首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fructosamine   总被引:3,自引:0,他引:3  
Fructosamines are glycated serum proteins that, depending on their life span, reflect glycemic control over the previous 2 to 3 weeks. The nitroblue tetrazolium reduction method adapted to autoanalysis appeared to be a practical means to assay fructosamine quickly, economically, and accurately. The upper limit of the reference range is 374 μmol/L in dogs (95% percentile) and 340 μmol/L in cats (95% percentile). Newly diagnosed diabetic dogs and cats that had not undergone previous insulin therapy had significantly higher fructosamine concentrations than nondiabetic animals. In diabetic dogs that were receiving insulin therapy, the fructosamine test reflected the glycemic state far more accurately than did individual blood glucose measurements. Animals with satisfactory metabolic control revealed fructosamine concentrations within the reference range, whereas fructosamine concentrations above 400 μmol/L indicated insufficient metabolic control. On the basis of fructosamine concentrations, cats with a transitory hyperglycemia and cats with diabetes mellitus were differentiated. The fructosamine test is a valuable parameter for the diagnosis and metabolic control of diabetes mellitus in dogs and cats.  相似文献   

2.
Eighty-nine healthy dogs (44 males, 45 females) of different breeds, 1-12 years of age, living under varied feeding and environmental conditions, were sampled to evaluate a reference interval for serum fructosamine using a nitroblue tetrazolium photocolorimetric method. The analytical assay was evaluated by calculation of within-run and between-day variations. The results were approximately normally distributed and the calculated reference interval was 192.6-357.4 µmol/L (mean 275.0 µmol/L, standard deviation 41.2 µmol/L). No significant differences attributable to sex or age were observed. This reference interval is wider than those previously reported in less heterogeneous groups of dogs and in those from other geographical zones. The fructosamine values in serum from 3 diabetic dogs all exceeded the upper limit of the reference interval.  相似文献   

3.
Differentiating transient hyperglycemia from diabetic hyperglycemia can be difficult in cats since single blood glucose measurements reflect only momentary glucose concentrations, and values may be elevated because of stress-induced hyperglycemia. Glycated protein measurements serve as monitors of longer-term glycemic control in human diabetics. Using an automated nitroblue tetrazolium assay, fructosamine concentration was measured in serum from 24 healthy control cats and 3 groups of hospitalized cats: 32 euglycemic, 19 transiently hyperglycemic, and 12 diabetic cats. Fructosamine concentrations ranged from 2.1 - 3.8 mmol/L in clinically healthy cats; 1.1 - 3.5 mmol/L in euglycemic cats; 2.0 - 4.1 mmol/L in transiently hyperglycemic cats; and 3.4 to >6.0 mmol/L in diabetic cats. Values for with-in-run precision at 2 fructosamine concentrations (2.64 mmol/L and 6.13 mmol/L) were 1.5% and 1.3%, respectively. Between-run coefficient of variation was 3.8% at a fructosamine concentration of 1.85 mmol/L. The mean fructosamine concentration for the diabetic group differed significantly (P=0.0001) from the mean concentrations of the other 3 groups. Poorly regulated or newly diagnosed diabetic cats tended to have the highest fructosamine values, whereas well-regulated or over-regulated diabetic cats had values approaching the reference range. As a single test for differentiating nondiabetic cats from diabetic cats, fructosamine was very sensitive (92%) and specific (96%), with a positive predictive value of 85% and a negative predictive value of 98%. Serum fructosamine concentration shows promise as an inexpensive, adjunct diagnostic tool for differentiating transiently hyperglycemic cats from poorly controlled diabetic cats.  相似文献   

4.
The purpose of this study was to evaluate fructosamine concentrations in clinically healthy cats, sick cats with stress hyperglycemia, and untreated diabetic cats to determine the usefulness of this test in diagnosing diabetes mellitus in cats, and in differentiating the disease from stress-induced hyperglycemia. In addition, we evaluated if the degree of glycemic control in cats treated for diabetes influenced their serum fructosamine concentrations. In the 14 sick cats with stress hyperglycemia, the median serum fructosamine concentration (269 μmol/L) was not significantly different from the median value in the 26 clinically normal cats (252 μmol/L). Two of the 14 cats with stress hyperglycemia (14.3%) had serum fructosamine concentrations above the upper limit of the reference range (175 to 400 μmol/U; on the basis of these results, the test specificity was calculated as 0.86. In 30 cats with untreated diabetes mellitus, the median serum fructosamine concentration was 624 μmol/L, markedly higher than the value in either the normal cats or the cats with stress hyperglycemia. All but 2 of the 30 untreated diabetic cats (6.7%) had serum fructosamine concentration above the upper limit of the reference range; on the basis of these results, the sensitivity of serum fructosamine concentration as a diagnostic test for diabetes mellitus was 0.93. When 30 diabetic cats receiving treatment were divided into 3 groups according to their response to treatment (ie, poor, fair, and good), the 16 cats that had a good response to treatment had significantly lower serum concentrations of both glucose and fructosamine compared with cats that had either a fair or poor response to treatment. A significant correlation (rs= .70, n = 100, P < .001) was found between serum concentrations of glucose and fructosamine. Results of this study indicate that quantification of serum fructosamine concentration is a meaningful test for the diagnosis of diabetes, for differentiating diabetes from stress hyperglycemia; and for monitoring the metabolic control in treated diabetic cats.  相似文献   

5.
The objective of this preliminary study was to establish a reference range for plasma fructosamine concentration and fructosamine-albumin ratio in healthy ferrets and to compare these reference intervals to values obtained from hypoglycemic ferrets. Fructosamine concentration has been shown to reflect blood glucose concentration over the previous 1 to 2 weeks in other animal species, and may be a useful indicator of chronic hypoglycemia in ferrets diagnosed with insulinoma. Plasma fructosamine was measured with an automated colorimetric assay using nitroblue tetrazolium. Thirty-two clinically healthy and 5 hypoglycemic ferrets were included in the study. The reference interval in healthy ferrets for fructosamine was 110 (98 to 123) – 203 (191 to 218) μmol/L, and the reference interval for plasma fructosamine-albumin ratio was 5.1 (4.6 to 5.6) – 8.6 (8.2 to 9.0) μmol/g. Results for hypoglycemic ferrets were within the ranges for both fructosamine and fructosamine-albumin ratio. As there were no significant differences between the healthy and hypoglycemic ferrets, this study suggests that fructosamine concentration and fructosamine-albumin ratio are not likely to be useful in determining insulinoma-associated chronic hypoglycemia in ferrets.  相似文献   

6.
Fructosamine concentrations in hyperglycemic cats.   总被引:4,自引:1,他引:3       下载免费PDF全文
The aims of this study were 1) to establish a reference range for fructosamine in cats using a commercial fructosamine kit; 2) to demonstrate that the fructosamine concentration is not increased by transient hyperglycemia of 90 min duration, simulating hyperglycemia of acute stress; and 3) to determine what percentage of blood samples submitted to a commercial laboratory from 95 sick cats had evidence of persistent hyperglycemia based on an elevated fructosamine concentration. Reference intervals for the serum fructosamine concentration were established in healthy, normoglycemic cats using a second generation kit designed for the measurement of the fructosamine concentration in humans. Transient hyperglycemia of 90 min duration was induced by IV glucose injection in healthy cats. Multisourced blood samples that were submitted to a commercial veterinary laboratory either as fluoride oxalated plasma or serum were used to determine the percentage of hyperglycemic cats having persistent hyperglycemia. The reference interval for the serum fructosamine concentration was 249 to 406 mumol/L. Transient hyperglycemia of 90 min duration did not increase the fructosamine concentration and there was no correlation between fructosamine and blood glucose. In contrast, the fructosamine concentration was correlated with the glucose concentration in sick hyper- and normoglycemic cats. It is concluded that the fructosamine concentration is a useful marker for the detection of persistent hyperglycemia and its differentiation from transient stress hyperglycemia. Fructosamine determinations should be considered when blood glucose is 12 to 20 mmol/L and only a single blood sample is available for analysis.  相似文献   

7.
Serum fructosamine concentrations were measured in 11 untreated hypothyroid dogs with normal serum glucose and serum protein concentrations. The fructosamine level ranged between 276 and 441 mol/L (median 376 mol/L; reference range 207–340 mol/L). Nine of the 11 dogs had fructosamine levels above the reference range. The fructosamine levels decreased significantly during treatment with levothyroxine. It is suggested that serum fructosamine concentrations may be high in hypothyroid dogs because of decelerated protein turnover, independent of the blood glucose concentration.  相似文献   

8.
Fructosamine, a glycated serum protein, was evaluated as an index of glycemic control in normal and diabetic cats. Fructosamine was determined manually by use of a modification of an automated method. The within-run precision was 2.4 to 3.2%, and the day-to-day precision was 2.7 to 3.1%. Fructosamine was found to be stable in serum samples stored for 1 week at 4 C and for 2 weeks at -20 C. The reference range for serum fructosamine concentration in 31 clinically normal colony cats was 2.19 to 3.47 mmol/L (mean, 2.83 +/- 0.32 mmol/L). In 27 samples from 16 cats with poorly controlled diabetes mellitus, the range for fructosamine concentration was 3.04 to 8.83 mmol/L (mean, 5.93 +/- 1.35 mmol/L). Fructosamine concentration was directly and highly correlated to blood glucose concentration. Fructosamine concentration also remained high in consort with increased blood glucose concentration in cats with poorly controlled diabetes mellitus over extended periods. It is concluded that measurement of serum fructosamine concentration can be a valuable adjunct to blood glucose monitoring to evaluate glycemic control in diabetic cats. The question of whether fructosamine can replace glucose for monitoring control of diabetes mellitus requires further study.  相似文献   

9.
OBJECTIVE: To determine the effect of hyperthyroidism on serum fructosamine concentration in cats. DESIGN: Cohort study. ANIMALS: 22 cats with overt hyperthyroidism. PROCEDURE: Hyperthyroidism was diagnosed on the basis of clinical signs, detection of a palpable thyroid gland, and high total serum thyroxine (T4) concentrations. Hyperthyroid cats with abnormal serum albumin, total protein, and glucose concentrations were excluded from the study. Samples for determination of serum fructosamine concentration were obtained prior to initiating treatment. Results were compared with fructosamine concentrations in healthy cats, cats in which diabetes had recently been diagnosed, and cats with hypoproteinemia. In 6 cats, follow-up measurements were obtained 2 and 6 weeks after initiating treatment with carbimazole. RESULTS: Serum fructosamine concentrations ranged from 154 to 267 mumol/L (median, 198 mumol/L) and were significantly lower than values in healthy cats. Eleven (50%) of the hyperthyroid cats had serum fructosamine concentrations less than the reference range. Serum fructosamine concentrations in hyperthyroid, normoproteinemic cats did not differ from values in hypoproteinemic cats. During treatment, an increase in serum fructosamine concentration was detected. CONCLUSIONS AND CLINICAL RELEVANCE: In hyperthyroid cats, concentration of serum fructosamine may be low because of accelerated protein turnover, independent of blood glucose concentration. Serum fructosamine concentrations should not be evaluated in cats with overt hyperthyroidism and diabetes mellitus. Additionally, concentration of serum fructosamine in hyperthyroid cats should not be used to differentiate between diabetes mellitus and transitory stress-related hyperglycemia.  相似文献   

10.
Ninety-three unhealthy dogs (including some with diabetes mellitus or insulinoma) of different ages, sex and breeds were divided into 10 groups according to their pathology. Serum fructosamine concentrations were determined using a commercial colorimetric nitroblue tetrazolium method. Diabetic dogs had the highest fructosamine concentrations (454.85±149.34 mol/L). Dogs with insulinoma had significantly lower fructosamine concentrations (202.80±31.22 mol/L), similar to those with leishmaniosis (202.83±99.83 mol/L). Fructosamine concentrations in non-healthy dogs, except those with diabetes mellitus, insulinoma or leishmaniosis, were within the reference limits previously reported.  相似文献   

11.
The effect of ciclosporin A (CsA) on glucose homeostasis was investigated in 16 dogs with atopic dermatitis by determining plasma glucose, serum fructosamine and insulin concentrations, and serial insulin and glucose concentrations following a glucagon stimulation test, before and 6 weeks after CsA therapy at 5 mg/kg once daily. All dogs completed the study. Following CsA treatment, the median serum fructosamine concentrations were significantly higher (pretreatment 227.5 μmol/L; post-treatment 246.5 μmol/L; P = 0.001; reference range 162-310 μmol/L). Based on analyses of the areas under concentration-time curves (AUC) pre- and post-CsA treatment, plasma glucose concentrations were significantly higher (AUC without baseline correction 31.0 mmol/L/min greater; P = 0.021) and serum insulin concentrations were significantly lower (AUC without baseline correction 217.1 μIU/mL/min lower; P = 0.044) following CsA treatment. Peak glucose concentrations after glucagon stimulation test were significantly higher following CsA treatment (10.75 versus 12.05 mmol/L; P = 0.021), but there was no significant difference in peak serum insulin (52.0 versus 35.0 μIU/mL; P = 0.052). There was a negative correlation between baseline uncorrected insulin AUC and trough serum log CsA concentrations (r = -0.70, P = 0.005). The administration of CsA to dogs with atopic dermatitis leads to disturbances in glucose homeostasis. The clinical significance of this is unclear, but it should be taken into account when considering CsA treatment in dogs that already have such impairments.  相似文献   

12.
The aim of this study was to investigate the effect of bexagliflozin on glycemic control in poorly regulated diabetic cats and to evaluate for adverse events associated with this medication.Sodium-glucose cotransporter 2 inhibitors are a newer class of drugs used in the management of humans with type 2 diabetes mellitus. The objective of this study was to evaluate the effect of the orally administered drug, bexagliflozin in a group of poorly regulated diabetic cats over a 4-week study period. Five client-owned cats with poorly controlled diabetes mellitus receiving insulin therapy were enrolled. Bexagliflozin was administered once daily. Serum fructosamine, serum biochemistry profile, and 10-hour blood glucose curves were assessed at baseline (Day 0), Day 14, and Day 28. All cats had a significant reduction in insulin dose requirement (P = 0.015) and insulin was discontinued in 2 cats. There was a significant decrease in blood glucose concentration obtained from blood glucose concentration curves during the study period (P = 0.022). Serum fructosamine decreased in 4 of the 5 cats with a median decrease of 152 μmol/L (range: 103 to 241 μmol/L), which was not statistically significant (P = 0.117). No cats had any documented episodes of hypoglycemia. Adverse effects were mild. The addition of bexagliflozin significantly improved diabetic management in this group of cats.  相似文献   

13.
The purposes of the study were to obtain a reference interval and to calculate the critical difference between two analytical results for canine serum fructosamine concentration. To obtain a reference interval, the serum fructosamine concentration was measured in blood samples from 29 adult dogs after a 15-h fasting period. To calculate the critical difference, blood samples from 20 apparently clinically healthy dogs were collected once weekly for five consecutive weeks, and the total variance of the analytical results was divided into the component of variance between dogs (S inter 2 ), the component of variance for weeks within dogs (S intra 2 ) and the component of variance for measurements (S anal 2 ), using nested analysis of variance. The critical difference was then calculated fromS intra 2 andS anal 2 .The main conclusions are in summary: The reference interval for canine serum fructosamine concentration is 258.6–343.8 µmol/L, and the critical difference between two consecutive measurements on a week-to-week basis is 32.4 µmol/L. The critical difference may be used as a guideline to indicate potentially important changes in the serum fructosamine concentration, though the analytical results should not be assessed by the critical differences alone, but should also be compared to the corresponding reference intervals.  相似文献   

14.
BACKGROUND: The total glycated protein (fructosamine) concentration in serum consists mainly of glycated albumin and lipoproteins. Measurement of fructosamine is used to diagnose and monitor diabetes mellitus in cats. OBJECTIVE: The aims of this study were to measure glycated proteins in diabetic and healthy (nondiabetic) cats using a semiquantitative technique and to determine whether measurement of any of the fractions of glycated protein could be potentially advantageous for the diagnosis and monitoring of diabetic cats. METHODS: Serum samples from 6 cats with diabetes mellitus and 10 clinically healthy adult cats were assayed for total glycated protein using a nitroblue tetrazolium (NBT) fructosamine assay. Serum proteins were separated by agarose gel electrophoresis and stained with NBT to identify individual glycated proteins within the bands. Gels were scanned by densitometry at 525 nm and the glycated protein content was calculated with reference to the total glycated protein content of the sample. RESULTS: Diabetic cats with increased total fructosamine concentrations had higher concentrations of glycated albumin and glycated alpha- and beta-lipoproteins compared with healthy cats. The concentration of glycated proteins in each of the fractions had a positive linear association with the total glycated protein content of serum, but there was large variation in the relative contributions of the 3 protein fractions to the total glycated protein concentration. CONCLUSIONS: Based on the results of this study, measurement of individual glycated fractions does not seem to offer any potential diagnostic advantage over measurement of total glycated protein (fructosamine) concentration alone. In some diabetic and healthy cats, glycated lipoproteins formed the major part of the total glycated protein, whereas in other cats albumin was the major contributor.  相似文献   

15.
Fructosamine and glycated hemoglobin (HbA1c) concentrations were measured simultaneously in 222 dogs (96 healthy and 126 sick dogs). The dogs were divided into 3 groups according to the glucose concentration: hypo, hyper and euglycaemic dogs. Serum fructosamine concentrations were measured by the reduction test with nitroblue tetrazolium. A turbidimetric inhibition immunoassay and specific polyclonal antibodies were used to evaluate glycated hemoglobin concentrations. A significant correlation was found between glucose concentration and either fructosamine (r = 0.63, p < 0.0001) or glycated hemoglobin (r = 0.82, p < 0.0001). The correlation was higher in hyperglycaemic dogs for fructosamine (r = 0.80, p < 0.0001) and in hypoglycaemic dogs for glycated hemoglobin (r = 0.91, p < 0.005). We found a significant correlation between serum fructosamine and glycated hemoglobin (r = 0.65, p < 0.0001 ) when all the dogs were studied. A significant correlation was observed between serum fructosamine and glycated hemoglobin only in hyperglycaemic dogs (r = 0.82, p < 0.0003). Thus, fructosamine and HbA1c may be considered for use in screening tests for diabetes mellitus in dogs and clinical tests for monitoring control and evaluation of the diabetic animal's response to treatment. The choice of the analytical assay depends on the characteristic and analytical opportunities of the laboratory, as well as the number of serum samples to be analysed.  相似文献   

16.
The relationship among serum fructosamine concentration and total serum protein and albumin concentrations were evaluated in healthy and sick dogs (diabetics and dogs with insulinoma were not included). Fructosamine was determined using a commercial colorimetric nitroblue tetrazolium method applied to the Technicon RA-500 (Bayer). Serum fructosamine concentration was not correlated to total protein in normoproteinemic (r = 0.03) and hyperproteinemic dogs (r = 0.29), but there was a high correlation (r = 0.73) in hypoproteinemic dogs. Similar comparison between serum fructosamine and albumin concentrations showed middle correlation (r = 0.49) in normoalbuminemic dogs and high degree of correlation (r = 0.67) in hypoalbuminemic dogs. These results showed the importance of recognizing serum glucose concentration as well as total serum protein and albumin concentrations in the assay of canine serum fructosamine concentration.  相似文献   

17.
Fructosamines are glycated serum proteins that reflect long-term serum glucose concentrations in humans and several animal species. In the present study, blood samples were drawn from three populations of diabetic cats: untreated diabetic cats with clinical symptoms prevailing only a few days (n = 1), untreated diabetic cats with symptoms lasting more than two weeks (n = 6) and clinically well stabilised diabetic cats receiving insulin twice daily which showed no signs of disease (n = 4). All untreated diabetic cats showed elevated fructosamine measurements. Based on fructosamine measurements, clinically well stabilised diabetic cats could be subdivided further according to the degree of glycaemic control. Diabetic cats with satisfactory glycaemic control revealed fructosamine concentrations within or close to the reference range (146 to 271 umol/litre), whereas fructosamine concentrations above 400 umol/litre indicated insufficient glycaemic control. This study suggests that the fructosamine assay reflects persistently elevated serum glucose concentrations in cats and is a useful parameter for diagnosing and monitoring diabetes mellitus in cats.  相似文献   

18.
The purposes of the study were to obtain the confidence intervalsfor serum fructosamine concentrations in unweaned and early weaned calves, to verify the changes in this glycated protein during growth, when glucaemia declines, and to assess the changes in both parameters attributable to stress or alarm. Sixty out of 120 suckling half-bred zebu calves (60–75 days old) were weaned at day 0 and then received a commercial balanced diet, while the remainder continued to suck. Blood samples were taken at 0, 7, 14, 21, 28, 60, 90 and 120 days and the serum fructosamine and glucose concentrations were measured by conventional methods. Both biochemical parameters declined with time, but there were no statistical differences between the unweaned and weaned calves. The fall in fructosamine concentration correlated significantly with the decline in glucose concentrations in both groups. The confidence interval for fructosamine concentration decreased with age, from 294–303 mol/L at 2 months old to 215–232 mol/L at 6 months old. At the same time, glucaemia declined from 7.5–8.6 mmol/L to 4.8–5.3 mmol/L. Acute elevations in glucaemia, especially in the younger calves, were attributed to alarms, such as those caused by handling and blood extraction. The absence of resultant increases in fructosamine concentration discounts the existence of prolonged hyperglucaemias (stress) in early weaned calves.  相似文献   

19.
Over representation of Burmese cats with diabetes mellitus   总被引:2,自引:0,他引:2  
Objective To determine if Burmese cats in Queensland have an increased risk of diabetes mellitus.
Design A retrospective study of diabetic and nondiabetic cats that had blood submitted to a veterinary clinical laboratory over a 22 month study period.
Sample population 4402 cats
Procedure Cats were considered diabetic if blood glucose concentration was > 11 mmol/L and fructosamine was > 406 μmol/L or hydroxybutyrate was >1 mmol/L. Cats were grouped into Burmese and non-Burmese. Adjusted odds ratios of diabetes were calculated for breed, gender and age group amongst cats with blood glucose > 11 mmol/L.
Results Burmese cats comprised 20% of 45 diabetic cats of known breed, which was higher (P < 0.001) than among the normoglycemic reference population of 2203 cats (7% Burmese). There were more females among the diabetic Burmese (62%), but this did not differ (P > 0.05) from the Burmese reference population (45% females). In contrast, males seemed to predominate among diabetic non-Burmese (63%), although this also did not differ (P > 0.05) from the reference population (55%) or from diabetic Burmese (38% males). The majority (90%) of diabetic cats were older than 6 years, irrespective of breed (median age 12 years, interquartile range 10 to 13 years). This was higher (χ2= 8.13, P < 0.005) than among the normoglycaemic reference population, where 69% were older than 6 years.
Conclusions Burmese cats were significantly over represented among cats with diabetes mellitus. Irrespective of breed, the risk of diabetes in the study population increased with age.  相似文献   

20.
The relation of the glycated serum protein, fructosamine, to serum protein, albumin, and glucose concentrations was examined in healthy dogs, dogs with hypo- or hyperproteinemia, and diabetic dogs. Fructosamine was determined by use of an adaptation of an automated kit method. The reference range for fructosamine in a composite group of control dogs was found to be 1.7 to 3.38 mmol/L (mean +/- SD, 2.54 +/- 0.42 mmol/L). Fructosamine was not correlated to serum total protein, but was highly correlated to albumin in dogs with hypoalbuminemia. To normalize the data with respect to albumin, it is suggested that the lower limit of the reference range for albumin concentration (2.5 g/dl) be used for adjustment of fructosamine concentration and only in hypoalbuminemic dogs. In 6 hyperglycemic diabetic dogs, fructosamine concentration was well above the reference range. It is concluded that although fructosamine may be a potentially useful guide to assess the average blood glucose concentration over the preceding few days in dogs, further study is required to establish its value as a guide to glucose control in diabetic dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号