首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
为快速准确识别自然环境下的番茄叶片病害,提出一种基于改进YOLOv4算法的轻量化番茄叶部病害识别方法。该方法根据番茄病害特征采用K均值聚类算法调整先验框的维度,并使用宽度因子为0.25的MobileNetv1代替YOLOv4原有的主干网络CSPDarknet53进行特征提取,并在特征融合网络PANet中引入深度可分离卷积代替原有的3×3标准卷积,同时在主干网络的2个输出特征层和空间金字塔池化输出层分别嵌入卷积块注意力模块(CBAM),提高模型识别精度。试验结果表明,改进后的模型对8类番茄叶片整体检测精准性(mAP)为98.76%,参数量为12.64 M,传输帧数为1 s 101.76帧,相较于原YOLOv4模型,模型参数量减少80%,每秒传输帧数比原始YOLOv4模型提高了130%。  相似文献   

2.
【目的】采用机器视觉技术开展柑橘梢期的智能感知技术研究,以解决背景与目标颜色相似造成识别精度低的问题,实现柑橘梢期自动监测,探索算法的改进方法。【方法】根据不同卷积层提取特征的特点与不同注意力机制的作用,提出了一种基于多注意力机制改进的YOLOX-Nano智能识别模型,建立多元化果园数据集并进行预训练。【结果】改进的YOLOX-Nano算法使用果园数据集作为预训练数据集后,各类别平均精度的平均值(Mean average precision, mAP)达到88.07%。与YOLOV4-Lite系列模型相比,本文提出的改进模型在使用较少的参数和计算量的情况下,识别精度有显著的提升,mAP分别比YOLOV4-MobileNetV3和YOLOV4-GhostNet提升6.58%和6.03%。【结论】改进后的模型在果园监测终端的轻量化部署方面更具有优势,为农情实时感知和智能监测提供了可行的数据和技术解决方案。  相似文献   

3.
【目的】网箱生物识别和统计是海洋牧场的养殖管理的关键参考因素之一。针对混响噪声和复杂背景的干扰,构建不同光照条件下鱼类检测数据集,采用前视声呐成像技术,提出一种基于 YOLOV5-MobilenetV3 和声呐图像的鱼类识别轻量化模型(LAPR-Net),实现浑浊或黑暗场景下水体网箱的鱼类识别。【方法】以罗非鱼为研究对象,基于 YOLOV5 模型的框架结构,主干网络模块采用轻量级 MobileNetV3 bneck 模块,利用线性瓶颈的逆残差结构和深度可分离卷积提取声呐图像中鱼类的特征,通过注意力机制 SE-Net 获取声呐图像多尺度语义特征并增强特征之间的相关性;颈部网络采用路径聚合网络结构,对目标特征进行多尺度融合,增强特征融合能力;预测部分采用基于非极大抑制方法进行最大局部搜索,去除冗余的检测框,筛选置信度最高的检测框,最终输出并显示鱼的检测结果,包含位置、类别以及检测目标的概率。【结果】选择 4 种其他主流的检测模型进行对比试验,包含 YOLOV3-ting(Darknet53)、YOLOV5(CSPdarknet53)、YOLOV5(Repvgg)、YOLOV5s(Transformer),提出模型参数量为 3 545 453、计算量为 6.3 G、mAP 为 0.957,模型平均每张图片推理速度为 0.08868 s,同 YOLOV5 模型相比,改进后模型 mAP 提高 9.7%。【结论】本文提出的模型提高了训练和识别速度,降低了硬件设备要求,可为海洋牧场网箱养殖鱼类检测模型提供参考。  相似文献   

4.
针对现有目标检测算法对自然环境下核桃识别存在漏检、误检等问题,提出了一种基于Swin Transformer多层特征融合改进的YOLOX-S核桃识别算法。首先,在主干特征提取网络中引入基于Swin Transformer的多层特征融合模块,借助Swin Transformer的多头注意力机制对小目标的特征信息进行提取并与特征图进行融合,可以有效解决因网络层数加深导致的高层特征图中小目标特征信息丢失问题;其次,为了提高算法的检测精度,引入更高效的Repblock模块对原网络中的CSP模块进行替换;最后,为了提高下采样效果,使用更为优秀的Transition Block模块作为主干特征提取网络的下采样模块。结果表明,改进后的YOLOX-S模型在采集的自然环境下核桃数据集上平均精度AP50达到96.72%,分别比Faster-RCNN、YOLOv5-S、YOLOX-S算法提高7.36、1.38、0.62百分点,检测速度达到46 f/s,模型参数大小为20.55 M。改进后的YOLOX-S算法具有更好的精度,改善了漏检和误检问题,对自然环境下的核桃有更好的识别效果。  相似文献   

5.
准确识别苹果叶片病害种类以进行及时防治对于苹果增量增产具有重要的意义,为解决同时检测苹果叶片多种病害目标结果不准确的问题,提出一种改进的YOLOv4目标检测算法(MC-YOLOv4)对苹果叶片常见的5种病害(斑点落叶病、褐斑病、灰斑病、花叶病、锈病)进行检测。为方便迁移到移动终端,首先,该算法将YOLOv4网络结构中的主干特征提取网络CSPDarknet53换成了轻量级的MobileNetV3网络,并在加强特征提取网络结构中引入深度可分离卷积代替传统卷积;其次,为提高检测精度,将卷积注意力机制模块CBAM融合至PANet结构中,可增强对有用特征信息的提取;最后,为了使锚框更适应本研究的数据集,通过K-means聚类算法将模型的锚框信息更新。结果表明,MC-YOLOv4模型在检测中的平均精度为97.25%,单张图像平均检测时间为13.3 ms,权重文件大小为55.5 MB。MC-YOLOv4模型对于同时检测苹果叶片多种病害目标的问题上具有识别速度快、识别精准度高、可靠性强等特点,该研究为苹果叶片的病害检测提供了一种更优的方法,有助于实现精准施药,提高苹果的产量和品质。  相似文献   

6.
为评估金枪鱼延绳钓系统运行质量、降低人工成本,以及从金枪鱼延绳钓系统电子监控EMS系统中提取浮球、金枪鱼数量等信息,本文提出一种基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统浮球及金枪鱼目标检测方法,从HNY722远洋渔船EMS系统视频监控数据中截取包含有目标浮球和金枪鱼的15578帧关键帧,将所有关键帧及其标记文件划分为14178个训练数据及1400个验证数据,基于YOLOV5s、YOLOV5l、YOLOV5m、YOLOV5x等4种YOLOV5神经网络模型,设计分组训练试验对比训练效果.结果表明:参与训练的4种神经网络模型均可完成金枪鱼延绳钓电子监控系统的目标检测任务,但网络模型的选择对广义交并比损失(GIoU loss)、目标检测损失(objectness loss)、准确率(precision)、召回率(recall)、多类别平均精度值(mAP)等参数具有显著性影响(P<0.05),对目标分类损失(classifi-cation loss)参数无显著性影响(P>0.05);检测效果表现较好的模型是YOLOV5l和YOLOV5m,二者的mAP@0.5值分别为99.1%和99.2%,召回率分别为98.4%和98.3%,但YOLOV5m网络模型在GIoU损失等表现上劣于YOLOV5l.研究表明,4种网络模型中YOLOV5l模型是最适合应用于金枪鱼延绳钓电子监控系统目标检测的网络模型.  相似文献   

7.
为实现快速实时的柑橘视觉检测,提出了一种基于模型剪枝的多维度特征Slim-FOCS逐像素目标检测算法,可实现自然环境下成熟柑橘高效快速检测.使用FCOS模型架构,选用Darknet 19作为模型主干网络,设计FPN多尺度特征提取网络融合柑橘图像不同尺度的特征,加强主干网络中的视觉特征提取.初训练完成后进行模型剪枝,将每...  相似文献   

8.
目的 提高杂交稻种子活力分级检测精度和速度。方法 提出了一种基于YOLOv5改进模型(YOLOv5-I)的杂交稻芽种快速分级检测方法,该方法引入SE (Squeeze-and-excitation)注意力机制模块以提高目标通道的特征提取能力,并采用CIoU损失函数策略以提高模型的收敛速度。结果 YOLOv5-I算法能有效实现杂交稻芽种快速分级检测,检测精度和准确率高,检测速度快。在测试集上,YOLOv5-I算法目标检测的平均精度为97.52%,平均检测时间为3.745 ms,模型占用内存空间小,仅为13.7 MB;YOLOv5-I算法的检测精度和速度均优于YOLOv5s、Faster-RCNN、YOLOv4和SSD模型。结论 YOLOv5-I算法优于现有的算法,提升了检测精度和速度,能够满足杂交稻芽种分级检测的实用要求。  相似文献   

9.
为准确识别自然条件下的咖啡叶片病虫害,提出一种基于YOLOv5改进的目标检测算法。该方法通过在主干网络融入ConvNext网络和ECA注意力机制来优化相关网络模型,提高了网络特征提取能力,更好解决了鲁棒性差和对遮挡目标与小目标的漏检问题。结果表明,该方法的检测精度均值(mAP)达到了94.13%,检测速度和精度都具有良好效果,同时模型大小只有17.2 MB,可以满足边缘设备的运行条件。因此,改进后的YOLOv5算法可为自然环境下咖啡叶片病虫害识别提供技术支撑,满足实时目标检测的实际应用需求。  相似文献   

10.
基于深度学习的苹果树侧视图果实识别   总被引:3,自引:2,他引:1  
【目的】传统果树侧面果实识别方法精度难以满足实际果实识别的需求,研究深度学习方法对提高苹果树侧面果实识别精度、增强模型对苹果复杂生长环境的适应性和泛化性具有重要意义。【方法】文章提出基于深度卷积神经网络对广域复杂背景环境下的侧面苹果特征进行学习的方法,完成苹果树侧面果实多目标识别任务。【结果】在广域复杂场景下,基于VGG16为特征提取网络的Faster-RCNN多目标检测模型在果实多目标检测任务中,识别精度达到91%,单幅影像识别时间约为1.4 s,相较于ResNet50作为特征提取层的目标检测模型识别精度提高4%;在相同影像数据下,模型识别精度的主要影响因素是遮挡,导致模型漏判果实数量较多,VGG16在不同程度遮挡区域的漏判率比ResNet低6%。【结论】基于VGG16卷积神经网络果树侧视图果实识别算法对广域复杂场景下的果实提取效果较好,特别是在具有遮挡情况下的识别结果更优,能够为果园产量估算提供一定的借鉴。  相似文献   

11.
为了解决水稻小病斑检测不准确的问题,提出一种基于改进YOLOv3的水稻叶部病害检测方法Rice–YOLOv3。首先,采用K–means++聚类算法,计算新的锚框尺寸,使锚框尺寸与数据集相匹配;其次,采用激活函数Mish替换YOLOv3主干网络中的Leaky Relu激活函数,利用该激活函数的平滑特性,提升网络的检测准确率,同时将CSPNet与DarkNet53中的残差模块相结合,在避免出现梯度信息重复的同时,增加神经网络的学习能力,提升检测精度和速率;最后,在FPN层分别引入注意力机制ECA和CBAM模块,解决特征层堆叠处的特征提取问题,提高对小病斑的检测能力。在训练过程中,采用COCO数据集预训练网络模型,得到预训练权重,改善训练效果。结果表明:在测试集下,Rice–YOLOv3检测水稻叶部3种病害的平均精度均值(mAP)达92.94%,其中,稻瘟病、褐斑病、白叶枯病的m AP值分别达93.34%、89.68%、95.80%,相较于YOLOv3,Rice–YOLOv3检测的m AP提高了6.05个百分点,速率提升了2.8帧/s,对稻瘟病和褐斑病的小病斑的检测能力明显增强,可以检测出原...  相似文献   

12.
基于深度学习的笼养蛋鸡行为实时检测方法   总被引:2,自引:2,他引:0  
针对蛋鸡养殖中,传统蛋鸡行为检测操作复杂、分类单一、实时性差的问题,提出一种基于深度学习的轻量型蛋鸡行为检测算法TD-YOLOV3。该检测算法以YOLOV3为基础网络结构,对其进行网络结构压缩,获得轻量型T-YOLOV3网络结构,用以提高系统检测速度;将第一个多尺度预测中的残差模块替换为Dense block,并在网络结构中的第Convolution 5,Convolution 7,Convolution 10,Convolution 12的卷积层之后添加NIN网络中的MLP结构,用以提高检测精度;采用基于K-means算法的聚类维度优化和训练策略优化对本研究的数据集进行训练和测试。试验结果表明,本研究提出的TD-YOLOV3检测算法的平均精准度均值89.26%,检测速度为33帧/s,参数量为55 MB;在同一硬件水平下与YOLOV3和T-YOLOV3相比,TD-YOLOV3在检测速度、精度等方面的综合性能最优,更适用于笼养蛋鸡行为的实时自动检测。  相似文献   

13.
基于改进Faster-RCNN模型的粘虫板图像昆虫识别与计数   总被引:2,自引:1,他引:1  
针对传统机器学习采用人工提取特征方法时,由于人为主观性而影响昆虫识别效果与计数准确性的问题,采用图像特征自动提取方法,将深度学习目标检测模型引入昆虫的识别与计数领域,对Faster-RCNN目标检测模型进行改进:针对昆虫体积小,图像分辨率较低的特点,用网络深度更深,运算量更小的深度残差网络(ResNet50)代替原来的VGG16,以提取更加丰富的特征;针对部分昆虫密集的特点,用Soft-NMS算法代替传统的非极大值抑制(NMS)算法,以减少密集区域的漏检。结果表明:改进后Faster-RCNN模型的检测准确率达到90.7%,较未改进的Faster-RCNN模型提高了4.2%,可以运用于昆虫的分类计数。利用深度学习目标检测模型进行昆虫识别与计数较传统的昆虫识别与计数方法更加方便,能够将昆虫的识别、定位和计数融为一体。  相似文献   

14.
目的 引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。方法 在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1 150幅,人工标注后对原始图像进行离线数据增强扩充;对Faster R-CNN算法进行适应性改进,在卷积层加入批标准化处理层,引入中心代价函数构建混合代价函数,提高相似病斑的识别精度;采用随机梯度下降算法优化训练模型,分别选取4种预训练的卷积结构作为Faster R-CNN的特征提取网络进行训练,并测试得到最优特征提取网络,利用训练好的模型选取不同天气条件下的测试集进行对比,并将改进Faster R-CNN与未改进的Faster R-CNN和SSD算法进行对比试验。结果 在改进Faster R-CNN病害识别框架中,以VGG16卷积层结构作为特征提取网络具有更出色的性能,利用测试集图像检验模型,识别结果的平均精度为 0.971 8,平均召回率为0.971 9,F1为0.971 8,总体平均准确率可达97.23%;晴天的图像识别效果优于阴天的。改进Faster R-CNN算法与未改进的Faster R-CNN算法相比,平均精度高0.088 6,单张图像检测耗时减少0.139 s;与SSD算法相比,平均精度高0.0425,单张图像检测耗时减少0.018 s,表明在大田环境中具有复杂背景的玉米病害智能检测领域,改进Faster R-CNN算法综合性能优于未改进的Faster R-CNN算法和SSD算法。结论 将改进后的Faster R-CNN算法引入田间复杂条件下的玉米病害智能诊断是可行的,具有较高的准确率和较快的检测速度,能够避免传统人工识别的主观性,该方法为田间玉米病害的及时精准防控提供了依据。  相似文献   

15.
【目的】研究基于改进Mask R-CNN的玉米苗冠层分割算法,满足精准作业中对靶施肥的识别要求,提高化肥的使用效率,减少环境污染。【方法】采集田间玉米苗图片并增强数据,生成田间数据集;使用ResNeXt50/101-FPN作为特征提取网络对分割算法进行训练,并与原始ResNet50/101-FPN的训练精度结果作对比;采用不同光照强度及有伴生杂草的玉米苗图片对比验证冠层识别算法效果。【结果】在不同光照强度下,无伴生杂草的目标平均识别精度高于95.5%,分割精度达98.1%;在有伴生杂草与玉米苗有交叉重合情况下,目标平均识别精度高于94.7%,分割精度达97.9%。检测一帧图像的平均时间为0.11 s。【结论】Mask R-CNN的玉米苗及株芯检测算法有更高的准确率和分割精度,更能适应不同光照强度及有伴生杂草的苗草交叉重合情况的目标检测。  相似文献   

16.
为了提高林业害虫检测的准确性,提出一种基于YOLOv4的改进算法。首先,基于智能害虫捕捉装置拍摄的图像,制作害虫数据集,采用K-means算法对样本数据集的目标框进行聚类分析,基于DIoU-NMS算法实现对害虫的计数功能;然后,在模型的路径聚合网络(PANet)结构上增加特征融合和104×104层级特征检测图,以提升对小个体害虫的识别率;最后,根据模型检测效率和复杂度,调整模型中的尺度特征图组合,在保证检测准确度的基础上,提升检测效率,并精简模型。试验结果表明,改进的YOLOv4模型的平均识别精度比传统YOLOv4模型提高了1.6百分点,且对于小个体害虫的识别效果更好,模型复杂度和模型参数量分别减少了11.9%、33.2%,检测速度提升了11.1%,更适于应用部署。  相似文献   

17.
为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2模块中使用深度可分离卷积代替传统卷积,避免了复杂模型导致的内存不足和高延迟问题;最后,将原YOLOv4网络每个尺度的最后一层3×3卷积改为Inception网络结构,以提高模型在生猪姿态检测上的准确率。应用上述模型,对生猪的站立、坐立、腹卧、趴卧和侧卧5类姿态进行识别。结果显示,Mini_YOLOv4模型较YOLOv4模型在检测精度上提升了4.01百分点,在检测速度上提升近1倍,在保证识别精度的同时提升了实时性,可为生猪行为识别提供技术参考。  相似文献   

18.
目的 针对传统奶牛养殖中采用人工识别奶牛个体的方法效率低且主观性强的问题,提出一种基于改进Mask R-CNN的奶牛个体识别方法。方法 该方法对Mask R-CNN中的特征提取网络结构进行优化,采用嵌入SE block的ResNet-50网络作为Backbone,通过加权策略对图像通道进行筛选以提高特征利用率;针对实例分割时目标边缘定位不准确的问题,引入IoU boundary loss构建新的Mask损失函数,以提高边界检测的精度;对3000张奶牛图像进行训练、验证和测试。结果 改进Mask R-CNN模型的精度均值(AP)达100%,IoUMask达91.34%;与原始Mask R-CNN模型相比,AP提高了3.28%,IoUMask提高了5.92%。结论 本文所提方法具备良好的目标检测能力,可为复杂农场环境下的奶牛个体精准识别提供参考。  相似文献   

19.
He  Yue  Zhou  Zhiyan  Tian  Luhong  Liu  Youfu  Luo  Xiwen 《Precision Agriculture》2020,21(6):1385-1402

The brown rice planthopper (Nilaparvata lugens Stal) is one of the main pests of rice. The rapid and accurate detection of brown rice planthoppers (BRPH) can help treat rice in time. Due to the small size, large number and complex background of BRPHs, image detection of them is challenging. In this paper, a two-layer detection algorithm based on deep learning technology is proposed to detect them. The algorithm for both layers is the Faster RCNN (regions with CNN features). To effectively utilize the computing resources, different feature extraction networks have been selected for each layer. In addition, the second layer detection network was optimized to improve the final detection performance. The detection results of the two-layer detection algorithm were compared with the detection results of the single-layer detection algorithm. The detection results of the two-layer detection algorithm for detecting different populations and numbers of BRPHs were tested, and the test results were compared with YOLO v3, a deep learning target detection network. The test results show that the detection results of the two-layer detection algorithm were significantly better than those of the single-layer detection algorithm. In the tests for different numbers of BRPHs, the average recall rate of this algorithm was 81.92%, and the average accuracy was 94.64%; meanwhile, the average recall rate of YOLO v3 was 57.12%, and the average accuracy rate was 97.36%. In the experiment with different ages of BRPHs, the average recall rate of the algorithm was 87.67%, and the average accuracy rate was 92.92%. In comparison, for the YOLO v3, the average recall rate was 49.60%, and the average accuracy rate was 96.48%.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号