSE) and respiratory epithelium (VRE) of the VNO. The activity of acid phosphatase was intense in both the OE and the VSE, while that of non-specific esterase was intense in the VSE alone. The activity of alkaline phosphatase was detectable only in the VRE. Activities of monoamine oxidase and acetylcholine esterase were negative in all of the OE, VSE and VRE. These similarities and differences in the histochemical distribution of enzymes between OE and VSE may reflect the common olfactory function and/or functional specialization in these epithelia. On the other hand, the VRE was considerably different from the OE and VSE in the enzymatic distribution. This may reflect the non-olfactory function of this epithelium.  相似文献   

6.
With 30 figures, 3 histograms and 3 tables SUMMARY: The vomeronasal organ (VNO) is a chemosensory organ that detects environmental pheromones. The morphology of the 'non-sensory' epithelium (NSE) of the VNO and its lamina propria, as well as how it relates to ageing has received little attention. Histological, histochemical, morphometric and ultrastructural techniques were used to study the morphological structure of the rat NSE in five adult (3 months old) and five aged (2-2.5 years old) male albino rats. In adult rats, the NSE contained dark and light columnar cells with predominance of the latter. The surface of the epithelial cells was covered with microvilli and/or cilia. The lamina propria contained serous vomeronasal glands (VNGs), smooth muscles with numerous variable-sized mitochondria, vessels including lymphatic capillaries and nerve bundles. The following changes were detected in aged rats. The NSE exhibited an increase in number of dark columnar cells. Some cells revealed a prominent cell coat, dense aggregation of filaments in the luminal cytoplasm and appearance of multinucleated cells. Their surface revealed malformed configuration. Large mitochondria (2 μm), formed by fusion, were frequently observed in the smooth muscle cells of the lamina propria. Lipid droplets were frequently detected both in the VNGs acini and in the lymphatic endothelium. Ageing affected both the cells of the tissues and the extracellular matrix.  相似文献   

7.
The details of the embryonic and postnatal differentiation of the olfactory epithelium (OE) and vomeronasal organ (VNO) were examined by light and electron microscopy in the Syrian hamster. At 10 days of gestation, the nasal placode is invaginated to form the olfactory pit on either side at the rostral end of the embryo. Abundant mitotic figures are observed near the free surface of the epithelium lining the olfactory pit. At 11 days of gestation, the mass of the epithelium lining a recess is separated from the medial wall of the olfactory pit to form the VNO. At 13 days of gestation, mitotic figures become observable in the basal layer of the vomeronasal sensory epithelium (VSE) in addition to the superficial to middle layers, while in the OE mitotic figures are observed mainly in the middle to basal layer. At 1 day after birth, the OE is almost complete in differentiation. On the other hand, the VSE differentiate slowly to retain some immature properties even at 10 days after birth. These findings suggest that the olfactory function seems to be solely ascribed to the OE for a while after birth. The significance of mitotic figures are discussed in the course of development with special reference to the origin of the nasal placode from the central nervous system.  相似文献   

8.
9.
Lectins have been used in several areas of biomedicine and are particularly useful for histochemistry. Their ability to map the distributions of various kinds of cell- borne glycan, and thereby to identify particular cell populations, has allowed clarification of a number of issues in neuroscience. In the case of the olfactory system, for example, lectins may be involved in development, in the continual regeneration of olfactory neurons and even in the processing of olfactory information. Whereas in mammals and amphibians lectins have been widely employed for the study of the olfactory and accessory olfactory systems, little information regarding lectin labelling is available in fish. We have used a panel of 11 lectins (UEA, BSI-B4, DBA, LEA, VVA, SBA, PSA, WGA, WGA-s, ECA, LTA) in paraformaldehyde fixed and paraffin embedded specimens of a Chondrostei fish, the sturgeon ( Acipenser baeri ). Our preliminary findings show that the olfactory receptor cells, the olfactory nerve fibres and their terminals in the olfactory bulbs were labelled with BSI-B4, DBA, VVA, SBA, PSA, WGA and WGA-s. The presence of glycoproteins, whose terminal sugars are detected by lectin binding, might be related to the reception of an odour stimulus and its transduction into a nervous signal or to the histogenesis of the olfactory system.  相似文献   

10.
The vomeronasal organ (VNO) is a tubular structure in the roof of nasal cavity. The important role of this organ is olfaction of sexual odour. In this study, position, anatomical structure and histology of VNO in Iranian camels (camelus domesticus var. dromedaris persica) were determined. Fourteen healthy male camel heads were collected from an industrial slaughterhouse in Tehran, Iran, for anatomical and histological studies (seven each). The length of VNO and width of dental pad and the number and width of palatine crests were measured. For anatomical studies, the mandible was removed, and maxilla and nasal cavity was cut longitudinally and transversely. For histological studies, the mandible was removed, and first 0.5 cm of initial part of VNO was cut. Then, nasal cavity was cut in some segments with 2 cm thickness. The width of VNO was 3.85 ± 0.31 cm and 1.57 ± 0.18 cm in front and distal parts, respectively. The length of VNO was 15.61 ± 0.59 cm. In histological examinations, VNO was surrounded by J‐shape hyaline cartilage. The lining epithelium of lateral wall of VNO was originated from respiratory epithelium, while it had an olfactory epithelium origin in the medial wall. Lamina propria and tunica submucosa were a cavernous connective tissue with seromucous gland with abundant of serous secretory units. The lumen of VNO opens into nasal cavity. The presence of olfactory epithelium found in our study indicates an important role for VNO in pheromone perception and beginning of sexual behaviour.  相似文献   

11.
The distribution of lectin bindings in the testis of babirusa, Babyrousa babyrussa (Suidae) was studied histochemically using 10 biotinylated lectins, Peanut agglutinin (PNA), Ricinus communis agglutinin (RCA I), Dolichos biflorus agglutinin (DBA), Vicia villosa agglutinin (VVA), Soybean agglutinin (SBA), Wheat germ agglutinin (WGA), Lens culinaris agglutinin (LCA), Pisum sativum agglutinin (PSA), Concanavalin A(Con A) and Ulex europaeus agglutinin (UEA I). Nine of 10 lectins showed a variety of staining patterns in the seminiferous epithelium and interstitial cells. The acrosome of Golgi-, cap- and acrosome-phase spermatids displayed various PNA, RCA I, VVA, SBA and WGA bindings, indicating the presence of glycoconjugates with D-galactose, N-acetyl-D-galactosamine and N-acetyl-D-glucosamine sugar residues respectively. No affinity was detected in the acrosome of late spermatids. LCA, PSA and Con A which have affinity for D-mannose and D-glucose sugar residues were positive in the cytoplasm of spermatids and spermatocytes. DBA was positive only in spermatogonia. In addition to DBA, positive binding in spermatogonia was found for VVA, WGA and Con A, suggesting the distribution of glycoconjugates with N-acetyl-D-galactosamine, N-acetyl-D-glucosamine, D-mannose and D-glucose sugar residues. Sertoli cells were stained intensely with RCA I, WGA and Con A. In Leydig cells, RCA I and Con A were strongly positive, while WGA, LCA and PSA reactions were weak to moderate. The present findings showed that the distribution pattern of lectin binding in the testis of babirusa is somewhat different from that of pig or other mammals reported previously.  相似文献   

12.
The purpose of the present study was to determine the histological and ultrastructural changes in the luminal epithelium of the shell gland associated with natural moulting. Samples of the shell gland from laying (32 weeks old) and moulting (75 weeks old) hens were studied using histological, histochemical and electron microscopic techniques. In addition, TUNEL was used to demonstrate the distribution of apoptotic cells in the luminal epithelium of the shell gland. Autophagy, characterized by the presence of autophagosomes and autolysosomes, was evident in the early stages of degeneration in non-ciliated, ciliated and mitochondrial cells. The intermediate and advanced stages of regression in non-ciliated as well as mitochondrial cells occurred via apoptosis, while both apoptotic and necrotic ciliated cells were observed during the later stages of degeneration. The results of the present study suggest that a synergy of autophagy, apoptosis and necrosis is involved in the involution of the shell gland during natural moulting.  相似文献   

13.
Differentiation of the histochemical characteristics of the olfactory receptor cells (ORC) was examined by immunohistochemistry for protein gene product 9.5 (PGP 9.5) and calretinin (CR) and lectin histochemistry for Phaseolus vulgaris agglutinin-L (PHA-L) in the developing olfactory epithelium (OE) of the barfin flounder. PGP 9.5 immunoreactivity was diffuse and CR immunoreactivity was restricted at day 7, but these immunoreactivities became intense in the OE toward day 91. Crypt cells were first identified at day 56. PHA-L staining was faint at day 28, but became intense toward day 91. These findings suggest that PGP 9.5-immunopositive cells, CR-immunopositive cells, crypt cells and PHA-L-reactive cells differentiate independently in the developing OE and constitute subsets of the ORC in the OE.  相似文献   

14.
The distribution of sugar residues in gonocytes of the differentiating mouse testis was examined by light microscopy using 22 different kinds of lectins. Characteristic binding patterns of sWGA, VVA, and LEA in gonocytes were observed during prespermatogenesis. sWGA preferentially bound to the cytoplasm and plasma membrane of gonocytes on 16.5 days post coitus (dpc). Its reaction decreased thereafter and almost disappeared on 1.5 days post partum (dpp), but reaction reappeared on 4.5 dpp and continued until 6.5 dpp. The VVA reaction was recognized in a few gonocytes on 0.5 dpp, and remained strong until 6.5 dpp. LEA reacted strongly in the plasma membrane and cytoplasm of gonocytes from 0.5 dpp to 6.5 dpp. The present study indicates that sWGA, VVA, and LEA are useful markers for gonocytes, and the appearance or disappearance of sWGA and VVA may be related to the differentiation of gonocytes during prespermatogenesis.  相似文献   

15.
The distribution of lectin bindings in the testis of the smallest ruminant, lesser mouse deer (Tragulus javanicus), was studied using 12 biotinylated lectins specific for d ‐galactose (peanut agglutinin PNA, Ricinus communis agglutinin RCA I), N‐acetyl‐d ‐galactosamine (Dolichos biflorus agglutinin DBA, Vicia villosa agglutinin VVA, Soybean agglutinin SBA), N‐acetyl‐d ‐glucosamine and sialic acid (wheat germ agglutinin WGA, s‐WGA), d ‐mannose and d ‐glucose (Lens culinaris agglutinin LCA, Pisum sativum agglutinin PSA, Concanavalin A Con A), l ‐fucose (Ulex europaeus agglutinin UEA I), and oligosaccharide (Phaseolus vulgaris agglutinin PHA‐E) sugar residues. In Golgi‐, cap‐, and acrosome‐phase spermatids, lectin‐bindings were found in the acrosome (PNA, RCA I, VVA, SBA, WGA and s‐WGA), and in the cytoplasm (PNA, RCA I, VVA, SBA, WGA, LCA, PSA, Con A and PHA‐E). s‐WGA binding was confined to the spermatid acrosome, but other lectins were also observed in spermatocytes. In spermatogonia, VVA, WGA, Con A, and PHA‐E bindings were observed. Sertoli cells were intensely stained with DBA and Con A, and weakly with PHA‐E. In interstitial Leydig cells, RCA I, DBA, VVA, Con A, PSA, LCA, WGA and PHA‐E were positive. UEA I was negative in all cell types including spermatogenic cells. Unusual distribution of lectin‐bindings noted in the testis of lesser mouse deer included the limited distribution of s‐WGA only in the spermatid acrosome, the distribution of DBA in Sertoli cells, Leydig cells and lamina propria, and the absence of UEA I in all type cells. The present results were discussed in comparison with those of other animals and their possible functional implications.  相似文献   

16.
In the olfactory organ of lungfish, recesses at the bases of lamellae comprise sensory and nonsensory epithelia. The sensory epithelium of the recesses, the recess epithelium, is distinguished from the olfactory epithelium covering the lamella by the absence of ciliated olfactory receptor cells. Therefore, it has been suggested that the recess epithelium is a primordium of the vomeronasal organ of tetrapods. However, developmental changes in the number and distribution of recesses in the olfactory organ of lungfish were unknown. We examined four Protopterus aethiopicus specimens of body lengths 215–800 mm to determine the localization of recesses in their olfactory organs. Histological examination showed recesses at the bases of lamellae in all individuals examined. The recesses were localized mainly in the medial and caudal parts of the olfactory organs, especially in juveniles. Compared to smaller fish, larger fish had a larger number of recesses, distributed more broadly in their olfactory organs. Significance of the recess localization and its relationship to the function of lungfish olfactory organ warrants further investigation.  相似文献   

17.
Carbohydrates on epithelial cell surfaces play an important role as attachment sites for different microorganisms like bacteria, viruses and protozoa. To obtain more information about the distribution of carbohydrates on the luminal surface along the intestine, lectin histochemical studies on different gut segments of chicks of different age groups were carried out using a panel of 13 lectins with specificities for Man, Glc, Gal, GalNAc, GlcNAc or GlcNAc oligosaccharides and Sia. Furthermore, we tried to find out whether previously reported specificities of certain lectins for M cells (membranous or multifold cells) in the bursa of Fabricius (BF) can be observed also on M cells of the intestine. As a result we were able to demonstrate binding of all lectins employed in these studies in all investigated gut segments. In some cases, the application of the same lectin led to varying staining intensities of the same histological structures in different age-groups (e.g. staining of the brush border with WGA, LEA, MAA or Conarva) or different gut segments (e.g. staining of goblet cells with CMA II, LEA and MPA). Hence, terminal carbohydrate residues of glycoconjugates on the intestinal epithelium vary depending on age and organ site. As glycoconjugates can act as attachment sites for microorganisms, these differences in the distribution of sugar residues may be one explanation for the site-specificity of certain pathogens. Furthermore, the binding of lectins to the follicle-associated epithelium (FAE) of the BF differs from that to the FAE of the intestine again stressing the site specificity of lectin binding. Thus, up to now no universal M-cell marker along the chicken intestine exists.  相似文献   

18.
The stomach of the Pacific white-sided dolphin is divided into three parts: forestomach, proper gastric gland portion, and pyloric chamber. The histological features of the dolphin stomach are similar to those of terrestrial mammal stomachs, although the distribution of glycoconjugates in mucosal cells of the dolphin stomach is unknown. To learn about glycoconjugates in cetacean gastric mucosa, the glycoconjugate distribution in the mucous epithelium of the Pacific white-sided dolphin was studied using 21 lectins. Among the lectins tested, GSL-I and DBA specifically labelled the superficial layer of the forestomach epithelium. GSL-I, SBA, RCA-I, VVA, GSL-II, DSL, LEL, STL, s-WGA, WGA, PNA, and Jacalin labelled the luminal surface of the chief cells in the proper gastric gland. GSL-I, SBA, RCA-I, DSL, LEL, STL, s-WGA, PNA, and LCA labelled tubular structures in the cytoplasm of parietal cells. The surface portion of the pits in the pyloric chamber strongly reacted with RCA-I, GSL-II, WGA, PNA, LCA, PHA-L, and UEA-I, whereas the neck portion reacted weakly. Although lining one tubular portion, individual secretory cells in the pyloric gland displayed a heterogeneous reaction. This is the first report on the lectin histochemistry of a cetacean stomach and reveals GSL-I and DBA as specific marker lectins for the cornified stratified squamous epithelium cells of the Pacific white-sided dolphin. The stomachs of cetaceans and terrestrial mammals have similar histological features and mucous glycoconjugate content.  相似文献   

19.
Specific adherence of pathogenic Escherichia coli (serotypes O1, O2, and O78) to chicken tracheal epithelium was investigated using adherence-inhibition procedures. The role of pilus as adhesin was studied by blocking the pilus with antipilus antibodies. The nature of the host cell receptor was determined by blocking bacterial adhesion with specific carbohydrates or lectins and destroying the receptor with sodium metaperiodate. Antipilus antibodies to all three serotypes significantly (P less than or equal to 0.05) inhibited their adherence. Sodium metaperiodate considerably inhibited the adhesion of all three serotypes, indicating a role for monosaccharides in the host cell receptor. D-Mannose and its derivative methyl-alpha-D-mannopyranoside inhibited the adhesion of serotypes O1 and O78, indicating a role for these sugars in the host cell receptor; this was further supported by the inhibition of both serotypes after treatment of tracheal epithelium with concanavalin A. None of the sugars or lectins used inhibited adhesion of serotype O2.  相似文献   

20.
Although it has been commonly believed that birds are more dependent on the vision and audition than the olfaction, recent studies indicate that the olfaction of birds is related to the reproductive, homing, and predatory behaviors. In an attempt to reveal the dependence on the olfactory system in crows, we examined the olfactory system of the Japanese jungle crow (Corvus macrorhynchos) by histological, ultrastructural, and lectin histochemical methods. The olfactory epithelium (OE) of the crow occupied remarkably a small area of the nasal cavity (NC) and had the histological and ultrastructural features like other birds. The olfactory bulb (OB) of the crow was remarkably small and did not possess the olfactory ventricle. The left and right halves of the OB were fused in many cases. In the lectin histochemistry, soybean agglutinin (SBA) and Vicia villosa agglutinin (VVA) stained a small number of the receptor cells (RCs) in the OE and the olfactory nerve layer (ONL) and glomerular layer (GL) on the dorsocaudal region of the OB. Phaseolus vulgaris agglutinin-E (PHA-E) stained several RCs in the OE and the ONL and GL on the ventral region of the OB. These results suggest that 1) the crow has less-developed olfactory system than other birds, and 2) the dedicated olfactory receptor cells project their axons to the specific regions of the OB in the crow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号